Problem 1: For the common-emitter amplifier shown below:

(a) Find the small signal voltage gain v_o/v_i as a function of R_S, R_L, β, V_A, and collector current I_C. Do not ignore r_o in this problem.

(b) Determine the value of DC collector bias current I_C that maximizes the small signal voltage gain. What is the voltage gain at the optimum I_C? Explain qualitatively why the gain falls at very high and very low collector currents.

Problem 2: In this problem, we examine the effect of temperature on the bias stability. It is found that the I_S of the npn transistor shown below has a temperature coefficient $\left(\frac{1}{I_S} \frac{dI_S}{dT}\right)$ of 3300 ppm/°C near 300 K. Also, $\beta_F = 200$ at 300 K, and has a temperature coefficient $\left(\frac{1}{\beta_F} \frac{d\beta_F}{dT}\right)$ of 2000 ppm/°C. You are given that $I_S = 10^{-15}$ A at 300 K. Assume that the values of V_{BB}, R_B and R_C are independent of temperature.

(a) Find the values of R_B and R_C to make $I_C = 500 \mu$A and $V_O = 2.5$ V at 300 K.

(b) Derive the temperature coefficient of the collector current $\left(\frac{1}{I_C} \frac{dI_C}{dT}\right)$ at $T = 300$ K.

(c) Compute the temperature dependence of the quiescent output voltage $\left(\frac{dV_O}{dT}\right)$ in V/°C at $T = 300$ K.
Problem 3: Consider the following transistor circuit.

(a) With $V_{BE} = 0.7 \text{ V}$ and $\beta = 400$, calculate the transistor operating point (find I_C and V_{CE}).

(b) Due to a manufacturing mix-up, some of your transistors have $\beta = 100$. Find I_C for the new transistors.

(c) Find new values for the base-biasing resistors so that I_C only changes by 10% when β falls from 400 to 100.

(d) Refer again to the circuit in part (a). Due to temperature fluctuations in your operating environment, V_{BE} sometimes drops as low as 0.5V. Find I_C under this condition.

(e) How should the transistor be biased so that I_C only changes by 10% if V_{BE} falls from 0.7V to 0.5V?
Problem 4: A EFCB (emitter-follower common-base) connection is illustrated below. Determine the overall small signal voltage gain v_o/v_i, input resistance, and output resistance. You may neglect r_o for this problem.