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Prof. Dahleh, Prof. Mitter Homework 1
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1 [Indicator Functions] An indicator function I4 of a subset A of the universe ) is
defined as 14 : Q — {0,1}, Ia(z) =1 iff z € A.

(a) If the universe represents the set of outcomes, and A a class defined by a subset of
the outcomes, show that E(I4) = P(A) (you may assume a discrete universe).

(b) We can think of A as our ‘true’ model, i.e. the assumption on the data. We
decide to model A by another set B. If our loss function is 1 whenever in error, 0
otherwise, show that the risk, as a function of B, is equal to the probability of the
symmetric difference of A and B.

2 [Perceptrons] We have a sequence (x;,y;), 1 < i <1, generated by the true model:
> x is sampled in R? according to the probability density f(z).

> g is a label, categorizing x into one of two linearly separable classes. If y is positive
[negative|, we say x is a “positive” [“negative”’] sample.

> 6 is an unknown R? vector, which characterizes the two classes:
y = sgn(0'z).

Our task is to estimate the vector §. We always assume that |z;| < R, and that all
data points lie a margin away from the separating line, i.e. we have y;, - 0’z > v > 0.

Consider the algorithm that starts with some 6y and proceeds:

A Or_1 +yrzk, if yp- él/ﬁ_lﬂfk <0
O =9 5 .
0r_1, otherwise.

(a) Assume that f(x) is uniform over a disk of radius R, excluding the band due to
the margin. Show that 6 in the above algorithm converges to the true 6, in the
sense that, for all € > ¢(vy, R) > 0:

P{cos(f,0;) >1—¢€} —0 ask — oo,
(7, R) is the accuracy beneath which no updates will occur, due to the margin.
(b) Show the stronger statement that 0}, converges to 0 after a finite number of updates.
(¢) Construct a distribution f(x) where convergence as in (a) is not guaranteed.
(d) Show that, for any distribution, we have:

P{z |0,z <0 and 0’z >0} -0 ask — oo.



(e) [optional] If the data is generated as in part (a), but each sample is independently
corrupted: y is flipped with a small probability «, then would the algorithm still
converge, in a finite number of updates or otherwise?

3 [Maximum Entropy] Given a discrete random variable X taking values in the finite
set {1,...,k}, find the probability mass function p(x) that maximizes the entropy H(X),
subject to the constraint that:

4 [Chernoff Bounds] Let Z be an arbitrary random variable admitting a moment
generating function My(s) = E[e*Z].

(a) Use Markov’s inequality to show that, for all a, we have:

P(Z >a) <e " My(s), for s>0,

P(Z <a)<e **My(s), for s<O0.

(b) Define
¢7(a) = max[sa —log My(s)],

07 (a) = max[sa — log My(s))

and show that .
P(Z >a) < e %2

P(Z <a)<e 2@,

(c) Let Zy,Zs,...,Z, be independent random variables with the same distribution as
Z. Let S, =1%"" | Z,. Show that q%'n (a) = n¢}(a) and o5 (a) = ndy,(a).

(d) Show that if a > E[Z] then ¢} (a) > 0, and if a < E[Z] then ¢,(a) > 0. [Hint:
explicitly compute the maximized expression and its derivative, at s = 0.]

5 [Maximum Likelihood Estimation] Let X, Xo,..., X, be i.i.d. Bernoulli random
variables with P(X; = 1) = p. Our data is a set of observations z1,xs,...,x,. If we
correctly choose our class to be Bernoulli, parameterized by ¢, then density estimation
is equivalent to estimating p. A natural choice for the estimator is one that maximizes
the likelihood of an observation:

pn = argmax P(X1 = z1,..., Xy, = 2,5 ¢).
q

(a) Show that this formulation is equivalent to empirical risk minimization, using the
loss function L(z,p) = —log P(X = z;p).

(b) Show that p, = = >, z;, the empirical distribution.
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[Types of Convergence] Consider the setting of problem 5. We are interested about

whether the empirical distribution converges to the true distribution.

(a)

(b)

7

Use Chebyshev’s inequality to show that p, — p in probability, sometimes writ-

. P .
ten p, — p, meaning:

P(|pn, —p| >€¢) —0 as n—oo foral e>0.

Let X have the same distribution as the X;’s. Using the definitions in problem 4,
show that if p < a < 1 then ¢%(a) = D(al|p), where the latter expression denotes
the KL distance between two Bernoulli distributions, parameterized by a and p
respectively. Similarly, show that if 0 < a < p then ¢ (a) = D(a||p).

Show that D(p + €||p) > 2¢2, and similarly that D(p — €||p) > 2€2. Assume that
e < min{p,1 — p}. [Hint: expand the logarithm around 1.]

Use the results from parts (b) and (c), together with that of problem 4, to deduce
that, for all € > 0 small enough, we have the additive Chernoff bound:

2n

P(|pn —p| >¢€) < 2¢2¢

[optional] Unlike part (a), the result of part (d) gives a strong bound on the decay
of the probability that the empirical distribution deviates from the true one. To
see what this can buy us, consider the Borel-Cantelli lemma, stated as follows:

“Given a sequence A,, of events, if > 2 P(A,) < oo, then P(limsup,,_,,, 4,) =0,
i.e. the probability that infinitely many of the events occur is zero.”

Use the lemma to show that p, — p almost surely, sometimes written p,, — p,
formally:
P({w|pu(w) = p as n—o0}) =1.

[Monotone Convergence of the Empirical Distribution] Consider once more the setting

of problem 5. Let p,, denote the empirical distribution, and let D(p,||p) denote the KL
distance between the empirical distribution and the true one. Note that since p, is a
random variable, so is D(py,||p).

(a)
(b)

Show that E[D(pa,||p)] < E[D(pn|p)]-

Show that E[D(pp+1llp)] < E[D(pnllp)]-



