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Out 4/12 Due F, 4/20

1 [Central Limit Theorem in the Asymptotics of the Estimator]

Consider the system identification setting that we presented in class. Our data is
generated by a model of the form:

yt =

n?
a∑

i=1

−aiyt−i +

n?

b∑

j=0

bjxt−j + wt, wt i.i.d. E[wt] = 0, var(wt) = λ2.

The memory or number of taps n?
a and n?

b are typically unknown, and we perform
our optimization in a model class with some fixed na and nb. In this context, minimizing
the square regression cost on a data sample of size ` results in the following estimate:

α̂` =

(

1

`

∑̀

t=1

φtφ
′
t

)−1(

1

`

∑̀

t=1

φtyt

)

,

where φt = [−yt−1 · · · − yt−na
xt · · · xt−nb

]′, and α̂` = [â1 · · · âna
b̂0 · · · b̂nb

]′. Assume
the inverse exists, e.g. the inputs have sufficient persistence of excitation.

(a) Show that if n?
a = na and n?

b = nb then:

α̂` = α◦ +
1√
`

(

1

`

∑̀

t=1

φtφ
′
t

)

︸ ︷︷ ︸

(I)

−1(

1√
`

∑̀

t=1

φtwt

)

︸ ︷︷ ︸

(II)

,

where α◦ represents the true parameters:

α◦ = [a1 · · · ana
b0 · · · bnb

]′.

We are interested in the convergence behavior of the error α̂` − α◦. Let’s consider the
simple context of a one-step memory na = 1, nb = 0. Under the usual ergodicity and
quasi-stationarity assumptions, term (I) converges to some matrix P .

(b) Carry out the argument given in class and explicitly separate term (II) into com-
ponents for which the central limit theorem applies, and show that it converges to
a zero-mean Gaussian random variable with covariance matrix λ2P .

(c) Deduce that we have
√

`(α̂` − α◦) ∼ N (0, λ2P−1). Provide a brief statement on
what this says about the convergence of the estimator.
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2 [Expectation Maximization]

Consider the EM algorithm for estimating the parameters of a hidden Markov model.

[E-step] J(α̃, α) =
∑

x`

[
log Pα̃(Y ` = y`,X` = x`)

]
Pα(Y ` = y`,X` = x`).

[M-step] α? = argmaxα̃ J(α̃, α).

[Update] α← α?.

Verify that the solution of the maximization step stated in class is correct:

α? = (Π?, a?, b?),

Such that :

Π?(i) = Pα(Y ` = y`,X0 = i)/Pα(Y ` = y`),

a?
ij =

∑̀

t=1

Pα(Y ` = y`,Xt−1 = i,Xt = j)/
∑̀

t=1

Pα(Y ` = y`,Xt−1 = i),

b?
i (v) =

∑

{t : yt=v}

Pα(Y ` = y`,Xt = i)/
∑̀

t=1

Pα(Y ` = y`,Xt = i).

3 [Recursive Filtering]

Given a hidden Markov model, define the sequence of vectors qt:

qt(i) = P(Xt = i|Y t = yt), i = 1, · · · , n,

which is the posterior distribution of state Xt given all the observations up to that time.
Show that qt+1 = Φ(qt, yt+1), for some Φ, i.e. that qt satisfies a recursion.

4 [Decoding via the Viterbi Algorithm]

Given a hidden Markov model, with known parameters, and an observation sequence
y`, the decoding problem consists of computing the complete sequence of states with
maximal posterior probability:

x̂` = argmax
x`

P(X` = x`|Y ` = y`).

(a) Define the sequence of vectors rt as follows:

rt(i) = max
xt−1

P(Xt = i,Xt−1 = xt−1|Y t = yt).

Show that rt satisfies a forward recursion such that:

rt(i) α bi(yt)max
j

ajirt−1(j),

where the proportionality constant depends only on the observations and t, but is
independent of the optimization.

(b) Suppose rt, t = 1, · · · , ` are all computed, up to the proportionality factor. Show
that, if we also keep track of st(i):

st(i) = argmax
j

ajirt−1(j),

then the optimal sequence x̂` can be recovered by a backward recursive selection.
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