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1 [Indicator Functions] An indicator function IA of a subset A of the universe Ω is
defined as IA : Ω → {0, 1}, IA(x) = 1 iff x ∈ A.

(a) If the universe represents the set of outcomes, and A a class defined by a subset of
the outcomes, show that E(IA) = P(A) (you may assume a discrete universe).

(b) We can think of A as our ‘true’ model, i.e. the assumption on the data. We
decide to model A by another set B. If our loss function is 1 whenever in error, 0
otherwise, show that the risk, as a function of B, is equal to the probability of the
symmetric difference of A and B.

2 [Perceptrons] We have a sequence (xi, yi), 1 ≤ i ≤ l, generated by the true model:

. x is sampled in R2 according to the probability density f(x).

. y is a label, categorizing x into one of two linearly separable classes. If y is positive
[negative], we say x is a “positive” [“negative”] sample.

. θ is an unknown R2 vector, which characterizes the two classes:

y = sgn(θ′x).

Our task is to estimate the vector θ. We always assume that |xk| ≤ R, and that all
data points lie a margin away from the separating line, i.e. we have yk · θ′xk ≥ γ > 0.

Consider the algorithm that starts with some θ̂0 and proceeds:

θ̂k =

{

θ̂k−1 + ykxk, if yk · θ̂
′
k−1xk < 0

θ̂k−1, otherwise.

(a) Assume that f(x) is uniform over a disk of radius R, excluding the band due to
the margin. Show that θ̂k in the above algorithm converges to the true θ, in the
sense that, for all ε ≥ ε(γ,R) > 0:

P{cos(θ, θ̂k) > 1 − ε} → 0 as k → ∞,

ε(γ,R) is the accuracy beneath which no updates will occur, due to the margin.

(b) Show the stronger statement that θ̂k converges to θ after a finite number of updates.

(c) Construct a distribution f(x) where convergence as in (a) is not guaranteed.

(d) Show that, for any distribution, we have:

P{x | θ̂′kx ≤ 0 and θ′x ≥ 0} → 0 as k → ∞.
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(e) [optional] If the data is generated as in part (a), but each sample is independently
corrupted: y is flipped with a small probability α, then would the algorithm still
converge, in a finite number of updates or otherwise?

3 [Maximum Entropy] Given a discrete random variable X taking values in the finite
set {1, . . . , k}, find the probability mass function p(x) that maximizes the entropy H(X),
subject to the constraint that:

E[X] =

k
∑

i=1

i · p(i) = µ.

4 [Chernoff Bounds] Let Z be an arbitrary random variable admitting a moment
generating function MZ(s) = E[esZ ].

(a) Use Markov’s inequality to show that, for all a, we have:

P(Z ≥ a) ≤ e−saMZ(s), for s ≥ 0,

P(Z ≤ a) ≤ e−saMZ(s), for s ≤ 0.

(b) Define
φ+

Z (a) = max
s≥0

[sa − log MZ(s)],

φ−
Z (a) = max

s≤0
[sa − log MZ(s)],

and show that
P(Z ≥ a) ≤ e−φ+

Z
(a),

P(Z ≤ a) ≤ e−φ−

Z
(a).

(c) Let Z1, Z2, . . . , Zn be independent random variables with the same distribution as
Z. Let Sn = 1

n

∑n
i=1 Zi. Show that φ+

Sn
(a) = nφ+

Z (a) and φ−
Sn

(a) = nφ−
Z (a).

(d) Show that if a > E[Z] then φ+
Z (a) > 0, and if a < E[Z] then φ−

Z (a) > 0. [Hint:
explicitly compute the maximized expression and its derivative, at s = 0.]

5 [Maximum Likelihood Estimation] Let X1,X2, . . . ,Xn be i.i.d. Bernoulli random
variables with P(Xi = 1) = p. Our data is a set of observations x1, x2, . . . , xn. If we
correctly choose our class to be Bernoulli, parameterized by q, then density estimation
is equivalent to estimating p. A natural choice for the estimator is one that maximizes
the likelihood of an observation:

p̂n = argmax
q

P(X1 = x1, . . . ,Xn = xn; q).

(a) Show that this formulation is equivalent to empirical risk minimization, using the
loss function L(x, p) = − log P(X = x; p).

(b) Show that p̂n = 1
n

∑

i xi, the empirical distribution.
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6 [Types of Convergence] Consider the setting of problem 5. We are interested about
whether the empirical distribution converges to the true distribution.

(a) Use Chebyshev’s inequality to show that p̂n → p in probability, sometimes writ-

ten p̂n
P

−→ p, meaning:

P(|p̂n − p| > ε) → 0 as n → ∞ for all ε > 0.

(b) Let X have the same distribution as the Xi’s. Using the definitions in problem 4,
show that if p < a < 1 then φ+

X(a) = D(a‖p), where the latter expression denotes
the KL distance between two Bernoulli distributions, parameterized by a and p

respectively. Similarly, show that if 0 < a < p then φ−
X(a) = D(a‖p).

(c) Show that D(p + ε‖p) ≥ 2ε2, and similarly that D(p − ε‖p) ≥ 2ε2. Assume that
ε � min{p, 1 − p}. [Hint: expand the logarithm around 1.]

(d) Use the results from parts (b) and (c), together with that of problem 4, to deduce
that, for all ε > 0 small enough, we have the additive Chernoff bound:

P(|p̂n − p| > ε) ≤ 2e−2ε2n.

(e) [optional] Unlike part (a), the result of part (d) gives a strong bound on the decay
of the probability that the empirical distribution deviates from the true one. To
see what this can buy us, consider the Borel-Cantelli lemma, stated as follows:

“Given a sequence An of events, if
∑∞

n=1 P(An) < ∞, then P(lim supn→∞ An) = 0,
i.e. the probability that infinitely many of the events occur is zero.”

Use the lemma to show that p̂n → p almost surely, sometimes written p̂n
a.s.
−→ p,

formally:
P({ω | pn(ω) → p as n → ∞}) = 1.

7 [Monotone Convergence of the Empirical Distribution] Consider once more the setting
of problem 5. Let p̂n denote the empirical distribution, and let D(p̂n‖p) denote the KL
distance between the empirical distribution and the true one. Note that since p̂n is a
random variable, so is D(p̂n‖p).

(a) Show that E[D(p̂2n‖p)] ≤ E[D(p̂n‖p)].

(b) Show that E[D(p̂n+1‖p)] ≤ E[D(p̂n‖p)].
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