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In this lecture, we begin to study the problem of learning when the samples available are depen-
dent. In particular, we focus on the case of linear regression.

1 Quasi-Stationary Signals

Definition 1. A discrete-time signal {Xt} is quasi-stationary if E[Xt] is bounded for every tN

and the following limit is well-defined and finite for every τ ∈ N:

RX(τ) = lim
N→∞

1

N

N
∑

t=1

E[XtXt+τ ].

The set of quasi-stationary signals includes both stationary signals as well as several deterministic
ones such as step functions and sinusoids.

Definition 2. A quasi-stationary signal {Xt} has spectral density

ΦX(ω) =

∞
∑

τ=−∞

RX(τ)e−iωτ .

To simplify notation we also define the following piece of notation E. For any signal {Xt} where
the limit is well-defined and finite,

E[Xt] = lim
N→∞

1

N

N
∑

t=1

E[Xt]. (1)

2 Linear Filtering

A linear filter is characterized by a transfer function H , which is a function of the frequency ω

of the input, as represented in Figure 1.

Figure 1: A Linear Filter

The spectral density of the output is given by

ΦY (ω) = |H(eiω)|2ΦX(ω).

A white noise signal {Xt} is characterized by

ΦX(ω) = 1, for all frequencies ω.

It is a quasi-stationary signal with

RX(τ) = δ(τ), for every τ.
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For any input {Xt}, the crosscorrelation is given by

ΦXY (ω) = H(eiω)ΦX(ω) and

RXY (τ) = h ∗ RX(τ),

where h represents the inverse Fourier Transform of the transfer function H and ∗ represents a
convolution.

3 Problem Set-Up

Let Z` represent the observation:

Z` = {(x1, y1), ..., (x`, y`)}.

Assume that the system is linear with parameters n?
a and n?

b such that

yt = −

n?

a
∑

i=1

aiyt−i +

n?

b
∑

i=0

bixt−i + et,

where {et} is white gaussian noise with variance λ2. Assume as well that Xt and Yt are jointly
quasi-stationary. Then, the following quantities are well-defined for every τ : E[XtXt+τ ],E[YtYt+τ ]
and E[YtXt+τ ], according to Eq. (1).

We also have a class of models to search over. Let na and nb be a pair of numbers (not necessarily
equal to n?

a and n?
b). The class of models that we search over is parameterized by

α = (a1, a2, ..., ana
, b0, b1, ..., bnb

)

and the models are of the form

yt = −

na
∑

i=1

aiyt−i +

nb
∑

i=0

bixt−i + et,

where {et} is zero-mean white noise with variance λ2. We don’t allow for the search of α over the
entire space R

na+nb+1, but we require that α ∈ Λ, where Λ is some compact subset of R
na+nb+1.

Finally, we also need to specify a cost function to determine how well a model fits the real
underlying system. If we let for each α ∈ Λ,

ŷt = E[yt|y1, ..., yt−1, x1, ..., xt, α] = −

na
∑

i=1

aiyt−i +

nb
∑

i=0

bixt−i,

then the latter represents the best prediction of yt using all known information up to time t,
given the model specified by α. The loss we associate with this prediction is

|yt − ŷt|
2.

This choice places us in the Minimum Prediction Error (MPE) paradigm, where the empirical
risk becomes

R`
emp(α) =

1

`

∑̀

t=1

|yt − ŷt|
2.

The selected model will be
α` = argmin

α∈Λ

R`
emp(α).

Meanwhile, the true risk of a model parameterized by α is

R(α) = E
[

|yt − ŷt|
2
]

.
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4 Convergence Results

Claim. R`
emp(α) → R(α) uniformly on Λ almost surely.

Proof. Pointwise convergence follows immediately. This is a proof that the convergence is uni-
form. Let ŷt = φ(t)′α, where

φ(t) = (−y(t − 1), ...,−y(t − na), x(t), ..., x(t − nb)).

Then,
|yt − ŷt|

2 = y2
t − 2ytφ(t)′α + α′φ(t)φ(t)′α.

By quasi-stationarity,

lim
t→∞

|yt − ŷt|
2 = E[y2

t ] − 2E[ytφ(t)′]α + α′E[φ(t)φ(t)′]α.

Because all these terms are convergent, these functions are quadratic in α and α lies in a compact
set, this family of functions is equicontinuous. An equicontinuous family of functions on a compact
set that converges pointwise must also converge uniformly.

Corollary. α` = argminα∈Λ R`
emp(α) → argminα∈Λ R(α).

Claim. The optimal α` satisfies

[

1

`

∑̀

t=1

φ(t)φ(t)′

]

α` =
∑̀

t=1

φ(t)yt.

This results follows immediately from the fact that determining α` is nothing more than solving
a least squares problem. In particular, if the matrix is invertible,

α` =

[

1

`

∑̀

t=1

φ(t)φ(t)′

]−1
∑̀

t=1

φ(t)yt.

5 Persistence of Excitation

Definition 3. We say that a quasi-stationary {Xt} is p.e. of order n if

RX =





RX(0) ... RX(n − 1)
... ... ...

RX(n − 1) ... RX(0)



 is invertible.

Note that a step input is p.e. of order 1 and a sinusoid is p.e. of order 2.

Claim. If ai = 0 for all i, then E[φ(t)φ(t)′] is invertible if {Xt} is p.e. of order nb + 1.

In the case of ai = 0 for all i, the matrices are essentially identical and the result follows trivially.

Claim. E[φ(t)φ(t)′] is invertible if {Xt} is p.e. of order na + nb + 1.
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