1 [Indicator Functions] An indicator function I_A of a subset A of the universe Ω is defined as $I_A : \Omega \rightarrow \{0, 1\}$, $I_A(x) = 1$ iff $x \in A$.

(a) If the universe represents the set of outcomes, and A a class defined by a subset of the outcomes, show that $E(I_A) = P(A)$ (you may assume a discrete universe).

(b) We can think of A as our ‘true’ model, i.e. the assumption on the data. We decide to model A by another set B. If our loss function is 1 whenever in error, 0 otherwise, show that the risk, as a function of B, is equal to the probability of the symmetric difference of A and B.

2 [Perceptrons] We have a sequence $(x_i, y_i), 1 \leq i \leq l$, generated by the true model:

- x is sampled in \mathbb{R}^2 according to the probability density $f(x)$.
- y is a label, categorizing x into one of two linearly separable classes. If y is positive [negative], we say x is a “positive” [“negative”] sample.
- θ is an unknown \mathbb{R}^2 vector, which characterizes the two classes:
 $$y = \text{sgn}(\theta'x).$$

Our task is to estimate the vector θ. We always assume that $|x_k| \leq R$, and that all data points lie a margin away from the separating line, i.e. we have $y_k \cdot \theta'x_k \geq \gamma > 0$.

Consider the algorithm that starts with some $\hat{\theta}_0$ and proceeds:

$$\hat{\theta}_k = \begin{cases}
\hat{\theta}_{k-1} + y_kx_k, & \text{if } y_k \cdot \hat{\theta}_{k-1}'x_k < 0 \\
\hat{\theta}_{k-1}, & \text{otherwise.}
\end{cases}$$

(a) Assume that $f(x)$ is uniform over a disk of radius R, excluding the band due to the margin. Show that $\hat{\theta}_k$ in the above algorithm converges to the true θ, in the sense that, for all $\epsilon \geq \epsilon(\gamma, R) > 0$:

$$P\{\cos(\theta, \hat{\theta}_k) > 1 - \epsilon\} \rightarrow 0 \quad \text{as } k \rightarrow \infty,$$

$\epsilon(\gamma, R)$ is the accuracy beneath which no updates will occur, due to the margin.

(b) Show the stronger statement that $\hat{\theta}_k$ converges to θ after a finite number of updates.

(c) Construct a distribution $f(x)$ where convergence as in (a) is not guaranteed.

(d) Show that, for any distribution, we have:

$$P\{x \mid \hat{\theta}_k'x \leq 0 \text{ and } \theta'x \geq 0\} \rightarrow 0 \quad \text{as } k \rightarrow \infty.$$
(e) [optional] If the data is generated as in part (a), but each sample is independently corrupted: \(y \) is flipped with a small probability \(\alpha \), then would the algorithm still converge, in a finite number of updates or otherwise?

3 [Maximum Entropy] Given a discrete random variable \(X \) taking values in the finite set \(\{1, \ldots, k\} \), find the probability mass function \(p(x) \) that maximizes the entropy \(H(X) \), subject to the constraint that:

\[
E[X] = \sum_{i=1}^{k} i \cdot p(i) = \mu.
\]

4 [Chernoff Bounds] Let \(Z \) be an arbitrary random variable admitting a moment generating function \(M_Z(s) = E[e^{sZ}] \).

(a) Use Markov’s inequality to show that, for all \(a \), we have:

\[
P(Z \geq a) \leq e^{-sa} M_Z(s), \quad \text{for} \ s \geq 0,
\]

\[
P(Z \leq a) \leq e^{-sa} M_Z(s), \quad \text{for} \ s \leq 0.
\]

(b) Define

\[
\phi_Z^+(a) = \max_{s \geq 0} [sa - \log M_Z(s)],
\]

\[
\phi_Z^-(a) = \max_{s \leq 0} [sa - \log M_Z(s)],
\]

and show that

\[
P(Z \geq a) \leq e^{-\phi_Z^+(a)},
\]

\[
P(Z \leq a) \leq e^{-\phi_Z^-(a)}.
\]

(c) Let \(Z_1, Z_2, \ldots, Z_n \) be independent random variables with the same distribution as \(Z \). Let \(S_n = \frac{1}{n} \sum_{i=1}^{n} Z_i \). Show that \(\phi_{S_n}^+(a) = n\phi_Z^+(a) \) and \(\phi_{S_n}^-(a) = n\phi_Z^-(a) \).

(d) Show that if \(a > E[Z] \) then \(\phi_Z^+(a) > 0 \), and if \(a < E[Z] \) then \(\phi_Z^-(a) > 0 \). [Hint: explicitly compute the maximized expression and its derivative, at \(s = 0 \).]

5 [Maximum Likelihood Estimation] Let \(X_1, X_2, \ldots, X_n \) be i.i.d. Bernoulli random variables with \(P(X_i = 1) = p \). Our data is a set of observations \(x_1, x_2, \ldots, x_n \). If we correctly choose our class to be Bernoulli, parameterized by \(q \), then density estimation is equivalent to estimating \(p \). A natural choice for the estimator is one that maximizes the likelihood of an observation:

\[
\hat{p}_n = \arg\max_q P(X_1 = x_1, \ldots, X_n = x_n; q).
\]

(a) Show that this formulation is equivalent to empirical risk minimization, using the loss function \(L(x, p) = -\log P(X = x; p) \).

(b) Show that \(\hat{p}_n = \frac{1}{n} \sum_i x_i \), the empirical distribution.
6 [Types of Convergence] Consider the setting of problem 5. We are interested about whether the empirical distribution converges to the true distribution.

(a) Use Chebyshev’s inequality to show that \(\hat{p}_n \rightarrow p \) in probability, sometimes written \(\hat{p}_n \overset{p}{\rightarrow} p \), meaning:

\[
P(|\hat{p}_n - p| > \epsilon) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty \quad \text{for all} \quad \epsilon > 0.
\]

(b) Let \(X \) have the same distribution as the \(X_i \)'s. Using the definitions in problem 4, show that if \(p < a < 1 \) then \(\phi^+_X(a) = D(a\|p) \), where the latter expression denotes the KL distance between two Bernoulli distributions, parameterized by \(a \) and \(p \) respectively. Similarly, show that if \(0 < a < p \) then \(\phi^-_X(a) = D(a\|p) \).

(c) Show that \(D(p + \epsilon\|p) \geq 2\epsilon^2 \), and similarly that \(D(p - \epsilon\|p) \geq 2\epsilon^2 \). Assume that \(\epsilon \ll \min\{p, 1-p\} \). [Hint: expand the logarithm around 1.]

(d) Use the results from parts (b) and (c), together with that of problem 4, to deduce that, for all \(\epsilon > 0 \) small enough, we have the additive Chernoff bound:

\[
P(|\hat{p}_n - p| > \epsilon) \leq 2e^{-2\epsilon^2 n}.
\]

(e) [optional] Unlike part (a), the result of part (d) gives a strong bound on the decay of the probability that the empirical distribution deviates from the true one. To see what this can buy us, consider the Borel-Cantelli lemma, stated as follows:

"Given a sequence \(A_n \) of events, if \(\sum_{n=1}^{\infty} P(A_n) < \infty \), then \(P(\limsup_{n \rightarrow \infty} A_n) = 0 \), i.e. the probability that infinitely many of the events occur is zero."

Use the lemma to show that \(\hat{p}_n \rightarrow p \) almost surely, sometimes written \(\hat{p}_n \overset{a.s.}{\rightarrow} p \), formally:

\[
P(\{\omega \mid p_n(\omega) \rightarrow p \quad \text{as} \quad n \rightarrow \infty\}) = 1.
\]

7 [Monotone Convergence of the Empirical Distribution] Consider once more the setting of problem 5. Let \(\hat{p}_n \) denote the empirical distribution, and let \(D(\hat{p}_n\|p) \) denote the KL distance between the empirical distribution and the true one. Note that since \(\hat{p}_n \) is a random variable, so is \(D(\hat{p}_n\|p) \).

(a) Show that \(E[D(\hat{p}_{2n}\|p)] \leq E[D(\hat{p}_n\|p)] \).

(b) Show that \(E[D(\hat{p}_{n+1}\|p)] \leq E[D(\hat{p}_n\|p)] \).