
Massachusetts Institute of Technology

6.435 Theory of Learning and System Identification

(Spring 2007)

Prof. Dahleh, Prof. Mitter Lecture 10
Scribed by Giorgio Magri T 3/13

1 Asymptotic Equipartition Property

The following theorem is a consequence of the Weak Law of Large Numbers which will be crucial
in what follows.

Theorem 1. asymptotic equipartition property. Consider a sequence X1, X2, of i.i.d.
random variables with finite range distributed accordingly to a probability mass function p; then:

−
1

n
log p(X1, , Xn)

p
−→ H(p) (1)

in words: the random variable − 1
n

log p(X1, , Xn) converges in probability to the entropy H(p).

Proof. Consider the new random variables Y1, Y2, defined by Yi
.
= − log p(Xi). Since the Xi are

i.i.d., then the Yi are i.i.d. too, given that functions of independent random variables are also
independent random variables. The Weak Law of Large Numbers thus ensures that (2) holds.

1

n

n
∑

i=1

Yi
p

−→ Ep

[

Y
]

(2)

Note that:

−
1

n
log p(X1, , Xn) = −

1

n
log

n
∏

i=1

p(Xi) = −
1

n

n
∑

i=1

log p(Xi) =
1

n

n
∑

i=1

Yi (3)

H(p) = −
∑

x∈Im(X)

p(x) log p(x) = Ep

[

Y
]

(4)

Thus, claim (1) thus immediately follows by replacing (3) and (4) in (2).

2 Typical sets

Definition 1. Consider a probability distribution p(x) over a finite set X and arbitrary ε > 0
and n ∈ IN; the set An

ε (p) defined as follows:

An
ε (p)

.
=

{

x = (x1, , xn) ∈ Xn
∣

∣

∣

1

2n[H(p)+ε]
≤ p(x1, , xn) ≤

1

2n[H(p)−ε]

}

(5)

is called the typical set for p corresponding to ε and n. We will often write just An
ε instead of

An
ε (p), when no confusion arises.

Theorem 2. The following properties hold:

1. An
ε (p) =

{

x ∈ Xn

∣

∣

∣

∣

∣− 1
n

log p(x) − H(p)
∣

∣ > ε
}

.

2. Pp

(

An
ε (p)

)

> 1 − ε, for n large enough.

3.
∣

∣An
ε (p)

∣

∣ ≤ 2n[H(p)+ε] for every n.

4.
∣

∣An
ε (p)

∣

∣ ≥ (1 − ε)2n[H(p)−ε], for n large enough.
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Proof. [1] The proof of the first claim of the theorem amounts to the following trivial chain of
implications:

x ∈ An
ε (p) ⇐⇒

1

2n[H(p)+ε]
≤ p(x1, , xn) ≤

1

2n[H(p)−ε]

⇐⇒ −n
[

H(p) + ε
]

≤ log p(x) ≤ −n
[

H(p) − ε
]

⇐⇒ H(p) − ε ≤ −
1

n
log p(x) ≤ H(p) + ε

⇐⇒
∣

∣

∣
−

1

n
log p(x) − H(p)

∣

∣

∣
> ε

[2] The following chain of inequalities holds for every ε, δ ∈ (0, 1) and every n sufficiently large:

Pp

(

An
ε (p)

)

= Pp

{

x ∈ Xn
∣

∣

∣

∣

∣−
1

n
log p(x) − H(p)

∣

∣ > ε
}

≤ 1 − δ

where in the first step I have used the first claim of the theorem and in the second step I have
used the AEP. By setting δ = ε, we obtain the second claim of the theorem. [3] The proof of the
third claim of the theorem amounts to the following chain of inequalities:

1 =
∑

x∈Xn

p(x)

≥
∑

x∈An
ε (p)

p(x)

≥
∑

x∈An
ε (p)

1

2n[H(p)+ε]

=
∣

∣An
ε (p)

∣

∣

1

2n[H(p)+ε]

where in the third step I have used the first claim of the theorem, namely the fact that p(x) ≥
1

2n[H(p)+ε] for every x ∈ An
ε (p). [4] The proof of the fourth claim of the theorem amounts to the

following chain of inequalities:

1 − ε ≤ Pp

(

An
ε (p)

)

for n large enough

≤
∑

x∈An
ε (p)

1

2n[H(p)−ε]

=
∣

∣An
ε (p)

∣

∣

1

2n[H(p)−ε]

where in the first step I have used the second claim of the theorem and in the second step I have
used the first claim, namely the fact that p(x) ≤ 1

2n[H(p)−ε] for every x ∈ An
ε (p).

3 Codes

Let V be a finite set, whose elements are called symbols; a word on V is any finite concatenation
of symbols of V ; the set of all words is denoted by V∗; the number of symbols concatenated in a
word ω ∈ V∗ is called the length of ω and denoted by `(ω); for any two words ω1, ω2 ∈ V∗, we say
that ω2 is a prefix of ω1 iff there exists ω3 ∈ V∗ such that ω1 = ω2ω3, i.e. ω1 is the concatenation
of ω2 followed by ω3; we will usually assume V = {0, 1}. With this little background, we can now
state the following crucial definition.

Definition 2. Consider a discrete random variable X with finite range X and probability dis-
tribution p. A code for X by means of an alphabet V is a function C of the following form:

C : X → V∗ (6)
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For each x ∈ X , the string C(x) is called the codeword corresponding to x with respect to the
code C and the length of the word C(x) is denoted by `C(x) (or often just by `(x), when no
confusion arises). A code is called non-singular iff it is an injective function, namely the following
holds for every x, x′ ∈ X : if xx′, then C(x)C(x′). A code is called binary if V = {0, 1}; we will
usually consider binary codes.The quantity `(C) defined as follows:

`(C)
4
= Ep

[

`C(X)
]

=
∑

x∈X

p(x)`C(x) (7)

is called the expected length of the code C.

4 Compression via typical sets

Theorem 3. Consider a sequence of i.i.d. random variables X1, , Xn, with common finite range
X . For any ε > 0 and any n ∈ IN large enough, there exists a non-singular binary code Cε :
Xn → {0, 1}∗ such that its expected length is:

L(Cε) = n
(

H(p) + ε′
)

(8)

where ε′ depends on ε, n and the cardinality of X .

Proof. Let p be the common distribution of X1, , Xn. Let An
ε (p) be the typical set for p

corresponding to ε and n, henceforth denoted just by An
ε . Consider an arbitrary bijection

α : An
ε →

{

1, , |An
ε |
}

, which assigns to each element x ∈ An
ε an integer α(x) between 1 and

the cardinality of the set An
ε . Consider another arbitrary bijection β : Xn →

{

1, , |X |n
}

which
assigns to each element of x ∈ Xn an integer β(x) between 1 and the cardinality of the set Xn.
For each x ∈ Xn, define Cε(x) as follows: if x ∈ An

ε , then Cε(x)
.
= 0ω (the concatenation of 0

with ω) where ω is the binary representation of the integer α(x); if x 6∈ An
ε , then Cε(x) = 1ω

(the concatenation of 1 with ω) where ω is the binary representation of the integer β(x). The
code Cε is trivially non-singular. Note that for every x 6∈ An

ε , the length `Cε
(x) can be bound as

follows, where in the fourth step I have recalled that ω is the binary representation of the integer
β(x) which is smaller than |X |n.

`Cε
(x) = `

(

Cε(x)
)

= `(0ω)

= 1 + `(ω)

≤ 1 +
⌈

n log |X |
⌉

≤ 2 + n log |X | (9)

Furthermore, for every x ∈ An
ε , the length `Cε

(x) can be bound as follows, where in the fourth
step I have recalled that ω is the binary representation of the integer α(x) which is smaller than
the cardinality of An

ε which is in turn smaller than 2n(H(p)+ε), as proved above.

`Cε
(x) = `

(

Cε(x)
)

= `(1ω)

= 1 + `(w)

≤ 1 +
⌈

n
(

H(p) + ε
)⌉

≤ 2 + n
(

H(p) + ε
)

(10)
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I can now bound the expected length of the code Cε as follows:

L(Cε) =
∑

x∈Xn

p(x)`Cε
(x)

=
∑

x∈An
ε

p(x)`Cε
(x) +

∑

x 6∈An
ε

p(x)`Cε
(x)

(a)

≤
∑

x∈An
ε

p(x)
(

2 + n
(

H(p) + ε
)

)

+
∑

x 6∈An
ε

p(x)
(

2 + n log |X |
)

= P
(

An
ε

)

(

2 + n
(

H(p) + ε
)

)

+ P
(

(An
ε )C

)

(

2 + n log |X |
)

(b)

≤
(

2 + n
(

H(p) + ε
)

)

+ ε
(

2 + n log |X |
)

= n
(

H(p) + ε
)

+ ε′

where in step (a) I have used both (9) and (10) and in step (b) I have used the trivial fact that
P(An

ε ) ≤ 1 together with the fact that P
(

(An
ε )C

)

≤ ε for n large enough, given that P(An
ε ) ≥ 1−ε,

as proven above.

5 Instantaneous codes and Kraft Inequality

Definition 3. Let C be a code for a random variable X with range X by means of an alphabet
V . The extension of C is the function C∗ defined a follows:

C∗ : X ∗ → V∗

x1xn 7→ C∗(x1xn) = C(x1)C(xn)
(11)

namely the function which maps any finite-length string x1xn of symbols of X into the string
C(x1)C(xn) obtained by concatenating in the same order the corresponding codewords. A code
C is called uniquely decidable if its extension C∗ is an injective function. The code C is called a
prefix or instantaneous or self-punctuating code if there are no two x1, x2 ∈ X such that C(x1) is
a prefix of C(x2).

Osservation 1. For concreteness, let V = {0, 1} and consider the binary tree with infinite height
defined as follows:

1. each node has exactly 2 children;

2. the root is labeled with the empty string ε;

3. each non-root node is labeled with a word ω ∈ V∗;

4. if a node is labeled ω, then its left child is label ω0 (namely, the concatenation of ω with
0) and its right child is labeled ω1 (namely, the concatenation of ω with 1).

This infinite binary tree will be called the tree associated to {0, 1}∗. The extension of this
construction to arbitrary alphabets V is of course trivial. Note that the length of a string ω ∈ V∗

is the height of the corresponding node in the tree associated with V∗, namely the length of the
path from the root to the node labeled with ω. Furthermore, a word ω is a prefix of another
word ω′ iff ω dominates ω′ in the tree associated with V∗. Thus, a code C : X → {0, 1}∗

is instantaneous iff there are no two x1, x2 ∈ X such that C(x1) dominates C(x2) in the tree
associated with V∗.

Theorem 4. kraft’s inequality. [1] Consider a discrete random variable X with finite range
X . If C : X → V∗ is an instantaneous code for X over an alphabet V, then the following inequality
holds:

∑

x∈X

(

1

|V|

)`C(x)

≤ 1 (12)
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[2] Conversely, given |X | integers lx with x ∈ X such that the above inequality holds, namely:

∑

x∈X

(

1

|V|

)lx

≤ 1

then there is an instantaneous code C : X → V∗ such that `C(x) = lx.

Proof. [1] For concreteness, consider the case V = {0, 1}; the extension of the proof to the
arbitrary case is trivial. Let l = max{`C(x) |x ∈ X}. Consider the tree associated with V∗, as
defined in the preceding Observation. For each node x, let D(x) be the set of nodes in the tree
which are descendants of x and have height l. Note that

|D(x)| = 2l−`C(x) (13)

Note furthermore that the following holds, given that the code C is instantaneous:

D(x) ∩ D(x′) = ∅ for every x, x′ ∈ X (14)

Hence:

2l ≥

∣

∣

∣

∣

∣

⋃

x∈X

D(x)

∣

∣

∣

∣

∣

=
∑

x∈X

∣

∣D(x)
∣

∣

=
∑

x∈X

2l−`(x)

where: in the first step, I have noted that there are 2l nodes of height l and I have recalled that
each D(x) is by definition a set of nodes of height l; in the second step, I have used (14) and in
the third step I have sued (13). The claim follows by dividing both sides by 2l.

[2] Pick a node ω1 of height l1 in the tree associated with {0, 1}∗, let C(x1) = ω1 and remove
all the descendants of ω1 from the tree; pick a node ω2 of height l2 in the tree associated with
{0, 1}∗, let C(x2) = ω2 and remove all the descendants of ω2 from the tree; and so on. In this
way, we build a prefix code with the assigned code lengths.

6 Compression via Kraft’s Inequality

Theorem 5. Consider a discrete random variable X with finite range X . The minimum expected
length of an instantaneous code for X is H(p).

Proof. Assume that X = {1, , M}. By virtue of Kraft’s Inequality, the instantaneous code which
achieves the minimum expected length is the code whose codeword lengths l1, , lM solve the
following constrained optimization problem:

minimize:
∑M

i=1 pili

subject to:
∑M

i=1 2−li ≤ 1,

li ≥ 0 for i = 1, , M

We can solve this problem by means of the method of Lagrange multipliers. The corresponding
Lagrangian is as follows:

Λ(l, λ) =

M
∑

i=1

pili + λ

(

M
∑

i=1

2−li − 1

)

(15)

and its derivatives are as follows:

∂Λ(l, λ)

∂li
= pi − λ2−li ln 2 (16)
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Thus, the condition ∂Λ(l,λ)
∂li

= 0 holds iff the following holds:

2−li =
pi

λ ln 2
(17)

By imposing that the constrains are satisfied, I get the following:

1 =

M
∑

i=1

2−li =

M
∑

i=1

pi

λ ln 2
=

1

λ ln 2
(18)

from which I derive that λ = 1
ln 2 . By replacing this expression for λ in (17), I conclude that

pi = 2−li and thus:

li = − log pi = log
1

pi

(19)

Thus, the optimal code C
opt

has code lengths li = log 1
pi

and its expected length is:

`(C
opt

) =

M
∑

i=1

pili =

M
∑

i=1

pi log
1

pi

= H(p) (20)

namely, the entropy of X .
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