General Description

The LM1596/LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over the $-55^\circ C$ to $+125^\circ C$ military temperature range. The LM1496 is specified for operation over the $0^\circ C$ to $+70^\circ C$ temperature range.

Features

- Excellent carrier suppression
 - 65 dB typical at 0.5 MHz
 - 50 dB typical at 10 MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Low offset and drift
- Wide frequency response up to 100 MHz

Schematic and Connection Diagrams

[Diagram of schematic and connection diagrams]

Numbers in parentheses show DIP connections.

Metal Can Package

[Diagram of metal can package]

Top View

Note: Pin 10 is connected electrically to the case through the device substrate.

Order Number LM1496H or LM1596H
See NS Package Number H08C

Dual-In-Line and Small Outline Packages

[Diagram of dual-in-line and small outline packages]

Order Number LM1496M or LM1496N
See NS Package Number M14A or N14A
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- Internal Power Dissipation (Note 1) 500 mW
- Applied Voltage (Note 2) 30V
- Differential Input Signal \((V_2 - V_3)\) \(|\pm 5.0V\rangle\)
- Differential Input Signal \((V_4 - V_5)\) \(|5 + \mu gR_0\rangle\)
- Input Signal \((V_2 - V_1, V_3 - V_4)\) 5.0V
- Bias Current \((I_5)\) 12 mA

<table>
<thead>
<tr>
<th>Operating Temperature Range</th>
<th>LM1596</th>
<th>LM1496</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55°C to +125°C</td>
<td>-</td>
<td>0°C to +70°C</td>
</tr>
</tbody>
</table>

| Storage Temperature Range | -65°C to +150°C |

Soldering Information

- Dual-In-Line Package
 - Soldering (10 seconds) 260°C
- Small Outline Package
 - Vapor Phase (60 seconds) 215°C
 - Infrared (15 seconds) 220°C

See AN-450 “Surface Mounting Methods and their effects on Product Reliability” for other methods of soldering surface mount devices.

Electrical Characteristics

(TA = -25°C, unless otherwise specified, see test circuit)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM1596</th>
<th>LM1496</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Feedthrough</td>
<td>(V_C \sim 60 \text{ mVrms sine wave})</td>
<td>40 40</td>
<td>μVrms</td>
</tr>
<tr>
<td></td>
<td>(I_C \sim 1.0 \text{ kHz, offset adjusted})</td>
<td>140 140</td>
<td>μVrms</td>
</tr>
<tr>
<td></td>
<td>(V_C \sim 60 \text{ mVrms sine wave})</td>
<td>0.04 0.2</td>
<td>mVrms</td>
</tr>
<tr>
<td></td>
<td>(I_C \sim 10 \text{ kHz, offset adjusted})</td>
<td>20 100</td>
<td>mVrms</td>
</tr>
<tr>
<td>Carrier Suppression</td>
<td>(I_S \sim 10 \text{ kHz, 300 mVrms})</td>
<td>50 65</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>(I_C \sim 500 \text{ kHz, 60 mVrms sine wave})</td>
<td>50 50</td>
<td>dB</td>
</tr>
<tr>
<td>Transadmittance Bandwidth</td>
<td>(R_L = 500)</td>
<td>300 300</td>
<td>MHz</td>
</tr>
<tr>
<td>Voltage Gain, Signal Channel</td>
<td>(V_S \sim 100 \text{ mVrms, f = 1.0 kHz})</td>
<td>2.5 3.5</td>
<td>V/V</td>
</tr>
<tr>
<td>Input Resistance, Signal Port</td>
<td>(f = 5.0 \text{ MHz})</td>
<td>200</td>
<td>kΩ</td>
</tr>
<tr>
<td>Input Capacitance, Signal Port</td>
<td>(f = 5.0 \text{ MHz})</td>
<td>2.0 2.0</td>
<td>pF</td>
</tr>
<tr>
<td>Single Ended Output Resistance</td>
<td>(f = 10 \text{ MHz})</td>
<td>40 40</td>
<td>kΩ</td>
</tr>
<tr>
<td>Single Ended Output Capacitance</td>
<td>(f = 10 \text{ MHz})</td>
<td>5.0 5.0</td>
<td>pF</td>
</tr>
</tbody>
</table>

Test Circuit

- Average Temperature Coefficient of Input Offset Current
 - \((-55°C < T_A < +125°C)\) 2.0
 - \((0°C < T_A < +70°C)\) 2.0

Test Board

- Output Offset Current
 - \(I_{o8} - I_{o9}\) 14 50 | μA

- Average Temperature Coefficient of Output Offset Current
 - \((-55°C < T_A < +125°C)\) 90
 - \((0°C < T_A < +70°C)\) 90

- Input Bias Current
 - \((L_1 + L_2)/2\) 12 25 | 12 30 | μA

- Input Bias Current
 - \((L_3 + L_4)/2\) 12 25 | 12 30 | μA

- Input Offset Current
 - \((L_1 - L_2)\) 0.7 5.0 | 0.7 5.0 | μA

- Input Offset Current
 - \((L_7 - L_8)\) 0.7 5.0 | 0.7 5.0 | μA

- See AN-450 “Surface Mounting Methods and their effects on Product Reliability” for other methods of soldering surface mount devices.
Electrical Characteristics (TA = 25°C, unless otherwise specified, see test circuit) (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM1596</th>
<th></th>
<th></th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Port Common Mode Input Voltage Range</td>
<td>f S = 1.0 kHz</td>
<td>5.0</td>
<td></td>
<td>5.0</td>
<td>V p-p</td>
</tr>
<tr>
<td></td>
<td>V T - V B = 0.5 Vdc</td>
<td>-85</td>
<td></td>
<td>-85</td>
<td>dB</td>
</tr>
<tr>
<td>Common Mode Quiescent Output Voltage</td>
<td></td>
<td>8.0</td>
<td></td>
<td>8.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Differential Output Swing Capability</td>
<td></td>
<td>8.0</td>
<td></td>
<td>8.0</td>
<td>V p-p</td>
</tr>
<tr>
<td>Positive Supply Current (I S + I P)</td>
<td></td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td>mA</td>
</tr>
<tr>
<td>Negative Supply Current (I T O)</td>
<td></td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
<td>33</td>
<td></td>
<td>33</td>
<td>mW</td>
</tr>
</tbody>
</table>

Note 1: LM1596 rating applies to case temperatures to +125°C; derate linearly at 6.5 mW/°C for ambient temperature above 75°C. LM1496 rating applies to case temperatures to +70°C.

Note 2: Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-1, 6-8, 2-5, 3-5.

Note 3: Refer to rets1596 drawing for specifications of military LM1596H versions.

Typical Performance Characteristics

- **Carrier Suppression vs Carrier Input Level**
- **Carrier Suppression vs Frequency**
- **Carrier Feedthrough vs Frequency**
- **Sideband Output vs Carrier Levels**
- **Sideband and Signal Port Transadmittances vs Frequency**
- **Signal-Port Frequency Response**

![Typical Performance Characteristics](image)
This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation.
Typical Applications (Continued)

The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency. Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

Numbers in parentheses show DIP connections.
Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LM1496H or LM1596H
NS Package Number H08C

Molded Small Outline Package (M)
Order Number LM1496M
NS Package Number M14A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.