Massachusetts Institute of Technology
6.435 Theory of Learning and System Identification

Prof. Dahleh, Prof. Mitter Homework 4
Out 4/12 Due F, 4/20

1  [Central Limit Theorem in the Asymptotics of the Estimator]

Consider the system identification setting that we presented in class. Our data is
generated by a model of the form:
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The memory or number of taps nj; and nj are typically unknown, and we perform
our optimization in a model class with some fixed n, and n. In this context, minimizing
the square regression cost on a data sample of size £ results in the following estimate:
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where ¢y = [—yt—1 *** —Yt—ng Tt -+ Ti—p,|’, and &y = [a1 -+ an, bo - lA)nb]’. Assume
the inverse exists, e.g. the inputs have sufficient persistence of excitation.

(a) Show that if n} = n, and nj = ny then:
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where a° represents the true parameters:

a®=lay -+ an, by - bnb]/-

We are interested in the convergence behavior of the error &, — a°. Let’s consider the
simple context of a one-step memory n, = 1, n, = 0. Under the usual ergodicity and
quasi-stationarity assumptions, term (I) converges to some matrix P.

(b) Carry out the argument given in class and explicitly separate term (II) into com-
ponents for which the central limit theorem applies, and show that it converges to
a zero-mean Gaussian random variable with covariance matrix \2P.

(c) Deduce that we have v¢(é&, — a®) ~ N'(0,A\2P~1). Provide a brief statement on
what this says about the convergence of the estimator.



2 [Expectation Maximization]

Consider the EM algorithm for estimating the parameters of a hidden Markov model.
[E-step] J(&,a) = > ,¢ [log Pa(Y: = ¢f, X¥ = 2f)| Po(Y! = yf, X¥ = 2f).
[M-step] o* = argmax, J(&, a).
[Update] o « o*.

Verify that the solution of the maximization step stated in class is correct:

o = (IT*,a*,b%),
Such that :
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3 [Recursive Filtering]
Given a hidden Markov model, define the sequence of vectors ¢;:
@) =PX; =ilY'=y"), i=1,,n,
which is the posterior distribution of state X; given all the observations up to that time.
Show that g+1 = ®(q¢, yi+1), for some P, i.e. that g, satisfies a recursion.
4  [Decoding via the Viterbi Algorithm]

Given a hidden Markov model, with known parameters, and an observation sequence
y¢, the decoding problem consists of computing the complete sequence of states with
maximal posterior probability:

i* = argmax P(X' = 2/|v* = 4.
zt
(a) Define the sequence of vectors r; as follows:
r(i) = n%a:fP(Xt =i, X7 = gt hyt = o).
poria
Show that r; satisfies a forward recursion such that:

(i) a bi(ye) m]aX ajire-1(J),

where the proportionality constant depends only on the observations and ¢, but is
independent of the optimization.

(b) Suppose 1, t = 1,--- , £ are all computed, up to the proportionality factor. Show
that, if we also keep track of s;(7):
st(i) = argmax a;;re—1(3),
J
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then the optimal sequence Z* can be recovered by a backward recursive selection.



