1 Asymptotic Equipartition Property

The following theorem is a consequence of the Weak Law of Large Numbers which will be crucial in what follows.

Theorem 1. ASYMPTOTIC EQUIPARTITION PROPERTY. Consider a sequence X_1, X_2, \ldots, X_n of i.i.d. random variables with finite range distributed accordingly to a probability mass function p; then:

$$-\frac{1}{n} \log p(X_1, \ldots, X_n) \xrightarrow{p} H(p)$$

in words: the random variable $-\frac{1}{n} \log p(X_1, \ldots, X_n)$ converges in probability to the entropy $H(p)$.

Proof. Consider the new random variables Y_1, Y_2, \ldots, Y_n defined by $Y_i = -\log p(X_i)$. Since the X_i are i.i.d., then the Y_i are i.i.d. too, given that functions of independent random variables are also independent random variables. The Weak Law of Large Numbers thus ensures that (2) holds.

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{p} \mathbb{E}_p[Y]$$

Note that:

$$-\frac{1}{n} \log p(X_1, \ldots, X_n) = -\frac{1}{n} \log \prod_{i=1}^{n} p(X_i) = -\frac{1}{n} \sum_{i=1}^{n} \log p(X_i) = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$H(p) = -\sum_{x \in \text{Im}(X)} p(x) \log p(x) = \mathbb{E}_p[Y]$$

Thus, claim (1) thus immediately follows by replacing (3) and (4) in (2). \qed

2 Typical sets

Definition 1. Consider a probability distribution $p(x)$ over a finite set X and arbitrary $\epsilon > 0$ and $n \in \mathbb{N}$; the set $A^n_\epsilon(p)$ defined as follows:

$$A^n_\epsilon(p) = \left\{ x = (x_1, \ldots, x_n) \in X^n \mid \frac{1}{2^n[H(p)+\epsilon]} \leq p(x_1, \ldots, x_n) \leq \frac{1}{2^n[H(p)-\epsilon]} \right\}$$

is called the typical set for p corresponding to ϵ and n. We will often write just A^n_ϵ instead of $A^n_\epsilon(p)$, when no confusion arises.

Theorem 2. The following properties hold:

1. $A^n_\epsilon(p) = \left\{ x \in X^n \mid -\frac{1}{n} \log p(x) - H(p) > \epsilon \right\}$.

2. $\mathbb{P}_p(A^n_\epsilon(p)) > 1 - \epsilon$, for n large enough.

3. $|A^n_\epsilon(p)| \leq 2^{n[H(p)+\epsilon]}$ for every n.

4. $|A^n_\epsilon(p)| \geq (1 - \epsilon)2^{n[H(p)-\epsilon]}$, for n large enough.
Proof. [1] The proof of the first claim of the theorem amounts to the following trivial chain of implications:

\[
\begin{align*}
x \in A^n(p) & \iff \frac{1}{2^n[H(p) + \epsilon]} \leq p(x_1, x_n) \leq \frac{1}{2^n[H(p) - \epsilon]} \\
& \iff -n[H(p) + \epsilon] \leq \log p(x) \leq -n[H(p) - \epsilon] \\
& \iff H(p) - \epsilon \leq -\frac{1}{n} \log p(x) \leq H(p) + \epsilon \\
& \iff \left| -\frac{1}{n} \log p(x) - H(p) \right| > \epsilon
\end{align*}
\]

where in the first step I have used the first claim of the theorem and in the second step I have used the AEP. By setting \(\delta = \epsilon \), we obtain the second claim of the theorem. [3] The proof of the third claim of the theorem amounts to the following chain of inequalities:

\[
1 = \sum_{x \in A^n} p(x)
\geq \sum_{x \in A^n(p)} p(x)
\geq \sum_{x \in A^n(p)} \frac{1}{2^n[H(p) + \epsilon]}
= \left| A^n(p) \right| \frac{1}{2^n[H(p) + \epsilon]}
\]

where in the third step I have used the first claim of the theorem, namely the fact that \(p(x) \geq \frac{1}{2^n[H(p) + \epsilon]} \) for every \(x \in A^n(p) \). [4] The proof of the fourth claim of the theorem amounts to the following chain of inequalities:

\[
1 - \epsilon \leq \mathbf{P}_p(A^n(p)) \quad \text{for } n \text{ large enough}
\leq \sum_{x \in A^n(p)} \frac{1}{2^n[H(p) - \epsilon]}
= \left| A^n(p) \right| \frac{1}{2^n[H(p) - \epsilon]}
\]

where in the first step I have used the second claim of the theorem and in the second step I have used the first claim, namely the fact that \(p(x) \leq \frac{1}{2^n[H(p) - \epsilon]} \) for every \(x \in A^n(p) \). \(\square \)

3 Codes

Let \(\mathcal{V} \) be a finite set, whose elements are called symbols; a word on \(\mathcal{V} \) is any finite concatenation of symbols of \(\mathcal{V} \); the set of all words is denoted by \(\mathcal{V}^* \); the number of symbols concatenated in a word \(\omega \in \mathcal{V}^* \) is called the length of \(\omega \) and denoted by \(\ell(\omega) \); for any two words \(\omega_1, \omega_2 \in \mathcal{V}^* \), we say that \(\omega_2 \) is a prefix of \(\omega_1 \) iff there exists \(\omega_3 \in \mathcal{V}^* \) such that \(\omega_1 = \omega_2 \omega_3 \), i.e. \(\omega_1 \) is the concatenation of \(\omega_2 \) followed by \(\omega_3 \); we will usually assume \(\mathcal{V} = \{0, 1\} \). With this little background, we can now state the following crucial definition.

Definition 2. Consider a discrete random variable \(X \) with finite range \(\mathcal{X} \) and probability distribution \(p \). A code for \(X \) by means of an alphabet \(\mathcal{V} \) is a function \(C \) of the following form:

\[
C : \mathcal{X} \rightarrow \mathcal{V}^*
\]

(6)
For each \(x \in \mathcal{X} \), the string \(C(x) \) is called the codeword corresponding to \(x \) with respect to the code \(C \) and the length of the word \(C(x) \) is denoted by \(\ell(C(x)) \) (or often just by \(\ell(x) \), when no confusion arises). A code is called non-singular if it is an injective function, namely the following holds for every \(x, x' \in \mathcal{X} \): if \(xx' \), then \(C(x)C(x') \). A code is called binary if \(\mathcal{V} = \{0, 1\} \); we will usually consider binary codes. The quantity \(\ell(C) \) defined as follows:

\[
\ell(C) \triangleq \mathbb{E}_p[\ell_C(X)] = \sum_{x \in \mathcal{X}} p(x)\ell_C(x)
\]

is called the expected length of the code \(C \).

4 Compression via typical sets

Theorem 3. Consider a sequence of i.i.d. random variables \(X_1, X_n \), with common finite range \(\mathcal{X} \). For any \(\epsilon > 0 \) and any \(n \in \mathbb{N} \) large enough, there exists a non-singular binary code \(C_\epsilon : \mathcal{X}^n \to \{0, 1\}^* \) such that its expected length is:

\[
L(C_\epsilon) = n(H(p) + \epsilon')
\]

where \(\epsilon' \) depends on \(\epsilon, n \) and the cardinality of \(\mathcal{X} \).

Proof. Let \(p \) be the common distribution of \(X_1, X_n \). Let \(A_\epsilon^n(p) \) be the typical set for \(p \) corresponding to \(\epsilon \) and \(n \), henceforth denoted just by \(A_\epsilon^n \). Consider an arbitrary bijection \(\alpha : A_\epsilon^n \to \{1, \ldots, |A_\epsilon^n|\} \), which assigns to each element \(x \in A_\epsilon^n \) an integer \(\alpha(x) \) between 1 and the cardinality of the set \(A_\epsilon^n \). Consider another arbitrary bijection \(\beta : \mathcal{X}^n \to \{1, \ldots, |\mathcal{X}|^n\} \) which assigns to each element of \(x \in \mathcal{X}^n \) an integer \(\beta(x) \) between 1 and the cardinality of the set \(\mathcal{X}^n \).

For each \(x \in \mathcal{X}^n \), define \(C_\epsilon(x) \) as follows: if \(x \in A_\epsilon^n \), then \(C_\epsilon(x) \leftarrow 0\omega \) (the concatenation of 0 with \(\omega \)) where \(\omega \) is the binary representation of the integer \(\alpha(x) \); if \(x \notin A_\epsilon^n \), then \(C_\epsilon(x) = 1\omega \) (the concatenation of 1 with \(\omega \)) where \(\omega \) is the binary representation of the integer \(\beta(x) \). The code \(C_\epsilon \) is trivially non-singular. Note that for every \(x \notin A_\epsilon^n \), the length \(\ell_{C_\epsilon}(x) \) can be bound as follows, where in the fourth step I have recalled that \(\omega \) is the binary representation of the integer \(\beta(x) \) which is smaller than \(|\mathcal{X}|^n \).

\[
\ell_{C_\epsilon}(x) = \ell(C_\epsilon(x)) \\
= \ell(0\omega) \\
= 1 + \ell(\omega) \\
\leq 1 + \lceil n \log |\mathcal{X}| \rceil \\
\leq 2 + n \log |\mathcal{X}|
\]

Furthermore, for every \(x \in A_\epsilon^n \), the length \(\ell_{C_\epsilon}(x) \) can be bound as follows, where in the fourth step I have recalled that \(\omega \) is the binary representation of the integer \(\alpha(x) \) which is smaller than the cardinality of \(A_\epsilon^n \) which is in turn smaller than \(2^{n(H(p)+\epsilon)} \), as proved above.

\[
\ell_{C_\epsilon}(x) = \ell(C_\epsilon(x)) \\
= \ell(1\omega) \\
= 1 + \ell(\omega) \\
\leq 1 + \lceil n(H(p) + \epsilon) \rceil \\
\leq 2 + n(H(p) + \epsilon)
\]
I can now bound the expected length of the code C_e as follows:

$$L(C_e) = \sum_{x \in \mathcal{X}^n} p(x) \ell_{C_e}(x)$$

$$= \sum_{x \in A^n} p(x) \ell_{C_e}(x) + \sum_{x \not\in A^n} p(x) \ell_{C_e}(x)$$

$$\leq (a) \sum_{x \in A^n} p(x) \left(2 + n(H(p) + \epsilon)\right) + \sum_{x \not\in A^n} p(x) \left(2 + n \log |X|\right)$$

$$= \mathbf{P}(A^n) \left(2 + n(H(p) + \epsilon)\right) + \mathbf{P}((A^n)^c) \left(2 + n \log |X|\right)$$

$$\leq (b) \left(2 + n(H(p) + \epsilon)\right) + \epsilon \left(2 + n \log |X|\right)$$

$$= n(H(p) + \epsilon) + \epsilon'$$

where in step (a) I have used both (9) and (10) and in step (b) I have used the trivial fact that $\mathbf{P}(A^n) \leq 1$ together with the fact that $\mathbf{P}((A^n)^c) \leq \epsilon$ for n large enough, given that $\mathbf{P}(A^n) \geq 1 - \epsilon$, as proven above.

\[\square\]

5 Instantaneous codes and Kraft Inequality

Definition 3. Let C be a code for a random variable X with range \mathcal{X} by means of an alphabet \mathcal{V}. The **extension** of C is the function C^* defined as follows:

$$C^*: \quad \mathcal{X}^* \to \mathcal{V}^*$$

$$x_1 x_n \mapsto C^*(x_1 x_n) = C(x_1) C(x_n)$$

namely the function which maps any finite-length string $x_1 x_n$ of symbols of \mathcal{X} into the string $C(x_1) C(x_n)$ obtained by concatenating in the same order the corresponding codewords. A code C is called **uniquely decidable** if its extension C^* is an injective function. The code C is called a **prefix** or **instantaneous** or **self-punctuating** code if there are no two $x_1, x_2 \in \mathcal{X}$ such that $C(x_1)$ is a prefix of $C(x_2)$.

Observation 1. For concreteness, let $\mathcal{V} = \{0, 1\}$ and consider the binary tree with infinite height defined as follows:

1. each node has exactly 2 children;
2. the root is labeled with the empty string ϵ;
3. each non-root node is labeled with a word $\omega \in \mathcal{V}^*$;
4. if a node is labeled ω, then its left child is labeled $\omega 0$ (namely, the concatenation of ω with 0) and its right child is labeled $\omega 1$ (namely, the concatenation of ω with 1).

This infinite binary tree will be called the tree **associated** to $\{0, 1\}^*$. The extension of this construction to arbitrary alphabets \mathcal{V} is of course trivial. Note that the length of a string $\omega \in \mathcal{V}^*$ is the height of the corresponding node in the tree associated with \mathcal{V}^*, namely the length of the path from the root to the node labeled with ω. Furthermore, a word ω is a prefix of another word ω' if ω dominates ω' in the tree associated with \mathcal{V}^*. Thus, a code $C: \mathcal{X} \to \{0, 1\}^*$ is instantaneous if there are no two $x_1, x_2 \in \mathcal{X}$ such that $C(x_1)$ dominates $C(x_2)$ in the tree associated with \mathcal{V}^*.

Theorem 4. Kraft’s Inequality. [1] Consider a discrete random variable X with finite range \mathcal{X}. If $C: \mathcal{X} \to \mathcal{V}^*$ is an instantaneous code for X over an alphabet \mathcal{V}, then the following inequality holds:

$$\sum_{x \in \mathcal{X}} \left(\frac{1}{|\mathcal{V}|}\right)^{\ell_{C}(x)} \leq 1$$

(12)
Conversely, given $|X|$ integers l_x with $x \in X$ such that the above inequality holds, namely:

$$\sum_{x \in X} \left(\frac{1}{|V|}\right)^{l_x} \leq 1$$

then there is an instantaneous code $C : X \to V^*$ such that $\ell_C(x) = l_x$.

Proof. [1] For concreteness, consider the case $V = \{0, 1\}$; the extension of the proof to the arbitrary case is trivial. Let $l = \max\{\ell_C(x) | x \in X\}$. Consider the tree associated with V^*, as defined in the preceding Observation. For each node x, let $D(x)$ be the set of nodes in the tree which are descendants of x and have height l. Note that

$$|D(x)| = 2^{l - \ell_C(x)} \quad (13)$$

Note furthermore that the following holds, given that the code C is instantaneous:

$$D(x) \cap D(x') = \emptyset \quad \text{for every } x, x' \in X \quad (14)$$

Hence:

$$2^l \geq \left| \bigcup_{x \in X} D(x) \right| = \sum_{x \in X} |D(x)| = \sum_{x \in X} 2^{l - \ell_C(x)}$$

where: in the first step, I have noted that there are 2^l nodes of height l and I have recalled that each $D(x)$ is by definition a set of nodes of height l; in the second step, I have used (14) and in the third step I have sued (13). The claim follows by dividing both sides by 2^l.

[2] Pick a node ω_1 of height l_1 in the tree associated with $\{0, 1\}^*$, let $C(x_1) = \omega_1$ and remove all the descendants of ω_1 from the tree; pick a node ω_2 of height l_2 in the tree associated with $\{0, 1\}^*$, let $C(x_2) = \omega_2$ and remove all the descendants of ω_2 from the tree; and so on. In this way, we build a prefix code with the assigned code lengths. □

6 Compression via Kraft’s Inequality

Theorem 5. Consider a discrete random variable X with finite range X. The minimum expected length of an instantaneous code for X is $H(p)$.

Proof. Assume that $X = \{1, \ldots, M\}$. By virtue of Kraft’s Inequality, the instantaneous code which achieves the minimum expected length is the code whose codeword lengths l_1, \ldots, l_M solve the following constrained optimization problem:

- minimize: $\sum_{i=1}^{M} p_i l_i$
- subject to: $\sum_{i=1}^{M} 2^{-l_i} \leq 1$
- $l_i \geq 0$ for $i = 1, \ldots, M$

We can solve this problem by means of the method of Lagrange multipliers. The corresponding Lagrangian is as follows:

$$\Lambda(l, \lambda) = \sum_{i=1}^{M} p_i l_i + \lambda \left(\sum_{i=1}^{M} 2^{-l_i} - 1 \right) \quad (15)$$

and its derivatives are as follows:

$$\frac{\partial \Lambda(l, \lambda)}{\partial l_i} = p_i - \lambda 2^{-l_i} \ln 2 \quad (16)$$
Thus, the condition \(\frac{\partial \Lambda(l, \lambda)}{\partial l_i} = 0 \) holds iff the following holds:

\[
2^{-l_i} = \frac{p_i}{\lambda \ln 2}
\] (17)

By imposing that the constrains are satisfied, I get the following:

\[
1 = \sum_{i=1}^{M} 2^{-l_i} = \sum_{i=1}^{M} \frac{p_i}{\lambda \ln 2} = \frac{1}{\lambda \ln 2}
\] (18)

from which I derive that \(\lambda = \frac{1}{\ln 2} \). By replacing this expression for \(\lambda \) in (17), I conclude that \(p_i = 2^{-l_i} \) and thus:

\[
l_i = -\log p_i = \log \frac{1}{p_i}
\] (19)

Thus, the optimal code \(C_{opt} \) has code lengths \(l_i = \log \frac{1}{p_i} \) and its expected length is:

\[
\ell(C_{opt}) = \sum_{i=1}^{M} p_i l_i = \sum_{i=1}^{M} p_i \log \frac{1}{p_i} = H(p)
\] (20)

namely, the entropy of \(X \). \(\square \)