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Out 2/25 Due F, 3/9

1 [Generalized Glivenko-Cantelli] Consider the set of events characterized by:

Aα = {z|L(z, α) = 1}, α ∈ Λ.

Show that the frequencies will converge to their probabilities uniformly over the set of
events described above if and only if the set of functions L(z, α), α ∈ Λ has a finite VC
dimension.

2 [Markov Chains] Consider a discrete Markov chain of order n. Assume the chain has
a single recurrent aperiodic class. Suppose we make the observations x1, x2, · · · , x`.

1. Compute the ML estimate of the transition probability matrix.

2. What is the limiting behavior of such estimates? You don’t need to prove your
claim, just quote the appropriate results.

3. Define the KL distance between two chains with the same set of states and with
probability functions P and Q, as:

D(P ||Q) = lim
n→∞

1

n
D(PX1,··· ,Xn

||QX1,··· ,Xn
).

Show that D(P ||Q) = D(PXi|Xi−1
||QXi|Xi−1

), where the conditional KL distance
is computed relative to the stationary distribution of the first chain. Recall the
definition:

D(PY |X ||QY |X) = EPXPY |X

[

log
PY |X

QY |X

]

.

[Hint: Use the chain rule D(PX,Y ||QX,Y ) = D(PX ||QX) + D(PY |X ||QY |X).]

4. Show that if Pα is a parametrization of a class of transition probabilities, then the
ML estimate from this class has the uniform convergence property. Show that the
ML estimate converges to the minα D(P ||Pα). [Hint: Imitate the lecture for the
finite range case.]

3 [VC Dimension and Parametrization]

(a) Consider the class of one-dimensional functions:

y = θ





n
∑

j=1

|ajx
j| · sgn(x) + a0



 , aj , x ∈ R.

What is the VC dimension of this class? How does it relate to the number of
parameters describing the function?
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(b) Consider the class of functions:

y = θ
(

sin(βx)
)

, β ∈ (0,∞), x ∈ (0, 2π).

Show that this one-parameter class of functions has infinite VC dimension.

4 [Convex Polytopes] Let C be the set of two-dimensional convex polygones with finite
but arbitrary number of faces. Consider the class of two-dimensional functions defined
as the interiors of polygones in C:

y = IA(x) x ∈ R2, A ∈ C.

(a) Show that the VC dimension of this class is infinite.

(b) Assume the true model is the interior of some A ∈ C. Consider the algorithm which
starts with S0 = ∅ and Â0 = ∅, and computes the convex hull of positive samples:

Sk =

{

Sk−1 ∪ {xk}, if yk = 1 and xk /∈ Âk−1,
Sk−1, otherwise;

Âk = ConvexHull(Sk).

Show that if the data is sampled uniformly in a rectangle containing A, then the
algorithm converges:

P
(

A M Âk

)

→ 0, k → ∞,

where X M Y is the symmeteric difference of X and Y , i.e. X M Y = (X ∩ Y c) ∪
(Xc ∩ Y ). (In this case, you can show that Âk ⊂ A, and thus A M Âk = A \ Âk.)

(c) Is there a discrepancy between the implications of parts (a) and (b)? Justify your
answer.

5 [optional] [∆-Margin Separating Hyperplane]

Consider the class of N -dimensional functions:

y =

{

1, if w′x − b ≥ ∆,
0, if w′x − b ≤ −∆,

w, b, x ∈ RN , |w| = 1.

Note that the class defines hyperplanes separating the space into two halves, but has no
specification for points lying within a margin ∆ of each half-space. If we think of the
function as a classifier, such points cannot be labeled, and are considered misclassified.

Show that, for N = 2, the VC dimension of the ∆-margin separating hyperplane is
bounded from above by:

min

{

N,
R2

∆2

}

+ 1,

where R is the radius of the smallest ball containing all the data points. (The result can
be generalized to all N).
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