Massachusetts Institute of Technology 6.435 Theory of Learning and System Identification (Spring 2007)

Prof. Dahleh, Prof. Mitter Scribed by Ilan Lobel

Lecture 13 Th 3/22

In this lecture, we begin to study the problem of learning when the samples available are dependent. In particular, we focus on the case of linear regression.

1 Quasi-Stationary Signals

Definition 1. A discrete-time signal $\{X_t\}$ is quasi-stationary if $\mathbf{E}[X_t]$ is bounded for every $t\mathbb{N}$ and the following limit is well-defined and finite for every $\tau \in \mathbb{N}$:

$$R_X(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \mathbf{E}[X_t X_{t+\tau}].$$

The set of quasi-stationary signals includes both stationary signals as well as several deterministic ones such as step functions and sinusoids.

Definition 2. A quasi-stationary signal $\{X_t\}$ has spectral density

$$\Phi_X(\omega) = \sum_{\tau = -\infty}^{\infty} R_X(\tau) e^{-i\omega\tau}.$$

To simplify notation we also define the following piece of notation $\overline{\mathbf{E}}$. For any signal $\{X_t\}$ where the limit is well-defined and finite,

$$\overline{\mathbf{E}}[X_t] = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \mathbf{E}[X_t]. \tag{1}$$

2 Linear Filtering

A linear filter is characterized by a transfer function H, which is a function of the frequency ω of the input, as represented in Figure 1.

Figure 1: A Linear Filter

The spectral density of the output is given by

$$\Phi_Y(\omega) = |H(e^{i\omega})|^2 \Phi_X(\omega).$$

A white noise signal $\{X_t\}$ is characterized by

$$\Phi_X(\omega) = 1$$
, for all frequencies ω .

It is a quasi-stationary signal with

$$R_X(\tau) = \delta(\tau)$$
, for every τ .

For any input $\{X_t\}$, the crosscorrelation is given by

$$\Phi_{XY}(\omega) = H(e^{i\omega})\Phi_X(\omega)$$
 and

$$R_{XY}(\tau) = h * R_X(\tau),$$

where h represents the inverse Fourier Transform of the transfer function H and * represents a convolution.

3 Problem Set-Up

Let Z^{ℓ} represent the observation:

$$Z^{\ell} = \{(x_1, y_1), ..., (x_{\ell}, y_{\ell})\}.$$

Assume that the system is linear with parameters n_a^{\star} and n_b^{\star} such that

$$y_t = -\sum_{i=1}^{n_a^*} a_i y_{t-i} + \sum_{i=0}^{n_b^*} b_i x_{t-i} + e_t,$$

where $\{e_t\}$ is white gaussian noise with variance λ^2 . Assume as well that X_t and Y_t are jointly quasi-stationary. Then, the following quantities are well-defined for every τ : $\overline{\mathbf{E}}[X_tX_{t+\tau}]$, $\overline{\mathbf{E}}[Y_tY_{t+\tau}]$ and $\overline{\mathbf{E}}[Y_tX_{t+\tau}]$, according to Eq. (1).

We also have a class of models to search over. Let n_a and n_b be a pair of numbers (not necessarily equal to n_a^* and n_b^*). The class of models that we search over is parameterized by

$$\alpha = (a_1, a_2, ..., a_{n_a}, b_0, b_1, ..., b_{n_b})$$

and the models are of the form

$$y_t = -\sum_{i=1}^{n_a} a_i y_{t-i} + \sum_{i=0}^{n_b} b_i x_{t-i} + e_t,$$

where $\{e_t\}$ is zero-mean white noise with variance λ^2 . We don't allow for the search of α over the entire space $\mathbb{R}^{n_a+n_b+1}$, but we require that $\alpha \in \Lambda$, where Λ is some compact subset of $\mathbb{R}^{n_a+n_b+1}$.

Finally, we also need to specify a cost function to determine how well a model fits the real underlying system. If we let for each $\alpha \in \Lambda$,

$$\hat{y}_t = \mathbf{E}[y_t | y_1, ..., y_{t-1}, x_1, ..., x_t, \alpha] = -\sum_{i=1}^{n_a} a_i y_{t-i} + \sum_{i=0}^{n_b} b_i x_{t-i},$$

then the latter represents the best prediction of y_t using all known information up to time t, given the model specified by α . The loss we associate with this prediction is

$$|y_t - \hat{y}_t|^2$$
.

This choice places us in the Minimum Prediction Error (MPE) paradigm, where the empirical risk becomes

$$R_{emp}^{\ell}(\alpha) = \frac{1}{\ell} \sum_{t=1}^{\ell} |y_t - \hat{y}_t|^2.$$

The selected model will be

$$\alpha_{\ell} = \operatorname*{argmin}_{\alpha \in \Lambda} R_{emp}^{\ell}(\alpha).$$

Meanwhile, the true risk of a model parameterized by α is

$$R(\alpha) = \overline{\mathbf{E}} \left[|y_t - \hat{y}_t|^2 \right].$$

4 Convergence Results

Claim. $R_{emn}^{\ell}(\alpha) \to R(\alpha)$ uniformly on Λ almost surely.

Proof. Pointwise convergence follows immediately. This is a proof that the convergence is uniform. Let $\hat{y}_t = \phi(t)'\alpha$, where

$$\phi(t) = (-y(t-1), ..., -y(t-n_a), x(t), ..., x(t-n_b)).$$

Then,

$$|y_t - \hat{y}_t|^2 = y_t^2 - 2y_t \phi(t)' \alpha + \alpha' \phi(t) \phi(t)' \alpha.$$

By quasi-stationarity,

$$\lim_{t \to \infty} |y_t - \hat{y}_t|^2 = \overline{\mathbf{E}}[y_t^2] - 2\overline{\mathbf{E}}[y_t \phi(t)'] \alpha + \alpha' \overline{\mathbf{E}}[\phi(t)\phi(t)'] \alpha.$$

Because all these terms are convergent, these functions are quadratic in α and α lies in a compact set, this family of functions is equicontinuous. An equicontinuous family of functions on a compact set that converges pointwise must also converge uniformly.

Corollary. $\alpha_{\ell} = \operatorname{argmin}_{\alpha \in \Lambda} R_{emp}^{\ell}(\alpha) \to \operatorname{argmin}_{\alpha \in \Lambda} R(\alpha)$.

Claim. The optimal α_{ℓ} satisfies

$$\left[\frac{1}{\ell} \sum_{t=1}^{\ell} \phi(t)\phi(t)'\right] \alpha_{\ell} = \sum_{t=1}^{\ell} \phi(t)y_{t}.$$

This results follows immediately from the fact that determining α_{ℓ} is nothing more than solving a least squares problem. In particular, if the matrix is invertible,

$$\alpha_{\ell} = \left[\frac{1}{\ell} \sum_{t=1}^{\ell} \phi(t) \phi(t)' \right]^{-1} \sum_{t=1}^{\ell} \phi(t) y_t.$$

5 Persistence of Excitation

Definition 3. We say that a quasi-stationary $\{X_t\}$ is p.e. of order n if

$$\overline{R}_X = \begin{pmatrix} R_X(0) & \dots & R_X(n-1) \\ \dots & \dots & \dots \\ R_X(n-1) & \dots & R_X(0) \end{pmatrix} \text{ is invertible.}$$

Note that a step input is p.e. of order 1 and a sinusoid is p.e. of order 2.

Claim. If $a_i = 0$ for all i, then $\overline{\mathbf{E}}[\phi(t)\phi(t)']$ is invertible if $\{X_t\}$ is p.e. of order $n_b + 1$.

In the case of $a_i = 0$ for all i, the matrices are essentially identical and the result follows trivially.

Claim. $\overline{\mathbf{E}}[\phi(t)\phi(t)']$ is invertible if $\{X_t\}$ is p.e. of order $n_a + n_b + 1$.