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1 Asymptotic Equipartition Property

The following theorem is a consequence of the Weak Law of Large Numbers which will be crucial
in what follows.

Theorem 1. ASYMPTOTIC EQUIPARTITION PROPERTY. Consider a sequence X1, Xo, of i.i.d.
random variables with finite range distributed accordingly to a probability mass function p; then:

L logp(x1,. X,) L Hp) (1)

in words: the random variable —% logp(X1,,X,) converges in probability to the entropy H(p).

Proof. Consider the new random variables Y7, Ys, defined by Y; = —logp(X;). Since the X; are
i.i.d., then the Y; are i.i.d. too, given that functions of independent random variables are also
independent random variables. The Weak Law of Large Numbers thus ensures that (2) holds.
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Thus, claim (1) thus immediately follows by replacing (3) and (4) in (2). O

2 Typical sets

Definition 1. Consider a probability distribution p(z) over a finite set X and arbitrary e > 0
and n € IN; the set A?(p) defined as follows:

Ae(p)_{x_(xlmxn)e-)( WSP(UClnlUn)SW} (5)

is called the typical set for p corresponding to € and n. We will often write just A instead of
A (p), when no confusion arises.

Theorem 2. The following properties hold:
‘ — %logp(x) — H(p)| > e}.

2. P,(A%(p)) > 1 —¢, for n large enough.

1. A™(p) = {x e xn

€

3. |Ar(p)| < 2nH )+l for every n.

4. |Ar(p)| = (1 — e)2"H®)=4 for n large enough.



Proof. [1] The proof of the first claim of the theorem amounts to the following trivial chain of
implications:

X € A?(p) < 2n[H(p)+E] S p($1a 7:'[:77,) S 2n[H p)*é]
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< H(p)—e< ——logp(x) < H(p) +e
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[2] The following chain of inequalities holds for every €,d € (0,1) and every n sufficiently large:
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where in the first step I have used the first claim of the theorem and in the second step I have
used the AEP. By setting § = ¢, we obtain the second claim of the theorem. [3] The proof of the
third claim of the theorem amounts to the following chain of inequalities:
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where in the third step I have used the first claim of the theorem, namely the fact that p(x) >
Wlmﬂ] for every x € A”(p). [4] The proof of the fourth claim of the theorem amounts to the
following chain of inequalities:
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where in the first step I have used the second claim of the theorem and in the second step I have
used the first claim, namely the fact that p(x) < W for every x € A (p). O

3 Codes

Let V be a finite set, whose elements are called symbols; a word on V is any finite concatenation
of symbols of V; the set of all words is denoted by V*; the number of symbols concatenated in a
word w € V* is called the length of w and denoted by ¢(w); for any two words wi,ws € V*, we say
that ws is a prefiz of wy iff there exists w3 € V* such that w; = wows, i.e. wy is the concatenation
of wy followed by ws; we will usually assume V = {0, 1}. With this little background, we can now
state the following crucial definition.

Definition 2. Consider a discrete random variable X with finite range X and probability dis-
tribution p. A code for X by means of an alphabet V is a function C' of the following form:

C: X -V (6)



For each 2 € X, the string C(x) is called the codeword corresponding to x with respect to the
code C and the length of the word C(x) is denoted by fc(x) (or often just by ¢(z), when no
confusion arises). A code is called non-singular iff it is an injective function, namely the following
holds for every z,z’ € X: if za’, then C(z)C(2"). A code is called binary if V = {0,1}; we will
usually consider binary codes.The quantity ¢(C') defined as follows:

UC) 2B, [te(X)] = Y pla)te(x) (7)
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is called the expected length of the code C.

4 Compression via typical sets

Theorem 3. Consider a sequence of i.i.d. random variables X1, , X,, with common finite range
X. For any € > 0 and any n € IN large enough, there exists a non-singular binary code C¢ :
X" —{0,1}* such that its expected length is:

L(Ce) =n(H(p) +¢') (8)
where € depends on €, n and the cardinality of X.

Proof. Let p be the common distribution of Xi,,X,. Let A”(p) be the typical set for p
corresponding to e and n, henceforth denoted just by A. Consider an arbitrary bijection
o A" — {1,,]A"|}, which assigns to each element x € A" an integer a(x) between 1 and
the cardinality of the set A. Comnsider another arbitrary bijection g : X" — {1, .| X |"} which
assigns to each element of x € X™ an integer 5(x) between 1 and the cardinality of the set X™.
For each x € X", define C,(x) as follows: if x € A”, then C.(x) = Ow (the concatenation of 0
with w) where w is the binary representation of the integer a(x); if x ¢ A”, then C.(x) = lw
(the concatenation of 1 with w) where w is the binary representation of the integer 3(x). The
code C. is trivially non-singular. Note that for every x & A, the length ¢ (x) can be bound as
follows, where in the fourth step I have recalled that w is the binary representation of the integer
B(x) which is smaller than |X|".

lo.(x) = ((C(x))

= ((0w)

= 1+4+/{(w)

< 1+ [nlog|X]]

< 2+nloglX| (9)

Furthermore, for every x € A”, the length ¢ _(x) can be bound as follows, where in the fourth
step I have recalled that w is the binary representation of the integer a(x) which is smaller than
the cardinality of A7 which is in turn smaller than 2n(H(P)+e) a5 proved above.

lo.(x) = K(Ce(x))
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I can now bound the expected length of the code C, as follows:
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where in step (a) I have used both (9) and (10) and in step (b) I have used the trivial fact that
P(A?”) < 1 together with the fact that P((A?)¢) < e for n large enough, given that P(A”) > 1—¢,
as proven above. O

5 Instantaneous codes and Kraft Inequality

Definition 3. Let C be a code for a random variable X with range X by means of an alphabet
V. The extension of C' is the function C* defined a follows:

c* X — V* (11)
1T, +— C*(ria,) = C(x1)C(xy,)

namely the function which maps any finite-length string x;x, of symbols of X into the string
C(z1)C(xy) obtained by concatenating in the same order the corresponding codewords. A code
C is called uniquely decidable if its extension C* is an injective function. The code C'is called a
prefix or instantaneous or self-punctuating code if there are no two x1, x5 € X such that C(z) is
a prefix of C(x2).

Osservation 1. For concreteness, let V = {0, 1} and consider the binary tree with infinite height
defined as follows:

1. each node has exactly 2 children;
2. the root is labeled with the empty string e;
3. each non-root node is labeled with a word w € V*;

4. if a node is labeled w, then its left child is label w0 (namely, the concatenation of w with
0) and its right child is labeled w1 (namely, the concatenation of w with 1).

This infinite binary tree will be called the tree associated to {0,1}*. The extension of this
construction to arbitrary alphabets V is of course trivial. Note that the length of a string w € V*
is the height of the corresponding node in the tree associated with V*, namely the length of the
path from the root to the node labeled with w. Furthermore, a word w is a prefix of another
word w’ iff w dominates w’ in the tree associated with V*. Thus, a code C : X — {0,1}*
is instantaneous iff there are no two xy,z2 € X such that C(z1) dominates C(z2) in the tree
associated with V*.

Theorem 4. KRAFT’S INEQUALITY. [I] Consider a discrete random variable X with finite range
X. IfC : X — V* is an instantaneous code for X over an alphabet V, then the following inequality

holds:
1 EC (x)
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[2] Conversely, given |X| integers l, with x € X such that the above inequality holds, namely:
Iy

> (57) =1
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then there is an instantaneous code C : X — V* such that Lc(x) = 1.

Proof. [1] For concreteness, consider the case V = {0,1}; the extension of the proof to the
arbitrary case is trivial. Let | = max{¢c(z)|xz € X'}. Consider the tree associated with V*, as
defined in the preceding Observation. For each node z, let D(z) be the set of nodes in the tree
which are descendants of x and have height [. Note that

|D(z)| = 2!~ (13)
Note furthermore that the following holds, given that the code C is instantaneous:
D()nD(')=0  for every z,2’ € X (14)

Hence:
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where: in the first step, I have noted that there are 2! nodes of height I and I have recalled that
each D(x) is by definition a set of nodes of height /; in the second step, I have used (14) and in
the third step I have sued (13). The claim follows by dividing both sides by 2!.

[2] Pick a node wy of height /; in the tree associated with {0, 1}*, let C'(z1) = wy and remove
all the descendants of wy from the tree; pick a node wy of height I3 in the tree associated with
{0,1}*, let C'(z2) = we and remove all the descendants of wy from the tree; and so on. In this
way, we build a prefix code with the assigned code lengths. O

6 Compression via Kraft’s Inequality

Theorem 5. Consider a discrete random variable X with finite range X. The minimum expected
length of an instantaneous code for X is H(p).

Proof. Assume that X = {1,, M}. By virtue of Kraft’s Inequality, the instantaneous code which
achieves the minimum expected length is the code whose codeword lengths ly,,l5s solve the
following constrained optimization problem:

L M
minimize: .7, pil;

subject to: E?il 27l <1,
l;>0fori=1,, M

We can solve this problem by means of the method of Lagrange multipliers. The corresponding

Lagrangian is as follows:
M M
ALA) = pili + A (Z PR 1) (15)
i=1 i=1

and its derivatives are as follows:
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Thus, the condition 24F* = 0 holds iff the following holds:

= S )
By imposing that the constrains are satisfied, I get the following:
M 1
1_22—' )\1112 Aln2 (18)

from which I derive that A = % By replacing this expression for A in (17), I conclude that
= 27" and thus:

1
li = —logp; = log — (19)
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Thus, the optimal code C,, has code lengths [; = log ﬁ and its expected length is:

opt szl = sz 10g — = ( ) (20)

namely, the entropy of X. O



