Massachusetts Institute of Technology 6.435 Theory of Learning and System Identification (Spring 2007)

Prof. Dahleh, Prof. Mitter	Lecture 10
Scribed by Giorgio Magri	Т 3/13

1 Asymptotic Equipartition Property

The following theorem is a consequence of the Weak Law of Large Numbers which will be crucial in what follows.

Theorem 1. ASYMPTOTIC EQUIPARTITION PROPERTY. Consider a sequence X_1, X_2 , of i.i.d. random variables with finite range distributed accordingly to a probability mass function p; then:

$$-\frac{1}{n}\log p(X_1, X_n) \xrightarrow{p} H(p) \tag{1}$$

in words: the random variable $-\frac{1}{n}\log p(X_1, X_n)$ converges in probability to the entropy H(p).

Proof. Consider the new random variables Y_1, Y_2 , defined by $Y_i \doteq -\log p(X_i)$. Since the X_i are i.i.d., then the Y_i are i.i.d. too, given that functions of independent random variables are also independent random variables. The Weak Law of Large Numbers thus ensures that (2) holds.

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{p} \mathbf{E}_p[Y] \tag{2}$$

Note that:

$$-\frac{1}{n}\log p(X_1, X_n) = -\frac{1}{n}\log \prod_{i=1}^n p(X_i) = -\frac{1}{n}\sum_{i=1}^n \log p(X_i) = \frac{1}{n}\sum_{i=1}^n Y_i$$
(3)

$$H(p) = -\sum_{x \in Im(X)} p(x) \log p(x) = \mathbf{E}_p[Y]$$
(4)

Thus, claim (1) thus immediately follows by replacing (3) and (4) in (2). \Box

2 Typical sets

Definition 1. Consider a probability distribution p(x) over a finite set \mathcal{X} and arbitrary $\epsilon > 0$ and $n \in \mathbb{N}$; the set $A_{\epsilon}^{n}(p)$ defined as follows:

$$A_{\epsilon}^{n}(p) \doteq \left\{ \mathbf{x} = (x_{1}, x_{n}) \in \mathcal{X}^{n} \, \Big| \, \frac{1}{2^{n[H(p)+\epsilon]}} \le p(x_{1}, x_{n}) \le \frac{1}{2^{n[H(p)-\epsilon]}} \right\}$$
(5)

is called the *typical set* for p corresponding to ϵ and n. We will often write just A_{ϵ}^{n} instead of $A_{\epsilon}^{n}(p)$, when no confusion arises.

Theorem 2. The following properties hold:

- 1. $A_{\epsilon}^{n}(p) = \left\{ \mathbf{x} \in \mathcal{X}^{n} \mid \left| -\frac{1}{n} \log p(\mathbf{x}) H(p) \right| > \epsilon \right\}.$
- 2. $\mathbf{P}_p(A^n_{\epsilon}(p)) > 1 \epsilon$, for n large enough.
- 3. $|A_{\epsilon}^{n}(p)| \leq 2^{n[H(p)+\epsilon]}$ for every n.
- 4. $|A^n_{\epsilon}(p)| \ge (1-\epsilon)2^{n[H(p)-\epsilon]}$, for n large enough.

Proof. [1] The proof of the first claim of the theorem amounts to the following trivial chain of implications:

$$\begin{aligned} \mathbf{x} \in A_{\epsilon}^{n}(p) & \iff \quad \frac{1}{2^{n[H(p)+\epsilon]}} \le p(x_{1}, x_{n}) \le \frac{1}{2^{n[H(p)-\epsilon]}} \\ & \iff \quad -n[H(p)+\epsilon] \le \log p(\mathbf{x}) \le -n[H(p)-\epsilon] \\ & \iff \quad H(p)-\epsilon \le -\frac{1}{n}\log p(\mathbf{x}) \le H(p)+\epsilon \\ & \iff \quad \left|-\frac{1}{n}\log p(\mathbf{x})-H(p)\right| > \epsilon \end{aligned}$$

[2] The following chain of inequalities holds for every $\epsilon, \delta \in (0, 1)$ and every n sufficiently large:

$$\mathbf{P}_p(A^n_{\epsilon}(p)) = \mathbf{P}_p\{\mathbf{x} \in \mathcal{X}^n \mid \left| -\frac{1}{n}\log p(\mathbf{x}) - H(p) \right| > \epsilon\}$$

$$\leq 1 - \delta$$

where in the first step I have used the first claim of the theorem and in the second step I have used the AEP. By setting $\delta = \epsilon$, we obtain the second claim of the theorem. [3] The proof of the third claim of the theorem amounts to the following chain of inequalities:

$$1 = \sum_{\mathbf{x}\in\mathcal{X}^n} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x}\in A^n_{\epsilon}(p)} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x}\in A^n_{\epsilon}(p)} \frac{1}{2^{n[H(p)+\epsilon]}}$$

$$= |A^n_{\epsilon}(p)| \frac{1}{2^{n[H(p)+\epsilon]}}$$

where in the third step I have used the first claim of the theorem, namely the fact that $p(\mathbf{x}) \geq \frac{1}{2^{n[H(p)+\epsilon]}}$ for every $\mathbf{x} \in A^n_{\epsilon}(p)$. [4] The proof of the fourth claim of the theorem amounts to the following chain of inequalities:

$$1 - \epsilon \leq \mathbf{P}_p \left(A_{\epsilon}^n(p) \right) \quad \text{for } n \text{ large enough}$$
$$\leq \sum_{\mathbf{x} \in A_{\epsilon}^n(p)} \frac{1}{2^{n[H(p) - \epsilon]}}$$
$$= \left| A_{\epsilon}^n(p) \right| \frac{1}{2^{n[H(p) - \epsilon]}}$$

where in the first step I have used the second claim of the theorem and in the second step I have used the first claim, namely the fact that $p(\mathbf{x}) \leq \frac{1}{2^{n[H(p)-\epsilon]}}$ for every $\mathbf{x} \in A^n_{\epsilon}(p)$.

3 Codes

Let \mathcal{V} be a finite set, whose elements are called *symbols*; a *word* on \mathcal{V} is any finite concatenation of symbols of \mathcal{V} ; the set of all words is denoted by \mathcal{V}^* ; the number of symbols concatenated in a word $\omega \in \mathcal{V}^*$ is called the *length* of ω and denoted by $\ell(\omega)$; for any two words $\omega_1, \omega_2 \in \mathcal{V}^*$, we say that ω_2 is a *prefix* of ω_1 iff there exists $\omega_3 \in \mathcal{V}^*$ such that $\omega_1 = \omega_2 \omega_3$, i.e. ω_1 is the concatenation of ω_2 followed by ω_3 ; we will usually assume $\mathcal{V} = \{0, 1\}$. With this little background, we can now state the following crucial definition.

Definition 2. Consider a discrete random variable X with finite range \mathcal{X} and probability distribution p. A code for X by means of an alphabet \mathcal{V} is a function C of the following form:

$$C: \mathcal{X} \to \mathcal{V}^* \tag{6}$$

For each $x \in \mathcal{X}$, the string C(x) is called the *codeword* corresponding to x with respect to the code C and the length of the word C(x) is denoted by $\ell_C(x)$ (or often just by $\ell(x)$, when no confusion arises). A code is called *non-singular* iff it is an injective function, namely the following holds for every $x, x' \in \mathcal{X}$: if xx', then C(x)C(x'). A code is called *binary* if $\mathcal{V} = \{0, 1\}$; we will usually consider binary codes. The quantity $\ell(C)$ defined as follows:

$$\ell(C) \stackrel{\triangle}{=} \mathbf{E}_p \big[\ell_C(X) \big] = \sum_{x \in \mathcal{X}} p(x) \ell_C(x) \tag{7}$$

is called the *expected length* of the code C.

4 Compression via typical sets

Theorem 3. Consider a sequence of *i.i.d.* random variables X_1, X_n , with common finite range \mathcal{X} . For any $\epsilon > 0$ and any $n \in \mathbb{N}$ large enough, there exists a non-singular binary code $C_{\epsilon} : \mathcal{X}^n \to \{0,1\}^*$ such that its expected length is:

$$L(C_{\epsilon}) = n(H(p) + \epsilon') \tag{8}$$

where ϵ' depends on ϵ , n and the cardinality of \mathcal{X} .

Proof. Let p be the common distribution of X_1, X_n . Let $A^n_{\epsilon}(p)$ be the typical set for p corresponding to ϵ and n, henceforth denoted just by A^n_{ϵ} . Consider an arbitrary bijection $\alpha : A^n_{\epsilon} \to \{1, |A^n_{\epsilon}|\}$, which assigns to each element $\mathbf{x} \in A^n_{\epsilon}$ an integer $\alpha(\mathbf{x})$ between 1 and the cardinality of the set A^n_{ϵ} . Consider another arbitrary bijection $\beta : \mathcal{X}^n \to \{1, |\mathcal{X}|^n\}$ which assigns to each element $\mathbf{x} \in A^n_{\epsilon}$ and the cardinality of the set \mathcal{X}^n . Consider another arbitrary bijection $\beta : \mathcal{X}^n \to \{1, |\mathcal{X}|^n\}$ which assigns to each element of $\mathbf{x} \in \mathcal{X}^n$ an integer $\beta(\mathbf{x})$ between 1 and the cardinality of the set \mathcal{X}^n . For each $\mathbf{x} \in \mathcal{X}^n$, define $C_{\epsilon}(\mathbf{x})$ as follows: if $\mathbf{x} \in A^n_{\epsilon}$, then $C_{\epsilon}(\mathbf{x}) \doteq 0\omega$ (the concatenation of 0 with ω) where ω is the binary representation of the integer $\alpha(\mathbf{x})$; if $\mathbf{x} \notin A^n_{\epsilon}$, then $C_{\epsilon}(\mathbf{x}) = 1\omega$ (the concatenation of 1 with ω) where ω is the binary representation of the integer $\beta(\mathbf{x})$. The code C_{ϵ} is trivially non-singular. Note that for every $\mathbf{x} \notin A^n_{\epsilon}$, the length $\ell_{C_{\epsilon}}(\mathbf{x})$ can be bound as follows, where in the fourth step I have recalled that ω is the binary representation of the integer $\beta(\mathbf{x})$ which is smaller than $|\mathcal{X}|^n$.

$$\ell_{C_{\epsilon}}(\mathbf{x}) = \ell(C_{\epsilon}(\mathbf{x}))$$

$$= \ell(0\omega)$$

$$= 1 + \ell(\omega)$$

$$\leq 1 + \lceil n \log |\mathcal{X}| \rceil$$

$$\leq 2 + n \log |\mathcal{X}| \qquad (9)$$

Furthermore, for every $\mathbf{x} \in A^n_{\epsilon}$, the length $\ell_{C_{\epsilon}}(\mathbf{x})$ can be bound as follows, where in the fourth step I have recalled that ω is the binary representation of the integer $\alpha(\mathbf{x})$ which is smaller than the cardinality of A^n_{ϵ} which is in turn smaller than $2^{n(H(p)+\epsilon)}$, as proved above.

$$\ell_{C_{\epsilon}}(\mathbf{x}) = \ell(C_{\epsilon}(\mathbf{x}))$$

$$= \ell(1\omega)$$

$$= 1 + \ell(w)$$

$$\leq 1 + \lceil n(H(p) + \epsilon) \rceil$$

$$\leq 2 + n(H(p) + \epsilon)$$
(10)

I can now bound the expected length of the code C_{ϵ} as follows:

$$L(C_{\epsilon}) = \sum_{\mathbf{x}\in\mathcal{X}^{n}} p(\mathbf{x})\ell_{C_{\epsilon}}(\mathbf{x})$$

$$= \sum_{\mathbf{x}\in\mathcal{A}^{n}_{\epsilon}} p(\mathbf{x})\ell_{C_{\epsilon}}(\mathbf{x}) + \sum_{\mathbf{x}\notin\mathcal{A}^{n}_{\epsilon}} p(\mathbf{x})\ell_{C_{\epsilon}}(\mathbf{x})$$

$$\stackrel{(a)}{\leq} \sum_{\mathbf{x}\in\mathcal{A}^{n}_{\epsilon}} p(\mathbf{x})\left(2 + n\left(H(p) + \epsilon\right)\right) + \sum_{\mathbf{x}\notin\mathcal{A}^{n}_{\epsilon}} p(\mathbf{x})\left(2 + n\log|\mathcal{X}|\right)$$

$$= \mathbf{P}\left(A^{n}_{\epsilon}\right)\left(2 + n\left(H(p) + \epsilon\right)\right) + \mathbf{P}\left((A^{n}_{\epsilon})^{C}\right)\left(2 + n\log|\mathcal{X}|\right)$$

$$\stackrel{(b)}{\leq} \left(2 + n\left(H(p) + \epsilon\right)\right) + \epsilon\left(2 + n\log|\mathcal{X}|\right)$$

$$= n\left(H(p) + \epsilon\right) + \epsilon'$$

where in step (a) I have used both (9) and (10) and in step (b) I have used the trivial fact that $\mathbf{P}(A_{\epsilon}^{n}) \leq 1$ together with the fact that $\mathbf{P}((A_{\epsilon}^{n})^{C}) \leq \epsilon$ for *n* large enough, given that $\mathbf{P}(A_{\epsilon}^{n}) \geq 1-\epsilon$, as proven above.

5 Instantaneous codes and Kraft Inequality

Definition 3. Let C be a code for a random variable X with range \mathcal{X} by means of an alphabet \mathcal{V} . The *extension* of C is the function C^* defined a follows:

namely the function which maps any finite-length string x_1x_n of symbols of \mathcal{X} into the string $C(x_1)C(x_n)$ obtained by concatenating in the same order the corresponding codewords. A code C is called *uniquely decidable* if its extension C^* is an injective function. The code C is called a *prefix* or *instantaneous* or *self-punctuating* code if there are no two $x_1, x_2 \in \mathcal{X}$ such that $C(x_1)$ is a prefix of $C(x_2)$.

Osservation 1. For concreteness, let $\mathcal{V} = \{0, 1\}$ and consider the binary tree with infinite height defined as follows:

- 1. each node has exactly 2 children;
- 2. the root is labeled with the empty string ϵ ;
- 3. each non-root node is labeled with a word $\omega \in \mathcal{V}^*$;
- 4. if a node is labeled ω , then its left child is label $\omega 0$ (namely, the concatenation of ω with 0) and its right child is labeled $\omega 1$ (namely, the concatenation of ω with 1).

This infinite binary tree will be called the tree *associated* to $\{0,1\}^*$. The extension of this construction to arbitrary alphabets \mathcal{V} is of course trivial. Note that the length of a string $\omega \in \mathcal{V}^*$ is the height of the corresponding node in the tree associated with \mathcal{V}^* , namely the length of the path from the root to the node labeled with ω . Furthermore, a word ω is a prefix of another word ω' iff ω dominates ω' in the tree associated with \mathcal{V}^* . Thus, a code $C : \mathcal{X} \to \{0,1\}^*$ is instantaneous iff there are no two $x_1, x_2 \in \mathcal{X}$ such that $C(x_1)$ dominates $C(x_2)$ in the tree associated with \mathcal{V}^* .

Theorem 4. KRAFT'S INEQUALITY. [1] Consider a discrete random variable X with finite range \mathcal{X} . If $C : \mathcal{X} \to \mathcal{V}^*$ is an instantaneous code for X over an alphabet \mathcal{V} , then the following inequality holds:

$$\sum_{x \in \mathcal{X}} \left(\frac{1}{|\mathcal{V}|}\right)^{\ell_C(x)} \le 1 \tag{12}$$

[2] Conversely, given $|\mathcal{X}|$ integers l_x with $x \in \mathcal{X}$ such that the above inequality holds, namely:

$$\sum_{x \in \mathcal{X}} \left(\frac{1}{|\mathcal{V}|}\right)^{l_x} \le 1$$

then there is an instantaneous code $C: \mathcal{X} \to \mathcal{V}^*$ such that $\ell_C(x) = l_x$.

Proof. [1] For concreteness, consider the case $\mathcal{V} = \{0, 1\}$; the extension of the proof to the arbitrary case is trivial. Let $l = \max\{\ell_C(x) | x \in \mathcal{X}\}$. Consider the tree associated with \mathcal{V}^* , as defined in the preceding Observation. For each node x, let D(x) be the set of nodes in the tree which are descendants of x and have height l. Note that

$$|D(x)| = 2^{l - \ell_C(x)} \tag{13}$$

Note furthermore that the following holds, given that the code C is instantaneous:

$$D(x) \cap D(x') = \emptyset$$
 for every $x, x' \in \mathcal{X}$ (14)

Hence:

$$2^{l} \geq \left| \bigcup_{x \in \mathcal{X}} D(x) \right|$$
$$= \sum_{x \in \mathcal{X}} |D(x)|$$
$$= \sum_{x \in \mathcal{X}} 2^{l-\ell(x)}$$

where: in the first step, I have noted that there are 2^{l} nodes of height l and I have recalled that each D(x) is by definition a set of nodes of height l; in the second step, I have used (14) and in the third step I have sued (13). The claim follows by dividing both sides by 2^{l} .

[2] Pick a node ω_1 of height l_1 in the tree associated with $\{0,1\}^*$, let $C(x_1) = \omega_1$ and remove all the descendants of ω_1 from the tree; pick a node ω_2 of height l_2 in the tree associated with $\{0,1\}^*$, let $C(x_2) = \omega_2$ and remove all the descendants of ω_2 from the tree; and so on. In this way, we build a prefix code with the assigned code lengths.

6 Compression via Kraft's Inequality

Theorem 5. Consider a discrete random variable X with finite range \mathcal{X} . The minimum expected length of an instantaneous code for X is H(p).

Proof. Assume that $\mathcal{X} = \{1, M\}$. By virtue of Kraft's Inequality, the instantaneous code which achieves the minimum expected length is the code whose codeword lengths l_1, l_M solve the following constrained optimization problem:

minimize:
$$\sum_{i=1}^{M} p_i l_i$$

subject to:
$$\sum_{i=1}^{M} 2^{-l_i} \le 1,$$

$$l_i \ge 0 \text{ for } i = 1, M$$

We can solve this problem by means of the method of Lagrange multipliers. The corresponding Lagrangian is as follows:

$$\Lambda(l,\lambda) = \sum_{i=1}^{M} p_i l_i + \lambda \left(\sum_{i=1}^{M} 2^{-l_i} - 1\right)$$
(15)

and its derivatives are as follows:

$$\frac{\partial \Lambda(l,\lambda)}{\partial l_i} = p_i - \lambda 2^{-l_i} \ln 2 \tag{16}$$

Thus, the condition $\frac{\partial \Lambda(l,\lambda)}{\partial l_i} = 0$ holds iff the following holds:

$$2^{-l_i} = \frac{p_i}{\lambda \ln 2} \tag{17}$$

By imposing that the constrains are satisfied, I get the following:

$$1 = \sum_{i=1}^{M} 2^{-l_i} = \sum_{i=1}^{M} \frac{p_i}{\lambda \ln 2} = \frac{1}{\lambda \ln 2}$$
(18)

from which I derive that $\lambda = \frac{1}{\ln 2}$. By replacing this expression for λ in (17), I conclude that $p_i = 2^{-l_i}$ and thus:

$$l_i = -\log p_i = \log \frac{1}{p_i} \tag{19}$$

Thus, the optimal code $C_{\scriptscriptstyle \rm opt}$ has code lengths $l_i = \log \frac{1}{p_i}$ and its expected length is:

$$\ell(C_{\rm opt}) = \sum_{i=1}^{M} p_i l_i = \sum_{i=1}^{M} p_i \log \frac{1}{p_i} = H(p)$$
(20)

namely, the entropy of X.

6