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1 Review

In most of this lecture (and the previous one), we operate under the assumption that we have a
set of data points (xi, yi),i ∈ {1, 2, ...`}, that were produced by the following system:

yt =

n?

a∑

i=1

−a?
i yt−i +

n?

b∑

j=0

b?
jxt−j + wt (1)

Where yt = 0 and xt = 0 if t ≤ 0, and wt is i.i.d with var(wt) = λ2. We hypothesize a model
that has the form:

yt =

na∑

i=1

−aiyt−i +

nb∑

j=0

bjxt−j

with specific na and nb, and try to minimize the prediction error (empirical risk), defined as:

R`
emp(a1, a2, ..., ana

, b0, b1, ..., bnb
) =

1

`

∑̀

t=1

|yt − ŷt|2

A useful alternative way of writing the model is as follows:

yt = φ′
tα

φt = [−yt−1,−yt−2, ...,−yt−na
, xt, xt−1, ..., xt−nb

]′

α = [a1, a2, ..., ana
, b0, b1, ..., bnb

]

R`
emp(α) =

1

`

∑̀

t=1

|yt − φ′
tα|2

We assume that the input signal is quasi-stationary, that is, {xt} satisfies:

E[xtxt−τ ] = lim
N→∞

1

N

N∑

k=1

E[xt+kxt+k−τ ]

= Rx(τ)

In the previous lecture, we used the assumption that α ∈ Λ, which is compact, to prove that:

lim
`→∞

R`
emp(α)

uniformly, w.p.1−−−−−−−−−−−→ E[xtxt−τ ]

= R(α) (The ”true” risk)

Under this setting, we have a result that is similar to the case where the data was produced
as i.i.d. samples, but with some caveats, such as no results similar to the VC dimension. Also, we
are working within a very restricted setting, that of linear regression. Some extensions exist for
nonlinear settings, such as the case of pre-processing or post-processing by Lipschitz continuous
functions.
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1.1 The Estimator

Last time, we also wrote the expression for the estimate:

α̂l = (
1

`

∑̀

t=1

φtφ
′
t)

−1(
1

`

∑̀

t=1

φtyt)

This expression assumes that the inverse exists, and its existence is guaranteed by the per-
sistence of excitation of the input xt. If we define

ξ′t = (xt, xt−1, ..., xt−n),

we say that xt is persistently exciting (p.e.) of order n if

Eξ′tξt > 0

Intuitively, if we are trying to generate an input to test/learn a linear system with a certain
number of degrees of freedom, then the input needs to have enough degrees of freedom.

2 P.E. Sufficient condition

Claim.

1

`

∑̀

t=1

φtφ
′
t

is invertible for large enough ` if xt is persistently exciting of order na + nb + 1.

Notice that this is a sufficient condition. We can get away with less, considering how the input
is generated, taking into account w’s excitation, the problem of pole-zero cancellation (where
dimensionality is lost) etc... (ref. Ljung’s book). Basically, there is a notion of identifiability of
the system.

Corollary. (Condition for p.e.): xt is p.e. of order n if ΦX(w) 6= 0 for at least n frequencies.

Examples:

White noise (flat spectrum)/ Approximation: pseudo-binary input, deteministic, periodic
signals with similar spectral properties./n Sinusoids.

Because we allowed mismatch between na,b and n?
a,b, R(α) is not zero. We do converge

nonetheless. Now we will do a quantitative comparison when there is no mismatch.

3 Asymptotic Properties of x̂l

Here we assume that na = n?
a and nb = n?

b . Notice that yt = φ′
tα now. The estimator can be

written as:

α̂l = (
1

`

∑̀

t=1

φtφ
′
t)

−1(
1

`

∑̀

t=1

φt[φ
′
tα0 + wt])

= α0 + (
1

`

∑̀

t=1

φtφ
′
t

︸ ︷︷ ︸

)−1(
1√
`

∑̀

t=1

φtwt

︸ ︷︷ ︸

)
1√
`

I II

I : From quasi-stationarity, we know that:

1

`

∑̀

t=1

φtφ
′
t → Eφtφ

′
t = P

II : This term converges in distribution to a zero-mean normal random variable with covari-
ance P . In the general case, this requires an elaborate proof (c.f. Ljung, chapter 9). However,
for the case where na = 0, on can see that:
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• Each element in the sum has zero mean.

• Due to finite regression, φtwt values distant enough are independent. We can split the sum
into nb + 1 sums.

• Now, 1√
`

∑
vi, with independent vi’s, converges to a normal distribution, by the central

limit theorem. These can be combined to yield a special case of the general result.

Thus (α̂l − α0)
√

` ∼ P−1Z, where Z ∼ N (0, Q). By computation,

lim
`→∞

(
1√
`

∑̀

t=1

φtwt)
2 → λ2P

And finally,
(α̂l − α0)

√
` ∼ N (0, λ2P−1)

Which gives us a convergence rate of 1

`
in variance, and gives us design guidelines. For

example, to make P−1 as small as possible, we should make the smallest singular value of P as
large as possible.1

4 State Space Models

The next step is to look for other types of dependencies. A general setting is that of state
space representations, as used in linear system theory. hilosophically, a state is a canonical
representation of memory. As we weill see, this notion forms a natural extension from the class
of dependencies that we have seen to that of Hidden Markov Models (HMM’s).

A state space description of a system is as follows:

xt+1 = f(xt, ut, wt)

yt = g(xt, ut, wt)

xt ∈ X, X = Rn or X = {1, 2, ..., n}
yt ∈ Y, Y = Rm or Y = {1, 2, ..., m}
ut ∈ U, U = Rp or U = {1, 2, ..., p}

Assume wt and vt are i.i.d., and vt ⊥ wt. Note the following:

• This representation can either be perceived as a direct dynamic description, or as a prob-
abilistic description that gives Markovianity.

• Auto Regressive with External input (ARX) models (models like in equation (1) can be
written as s.s. models.)

• HMM’s are probabilistic state space systems. There, the system is not driven, i.e. ut = 0.
We will elaborate on this next time.

1This completes a scan over Ljung’s book. We can make models more complicated, but these are the basic
ideas. Reference: OCW website of old 6.435 for examples/details.

3


