LM118/LM218/LM318 Operational Amplifiers

General Description
The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 150V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 µs.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a −25˚C to +85˚C temperature range. The LM318 is specified from 0˚C to +70˚C.

Features
- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Fast Voltage Follower
(Note 1)

(Note 1) Do not hard-wire as voltage follower (R1 ≥ 5 kΩ)
Absolute Maximum Ratings (Note 7)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- **Supply Voltage**: ±20V
- **Power Dissipation (Note 2)**: 500 mW
- **Differential Input Current (Note 3)**: ±10 mA
- **Input Voltage (Note 4)**: ±15V
- **Output Short-Circuit Duration**: Continuous
- **Operating Temperature Range**:
 - LM118: −55˚C to +125˚C
 - LM218: −25˚C to +85˚C
 - LM318: 0˚C to +70˚C
- **Storage Temperature Range**: −65˚C to +150˚C

Lead Temperature (Soldering, 10 sec.):
- Hermetic Package: 300˚C
- Plastic Package: 260˚C

Soldering Information:
- Dual-In-Line Package: Soldering (10 sec.) 260˚C
- Small Outline Package: Vapor Phase (60 sec.) 215˚C
- Infrared (15 sec.) 220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD Tolerance (Note 8): 2000V

Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM118/LM218</th>
<th>LM318</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$T_A = 25˚C$</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$T_A = 25˚C$</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$T_A = 25˚C$</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>$T_A = 25˚C$</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Supply Current</td>
<td>$T_A = 25˚C$</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$T_A = 25˚C, V_S = ±15V, V_{OUT} = ±10V, R_L ≥ 2 kΩ$</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>$T_A = 25˚C, V_S = ±15V, A_V = 1$ (Note 6)</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Small Signal Bandwidth</td>
<td>$T_A = 25˚C, V_S = ±15V$</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td></td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Supply Current</td>
<td>$T_A = 125˚C$</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V_S = ±15V, V_{OUT} = ±10V, R_L ≥ 2 kΩ$</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>$V_S = ±15V, R_L = 2 kΩ$</td>
<td>±12</td>
<td>±13</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>$V_S = ±15V$</td>
<td>±11.5</td>
<td>±11.5</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td></td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td></td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Note 2: The maximum junction temperature of the LM118 is 150˚C, the LM218 is 110˚C, and the LM318 is 110˚C. For operating at elevated temperatures, devices in the HP8 package must be derated based on a thermal resistance of 160˚C/W, junction to ambient, or 20˚C/W, junction to case. The thermal resistance of the dual-in-line package is 100˚C/W, junction to ambient.

Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 5: These specifications apply for $±5V ≤ V_S ≤ ±20V$ and $−55˚C ≤ T_A ≤ +125˚C$ (LM118), $−25˚C ≤ T_A ≤ +85˚C$ (LM218), and $0˚C ≤ T_A ≤ +70˚C$ (LM318). Also, power supplies must be bypassed with 0.1 µF disc capacitors.

Note 6: Slew rate is tested with $V_S = ±15V$. The LM118 is in a unity-gain non-inverting configuration. V_{IN} is stepped from −7.5V to +7.5V and vice versa. The slew rates between −5.0V and +5.0V and vice versa are tested and guaranteed to exceed 50V/µs.

Note 7: Refer to RETS118X for LM118H and LM118J military specifications.

Note 8: Human body model, 1.5 kΩ in series with 100 pF.
Typical Performance Characteristics LM118, LM218

Input Current
- Input Current vs. Temperature
- Offset Current
- Bias Current

Voltage Gain
- Voltage Gain vs. Supply Voltage
- Voltage Gain vs. Temperature

Power Supply Rejection
- Power Supply Rejection vs. Frequency
- Positive Supply Rejection
- Negative Supply Rejection

Input Noise Voltage
- Input Noise Voltage vs. Frequency
- Noise Voltage vs. Temperature

Common Mode Rejection
- Common Mode Rejection vs. Frequency
- Common Mode Rejection vs. Temperature

Supply Current
- Supply Current vs. Supply Voltage

Closed Loop Output Impedance
- Output Impedance vs. Frequency
- Open Loop Gain

Current Limiting
- Current Limiting vs. Output Current
- Current Limiting vs. Differential Input

Unity Gain Bandwidth
- Unity Gain Bandwidth vs. Temperature

Voltage Follower Slew Rate
- Slew Rate vs. Temperature
 - Positive Slew Rate
 - Negative Slew Rate

Inverter Settling Time
- Settling Time vs. Output Voltage
 - Settling Time vs. Time
Typical Performance Characteristics LM118, LM218 (Continued)

Large Signal Frequency Response

Open Loop Frequency Response

Voltage Follower Pulse Response

Large Signal Frequency Response

Open Loop Frequency Response

Inverter Pulse Response

Typical Performance Characteristics LM318

Input Current

Voltage Gain

Power Supply Rejection
Typical Performance Characteristics

LM318 (Continued)

Input Noise Voltage

Common Mode Rejection

Supply Current

Closed Loop Output Impedance

Current Limiting

Input Current

Unity Gain Bandwidth

Voltage Follower Slew Rate

Inverter Settling Time
Typical Performance Characteristics (Continued)

Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate (Note 9)

![Feedforward Circuit](DS007766-8)

Compensation for Minimum Settling Time (Note 10)

![Compensation Circuit](DS007766-9)

*Balance circuit necessary for increased slew.

Note 9: Slew rate typically 150V/µs.

Note 10: Slew and settling time to 0.1% for a 10V step change is 800 ns.
Auxiliary Circuits (Continued)

Offset Balancing

Isolating Large Capacitive Loads

Overcompensation

Typical Applications

Fast Voltage Follower (Note 11)

Integrator or Slow Inverter

Fast Summing Amplifier

Differential Amplifier

Note 11: Do not hard-wire as voltage follower (R1 ≥ 5 kΩ)

C = Large (C* ≥ 50 pF)

Do not hard-wire as integrator or slow inverter; insert a 10k-5 pF network in series with the input, to prevent oscillation.
Typical Applications (Continued)

Fast Sample and Hold

![Fast Sample and Hold Circuit Diagram]

D/A Converter Using Ladder Network

![D/A Converter Circuit Diagram]

*Optional — Reduces settling time.
Typical Applications (Continued)

Four Quadrant Multiplier

- Output zero.
- "Y" zero
- "X" zero
- Full scale adjust.

www.national.com
Typical Applications (Continued)

D/A Converter Using Binary Weighted Network

Fast Summing Amplifier with Low Input Current

*Optional — Reduces settling time.

Wein Bridge Sine Wave Oscillator

Instrumentation Amplifier

*R₁—10V—14 mA bulb ELDEMA 1969
R₁ = R₂
C₁ = C₂

f = 1
2πR₂C₁

*Gain ≥ \(\frac{200K}{R_g}\) for 1.5K ≤ Rg ≤ 200K
Note 12: Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Note 13: Available per JM38510/10107.
Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM118H, LM118H/883, LM218H or LM318H
NS Package Number H08C

Ceramic Dual-In-Line Package (J)
Order Number LM118J-8/883
NS Package Number J08A
Ceramic Dual-In-Line Package (J)
Order Number LM118J/883
NS Package Number J14A

S.O. Package (M)
Order Number LM318M or LM318MX
NS Package Number M06A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.