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6.435 Theory of Learning and System Identification

Prof. Dahleh, Prof. Mitter Homework 3
Out 3/19 Due T, 4/3

1 [Exchangeability and Pólya’s Urn]

(a) Random variables X1, · · · ,Xm are said to be exchangeable if, for all permutations
π of {1, · · · ,m}, we have:

P(X1, · · · ,Xm) = P(Xπ1
, · · · ,Xπm

).

Consider an urn containing m balls, r of which are marked ’1’ and the rest ’0’. We
extract balls from this urn, one at a time without replacement, and let Xi be the
marking of the ith extracted ball. Since we run out in m steps, we obtain a finite
sequence X1, · · · ,Xm. Are these random variables independent? Show that they
are exchangeable.

(b) Random variables {Xn}, in an infinite sequence, are said to be exchangeable if, for
all finite m, X1, · · · ,Xm are exchangeable.

Let us start with the same urn as in part (a), and proceed with a sequence of
extractions, such that after each extraction we replace the extracted ball together
with c > 0 balls of the same marking. Since we never run out, we obtain an infinite
sequence {Xn}. Show that these random variables are exchangeable.

2 [De Finetti’s Theorem]

This problem guides through a proof 1 of the zero-one case of de Finetti’s theorem, which
can be stated as follows:

To every infinite sequence of exchangeable random variables {Xn} having values in {0, 1},
there corresponds a probability distribution F over [0, 1], such that:

pk,n = P(X1 = 1, · · · ,Xk = 1,Xk+1 = 0,Xn = 0) =

∫ 1

0

θk(1 − θ)n−kF (dθ). (1)

(a) De Finetti’s theorem can be interpreted as the existence of a prior for a random
parameter Θ. Indeed, if Θ has prior F and if, given Θ = θ, X1,X2, · · · are inde-
pendent, Bernoulli, with parameter θ, show that (1) holds.

Note that the theorem is not true for a finite sequence of exchangeable random
variables X1, · · · ,Xm. Nevertheless, as a first step, we express pk,n for every finite m,
and k ≤ n ≤ m, in parts (b) and (c). We then extend to the infinite case, in parts (d)
and (e).

1Due to Heath and Sudderth, 1976.
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(b) Show that for m finite, and k ≤ n ≤ m, we can express pk,n as follows:

pk,n =

m
∑

r=0

P(X1 = 1, · · · ,Xk = 1,Xk+1 = 0,Xn = 0|Er) · qr, (2)

where Er is the event {
∑m

j=1
Xj = r} and qr = P(Er), for r = 0, · · · ,m.

(c) Show that:

P(X1 = 1, · · · ,Xk = 1,Xk+1 = 0,Xn = 0|Er) =
〈r〉k〈m− r〉n−k

〈m〉n
,

where 〈a〉i =
∏i−1

j=0
(a− j). [Hint: Consider different cases. Some of these have zero

probability. For the others, use exchangeability to reduce finding the probability
to a counting problem.]

(d) Show that the above converges to θk(1 − θ)n−k, uniformly for all θ = r/m. That
is, show that for all ε > 0, there exists M , such that for all m > M we have:

∣

∣

∣

∣

〈θm〉k〈(1 − θ)m〉n−k
〈m〉n

− θk(1 − θ)n−k
∣

∣

∣

∣

< ε, ∀θ =
r

m
.

(e) Rewrite (2) as follows:

pk,n =

∫

1

0

〈θm〉k〈(1 − θ)m〉n−k
〈m〉n

Fm(dθ),

where Fm is a staircase probability distribition on [0, 1] with jumps of qr at r/m.
Complete the proof of de Finetti’s theorem, using the result of part (d) and the
following restricted statement of Helly’s selection theorem:

“Every sequence {Fm} of probability distributions on [0, 1] contains a subsequence
Fm1

, Fm2
, · · · that converges uniformly to a limit F . That is, for all ε > 0, there exists

M such that for all mi > M , |F (x) − Fmi
(x)| < ε, for all x.”

[Hints: 1Recall that (2) applies for all m. 2If a sequence converges to a limit, so
do all of its subsequences. 3If |F (x) − Fm(x)| < ε for all x then

∣

∣

∫

h(θ)F (dθ) −
∫

h(θ)Fm(dθ)
∣

∣ < ε
∫

h(θ)dθ, for h(θ) ≥ 0.]

(f) As an illustration, consider the following experimental setting. An ordinary thumb-
tack is thrown into the air in the center of a large smooth wooden floor. It can
come to rest in one of two ways, called “heads” and “tails”. This experiment is
repeated a great many times, ensuring that subsequent trials are identical.

We ask: “What is the probability that there are seven heads in the first ten flips?”
Discuss how you would approach this problem, emphasizing the role of de Finetti’s
theorem in the answer to this question.
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3 [Non-Separable SVM]

We would like to extend the notion of the optimal margin separating hyperplane to
nonseparable data, i.e. when data is such that any hyperplane results in misclassified
samples. The idea is to obtain a method that will find a hyperplane which minimizes the
number of misclassifications yet gives a wide margin over the correctly classified samples.

Say we have some hyperplane specified by the normal ψ and offset b. Recall that
when a data point (xi, yi) is properly classified, we can write yi(ψ

′xi − b) ≥ 1. When
(xi, yi) is misclassified, we observe that we can still write yi(ψ

′xi − b) ≥ 1 − ξi, for some
ξi > 0, which we call a slack variable. Since positive slack indicates a misclassified
sample, a natural attempt to reduce misclassification is to incorporate the total slack
into the optimization problem of the separable setting:

min
ψ,b,ξ`

[

1

2
ψ′ψ + C

∑̀

i=1

ξi

]

s.t. yi(ψ
′xi − b) ≥ 1 − ξi, ξi ≥ 0.

We assume that the constant C is predefined. There are justifications of why some
choices of C may work better than others, but we do not elaborate that here†. Notice
that this formulation effectively relaxes the notion of margin, whence the terminology
“soft margin SVM”.

(a) If the data is in fact separable, show that the solution is the same as that of the
original optimization, if C is large enough.

(b) Write down the Lagrangian L(ψ, b, ξ, α`β`) of the new problem, with multipliers
α` and β` for the first and second sets of constraints respectively.

(c) Show that the optimal ψ◦ has the same expression as before, and that therefore
the notion of support vectors still applies and the problem still depends only on
the inner products x′ixj, and not individual xi’s.

(d) Show that α` is constrained within [0, C]`.

(e) Show that both properly classified and misclassified samples can be support vectors,
and that α◦

i = C if the ith sample is a misclassified support vector.

(f) Show that ψ◦′ψ◦+C
∑`

i=1
ξ◦i =

∑`
i=1

α◦
i . [Hint: Use alignment conditions for both

αi and βi, i = 1, . . . , `.]

(g) †[optional] Suggest how one could justify letting C be inversely proportional to `.
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4 [System Identification]

The goal of this problem is to introduce the basic elements of system indentification.
Specifically, we look at the parametric estimation of LTI systems, emphasizing the role
and effects of model and input selection. We are given data (ui, yi) for i = 1, · · · , `.
Departing from the i.i.d. case, we assume u and y to be related by the setup:

We typically have control over how the input, u, is selected, and will consider two
different choices in this problem. LTI systems S1 and S2 are characterized by their
transfer functions H1 and H2. e is an exogenous noise process, which we assume to be
white zero-mean Gaussian with variance λ2.

We will tackle this problem parametrically, using the first-order version of an archety-
pal class of parametrized models, known as ARX (autoregressive with external input):

yi + ayi−1 = bui−1 + ei, u0 = y0 = 0, ei ∼ N (0, λ2), white.

Note that this model set corresponds to H1(z) = bz−1 and H2(z) = 1/(1 + az−1).

Our task, then, is to estimate the parameter vector θ =

(

a
b

)

.

(a) It can be shown that, asymptotically, the ML estimate θ̂ reduces to:

θ̂ = argmin
∑̀

i=1

e2i ,

which, if we write ei = yi+ayi−1−bui−1, has the natural interpretation of reducing
the discrepancy between the model’s prediction and the data, within the limit of
noise. Show that θ̂ is the solution of the following matrix equation, if it exists (all
sums over i = 1, . . . , `):

(

1

N

∑

y2
i−1 − 1

N

∑

ui−1yi−1

− 1

N

∑

ui−1yi−1
1

N

∑

u2
i−1

)

θ̂ =

(

− 1

N

∑

yi−1yi
1

N

∑

ui−1yi

)

.

[Hint: Write the dynamics in matrix form as e` = y` − Φ · θ, where Φ is a ` × 2
matrix of appropriately arranged inputs and outputs.]

In order to study the effects of mismodeling without excessively altering the analysis,
we will derive our results for models of the form H1(z) = bz−1/(1 + cz−1) and H2(z) =
(1 + cz−1)/(1 + az−1), which we can write as:

yi + ayi−1 = bui−1 + ei + cei−1, u0 = y0 = 0.

We are interested in how the estimate behaves when c = 0 (correct model) and c 6= 0
(incorrect model), under different input choices. [Note that, when c 6= 0, the method
from part (a) is in fact minimizing

∑

ẽ2i , where ẽi = ei + cei−1.]
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(b) Assume u is chosen to be white zero-mean Gaussian with variance σ2, uncorrelated
with e. Show that a true model with c 6= 0 induces a bias on the estimate. More
specifically, show that the asymptotic (`→ ∞) value of θ̂ is given by:

â = a−
c(1 − a2)λ2

b2σ2 + (1 + c2 − 2ac)λ2
, b̂ = b.

Compute the numerical asymptotic values for a = −0.8, b = 1 for the two cases c =
0 and c = −0.8. Discuss how the choice of model impacts the estimation process.
[Hint: All processes are stationary and ergodic: statistics are time invariant and
time averages converge to ensemble averages, i.e. expectations.]

(c) Now, assume u is a step with amplitude σ, i.e. u0 = 0, ui = σ for i = 1, . . . , `.
Show that the new asymptotic θ̂ is given by:

â = a−
c(1 − a2)

1 + c2 − 2ac
, b̂ = b−

bc(1 − a)

1 + c2 − 2ac
.

Compute the numerical asymptotic values for the cases of part (b). What role
does σ play? In some sense white noise is a “richer” input than a step. Discuss
that, and how the choice of input affects the estimation problem, under both
correct and incorrect modeling. [Hint: Ergodicity and stationarity still hold, with a
deterministic signal being a degenerate case. Note that although y doesn’t converge
to a steady state, E[Y ] does.]

5


