Massachusetts Institute of Technology
 6.435 Theory of Learning and System Identification

1 [Indicator Functions] An indicator function I_{A} of a subset A of the universe Ω is defined as $I_{A}: \Omega \rightarrow\{0,1\}, I_{A}(x)=1$ iff $x \in A$.
(a) If the universe represents the set of outcomes, and A a class defined by a subset of the outcomes, show that $\mathbf{E}\left(I_{A}\right)=\mathbf{P}(A)$ (you may assume a discrete universe).
(b) We can think of A as our 'true' model, i.e. the assumption on the data. We decide to model A by another set B. If our loss function is 1 whenever in error, 0 otherwise, show that the risk, as a function of B, is equal to the probability of the symmetric difference of A and B.

2 [Perceptrons] We have a sequence $\left(x_{i}, y_{i}\right), 1 \leq i \leq l$, generated by the true model:
$\triangleright x$ is sampled in \mathbf{R}^{2} according to the probability density $f(x)$.
$\triangleright y$ is a label, categorizing x into one of two linearly separable classes. If y is positive [negative], we say x is a "positive" ["negative"] sample.
$\triangleright \theta$ is an unknown \mathbf{R}^{2} vector, which characterizes the two classes:

$$
y=\operatorname{sgn}\left(\theta^{\prime} x\right)
$$

Our task is to estimate the vector θ. We always assume that $\left|x_{k}\right| \leq R$, and that all data points lie a margin away from the separating line, i.e. we have $y_{k} \cdot \theta^{\prime} x_{k} \geq \gamma>0$.

Consider the algorithm that starts with some $\hat{\theta}_{0}$ and proceeds:

$$
\hat{\theta}_{k}= \begin{cases}\hat{\theta}_{k-1}+y_{k} x_{k}, & \text { if } y_{k} \cdot \hat{\theta}_{k-1}^{\prime} x_{k}<0 \\ \hat{\theta}_{k-1}, & \text { otherwise }\end{cases}
$$

(a) Assume that $f(x)$ is uniform over a disk of radius R, excluding the band due to the margin. Show that $\hat{\theta}_{k}$ in the above algorithm converges to the true θ, in the sense that, for all $\epsilon \geq \epsilon(\gamma, R)>0$:

$$
\mathbf{P}\left\{\cos \left(\theta, \hat{\theta}_{k}\right)>1-\epsilon\right\} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

$\epsilon(\gamma, R)$ is the accuracy beneath which no updates will occur, due to the margin.
(b) Show the stronger statement that $\hat{\theta}_{k}$ converges to θ after a finite number of updates.
(c) Construct a distribution $f(x)$ where convergence as in (a) is not guaranteed.
(d) Show that, for any distribution, we have:

$$
\mathbf{P}\left\{x \mid \hat{\theta}_{k}^{\prime} x \leq 0 \text { and } \theta^{\prime} x \geq 0\right\} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

(e) [optional] If the data is generated as in part (a), but each sample is independently corrupted: y is flipped with a small probability α, then would the algorithm still converge, in a finite number of updates or otherwise?

3 [Maximum Entropy] Given a discrete random variable X taking values in the finite set $\{1, \ldots, k\}$, find the probability mass function $p(x)$ that maximizes the entropy $H(X)$, subject to the constraint that:

$$
\mathbf{E}[X]=\sum_{i=1}^{k} i \cdot p(i)=\mu .
$$

4 [Chernoff Bounds] Let Z be an arbitrary random variable admitting a moment generating function $M_{Z}(s)=\mathbf{E}\left[e^{s Z}\right]$.
(a) Use Markov's inequality to show that, for all a, we have:

$$
\begin{aligned}
& \mathbf{P}(Z \geq a) \leq e^{-s a} M_{Z}(s), \quad \text { for } \quad s \geq 0, \\
& \mathbf{P}(Z \leq a) \leq e^{-s a} M_{Z}(s), \quad \text { for } \quad s \leq 0 .
\end{aligned}
$$

(b) Define

$$
\begin{aligned}
\phi_{Z}^{+}(a) & =\max _{s \geq 0}\left[s a-\log M_{Z}(s)\right], \\
\phi_{Z}^{-}(a) & =\max _{s \leq 0}\left[s a-\log M_{Z}(s)\right],
\end{aligned}
$$

and show that

$$
\begin{aligned}
& \mathbf{P}(Z \geq a) \leq e^{-\phi_{Z}^{+}(a)} \\
& \mathbf{P}(Z \leq a) \leq e^{-\phi_{Z}^{-}(a)}
\end{aligned}
$$

(c) Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent random variables with the same distribution as Z. Let $S_{n}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$. Show that $\phi_{S_{n}}^{+}(a)=n \phi_{Z}^{+}(a)$ and $\phi_{S_{n}}^{-}(a)=n \phi_{Z}^{-}(a)$.
(d) Show that if $a>\mathbf{E}[Z]$ then $\phi_{Z}^{+}(a)>0$, and if $a<\mathbf{E}[Z]$ then $\phi_{Z}^{-}(a)>0$. [Hint: explicitly compute the maximized expression and its derivative, at $s=0$.]

5 [Maximum Likelihood Estimation] Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. Bernoulli random variables with $\mathbf{P}\left(X_{i}=1\right)=p$. Our data is a set of observations $x_{1}, x_{2}, \ldots, x_{n}$. If we correctly choose our class to be Bernoulli, parameterized by q, then density estimation is equivalent to estimating p. A natural choice for the estimator is one that maximizes the likelihood of an observation:

$$
\hat{p}_{n}=\underset{q}{\operatorname{argmax}} \mathbf{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} ; q\right) .
$$

(a) Show that this formulation is equivalent to empirical risk minimization, using the loss function $L(x, p)=-\log \mathbf{P}(X=x ; p)$.
(b) Show that $\hat{p}_{n}=\frac{1}{n} \sum_{i} x_{i}$, the empirical distribution.

6 [Types of Convergence] Consider the setting of problem 5. We are interested about whether the empirical distribution converges to the true distribution.
(a) Use Chebyshev's inequality to show that $\hat{p}_{n} \rightarrow p$ in probability, sometimes written $\hat{p}_{n} \xrightarrow{\mathrm{P}} p$, meaning:

$$
\mathbf{P}\left(\left|\hat{p}_{n}-p\right|>\epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { for all } \quad \epsilon>0
$$

(b) Let X have the same distribution as the X_{i} 's. Using the definitions in problem 4, show that if $p<a<1$ then $\phi_{X}^{+}(a)=D(a \| p)$, where the latter expression denotes the KL distance between two Bernoulli distributions, parameterized by a and p respectively. Similarly, show that if $0<a<p$ then $\phi_{X}^{-}(a)=D(a \| p)$.
(c) Show that $D(p+\epsilon \| p) \geq 2 \epsilon^{2}$, and similarly that $D(p-\epsilon \| p) \geq 2 \epsilon^{2}$. Assume that $\epsilon \ll \min \{p, 1-p\}$. [Hint: expand the logarithm around 1.]
(d) Use the results from parts (b) and (c), together with that of problem 4, to deduce that, for all $\epsilon>0$ small enough, we have the additive Chernoff bound:

$$
\mathbf{P}\left(\left|\hat{p}_{n}-p\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} n}
$$

(e) [optional] Unlike part (a), the result of part (d) gives a strong bound on the decay of the probability that the empirical distribution deviates from the true one. To see what this can buy us, consider the Borel-Cantelli lemma, stated as follows:
"Given a sequence A_{n} of events, if $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)<\infty$, then $\mathbf{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$, i.e. the probability that infinitely many of the events occur is zero."

Use the lemma to show that $\hat{p}_{n} \rightarrow p$ almost surely, sometimes written $\hat{p}_{n} \xrightarrow{\text { a.s. }} p$, formally:

$$
\mathbf{P}\left(\left\{\omega \mid p_{n}(\omega) \rightarrow p \text { as } n \rightarrow \infty\right\}\right)=1 .
$$

7 [Monotone Convergence of the Empirical Distribution] Consider once more the setting of problem 5. Let \hat{p}_{n} denote the empirical distribution, and let $D\left(\hat{p}_{n} \| p\right)$ denote the KL distance between the empirical distribution and the true one. Note that since \hat{p}_{n} is a random variable, so is $D\left(\hat{p}_{n} \| p\right)$.
(a) Show that $\mathbf{E}\left[D\left(\hat{p}_{2 n} \| p\right)\right] \leq \mathbf{E}\left[D\left(\hat{p}_{n} \| p\right)\right]$.
(b) Show that $\mathbf{E}\left[D\left(\hat{p}_{n+1} \| p\right)\right] \leq \mathbf{E}\left[D\left(\hat{p}_{n} \| p\right)\right]$.

