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In this lecture, we begin to study the problem of learning when the samples available are depen-
dent. In particular, we focus on the case of linear regression.
1 Quasi-Stationary Signals

Definition 1. A discrete-time signal {X;} is quasi-stationary if E[X}] is bounded for every tN
and the following limit is well-defined and finite for every 7 € N:
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The set of quasi-stationary signals includes both stationary signals as well as several deterministic
ones such as step functions and sinusoids.
Definition 2. A quasi-stationary signal {X;} has spectral density
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To simplify notation we also define the following piece of notation E. For any signal {X;} where
the limit is well-defined and finite,

E[X;] = lim —ZEXt (1)
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2 Linear Filtering

A linear filter is characterized by a transfer function H, which is a function of the frequency w
of the input, as represented in Figure 1.
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Figure 1: A Linear Filter

The spectral density of the output is given by
Py (w) = [H(e™)Ox (w).
A white noise signal {X;} is characterized by
O x(w) =1, for all frequencies w.
It is a quasi-stationary signal with

Rx (1) = 6(r), for every .



For any input {X:}, the crosscorrelation is given by
Pyy(w) = H(e™)®x(w) and
ny(T) = h* Rx(T),

where h represents the inverse Fourier Transform of the transfer function H and * represents a
convolution.

3 Problem Set-Up

Let Z* represent the observation:

Z" = {(z1,91), -, (xe, ye) }-

Assume that the system is linear with parameters n} and nj such that

ng ny
Y= — E a;Yp—i + E bizi_; + ey,
=1 =0

where {e;} is white gaussian noise with variance A\%. Assume as well that X and Y, are jointly
quasi-stationary. Then, the following quantities are well-defined for every 7: EX: X, ElY; Y1,
and E[Y; X, ,], according to Eq. (1).

We also have a class of models to search over. Let n, and n;, be a pair of numbers (not necessarily
equal to n; and n}). The class of models that we search over is parameterized by

o = (al,ag, ...,ana,bo,bl, ...,bnb)

and the models are of the form
Ng ngy
Y= — Z a;yi—; + Z bixi_; + ey,
i=1 i=0

where {e;} is zero-mean white noise with variance A>. We don’t allow for the search of « over the
entire space R™+™+1 hut we require that o € A, where A is some compact subset of R F7o+1,

Finally, we also need to specify a cost function to determine how well a model fits the real
underlying system. If we let for each a € A,
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then the latter represents the best prediction of y; using all known information up to time ¢,
given the model specified by a. The loss we associate with this prediction is

lye — .

This choice places us in the Minimum Prediction Error (MPE) paradigm, where the empirical

risk becomes ,
Rﬁmp(a) = Z'yt _yt|2'
t=1
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The selected model will be
oy = argmin Rﬁmp(oz).
acA

Meanwhile, the true risk of a model parameterized by « is

R(a) = E [lys — :/°] -



4 Convergence Results

Claim. R, (a)— R(c) uniformly on A almost surely.

Proof. Pointwise convergence follows immediately. This is a proof that the convergence is uni-
form. Let g, = ¢(t)'a, where

o(t) = (—ylt—1),...,—y(t — na), z(t), ..., x(t — np)).

Then,
e — e = yi = 20e0(t) o+ & p(t)B(t) cx.

By quasi-stationarity,
Jim [y, — uf* = By?] - 2Blyo(t) o + Bl (1)6(t) o

Because all these terms are convergent, these functions are quadratic in o and « lies in a compact
set, this family of functions is equicontinuous. An equicontinuous family of functions on a compact

set that converges pointwise must also converge uniformly. O
Corollary. oy = argmin, ¢, Rﬁmp(a) — argmin ¢, R(a).

Claim. The optimal oy satisfies

[% Z¢<t>¢<t>’] 0 =3 ot

This results follows immediately from the fact that determining ay is nothing more than solving
a least squares problem. In particular, if the matrix is invertible,

4
= E > ¢(t>¢<t>’] > bty
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5 Persistence of Excitation

Definition 3. We say that a quasi-stationary {X;} is p.e. of order n if

o Rx(()) Rx(n— 1)
Rx = is invertible.
Rx(n— 1) Rx(O)

Note that a step input is p.e. of order 1 and a sinusoid is p.e. of order 2.
Claim. If a; = 0 for all i, then E[¢(t)p(t)'] is invertible if {X;} is p.e. of order ny + 1.
In the case of a; = 0 for all ¢, the matrices are essentially identical and the result follows trivially.

Claim. E[¢(t)¢(t)'] is invertible if {X;} is p.e. of order ng +ny + 1.



