MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.430J / 15.064J Summer 1997

AGH
Success of Bag Searches
R andom variable \mathbf{Z} is the time (in minutes) it takes to ${ }^{-}$nd a lost bag.

$$
Z=\begin{array}{llll}
8 & & \tag{1}\\
\gtrless 5 & \text { w.p. } & 0: 5 \\
> & 10 & \text { w.p. } & 0: 4 \\
20 & \text { w.p. } & 0: 1
\end{array}
$$

(note: w.p. stands for with probability. The above is exactly the same as saying, $P(Z=5)=0: 5$, $P(Z=10)=0: 4, P(Z=20)=0: 1$.

On the BOS-DCA route we have searched for 12 minutes and no bags were found (the search was interrupted).

$$
\begin{equation*}
\mathrm{Q}=\text { "initial probability that the bag in question is on board" }=\frac{2}{3}: \tag{2}
\end{equation*}
$$

We want P (bag on board j not found in 12 minutes).
Let us start by de ${ }^{-}$ning the events:
C: Bag is on board.
D: Bag is not found in ${ }^{-}$rst 12 minutes.

$$
\begin{equation*}
P(C j D)=\frac{P(C \& D)}{P(D)}=\frac{P(D j C) P_{3}(C),}{P(D \& C)+P \quad D \& \bar{C}}=\frac{P(D j C) P_{3}(C),{ }_{3},}{P(D j C) P(C)+P D \bar{C} P \bar{C}} \tag{3}
\end{equation*}
$$

Here, we are given $P(C)=Q=\frac{2}{3}$ and from the distribution of Z we get,

$$
\begin{align*}
P(D j C) & =P(\text { "search would take more than tvelve minutes (when there is a bag)") } \tag{4}\\
& =P(Z>12)=P(Z=20)=0: 1: \tag{5}
\end{align*}
$$

We also have that $P \quad D \bar{C}=1$ because if the bag is not on board, there is no chance we will ${ }^{-}$nd it (on board) within 12 minutes.
Plugging in to our formula above we get,

$$
\begin{equation*}
P(C j D)=\frac{P(D j C) P_{3}(C), \quad 3,}{P(D j C) P(C)+P \quad D \bar{C} \quad P \quad \bar{C}}=\frac{0: 1 \propto \frac{2}{3}}{0: 1 \times \frac{2}{3}+1 \propto \frac{1}{3}}=\frac{1}{6} \tag{6}
\end{equation*}
$$

So the probability has shrunk from $\frac{2}{3}$ to $\frac{1}{6}$.
Arni

