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Last lecture, we began to describe a model which incorporates sample dependence called the
Hidden Markov Model. The model assumes the sequence to be analyzed Y* = (Y1, ...,Y;) has a
corresponding sequence of random variables X* = (X1,...X/) such that each X; takes values in
a finite set. In addition Y* and X* have the following properties:

P(Xp11| X5 YY) = P(Xp4a|Xy)
P(Y|X" YY) = P(Yi]Xy)

Let P(X;+1 = j|X: = i) be denoted a;; and let P(Y; = v|X; = i) be denoted b;(v). Hence,
we have two sets of parameters. The random variable X* can be thought of as a typical Markov
Process, and the random variable Y can be thought of as being derived in some stochastic way
from this process.

An alternate description of a Hidden Markov Model is to denote P(Y; = v, X; = j|Xi—1 = 1)
as [M(v)];j so that P(Y; = v, X;|X;_1) = M(v). In this lecture, we will discuss how to compute
the following three quantities of interest:

1. P(YY
2. P(X; =i|Y?)

3. argmax,, () log(P(Y*%))

1 Computing P(Y?)

Note that the event that Y = v is the event that Y* = (Y; = v1,..., Yy = ;). Now first consider
the quantity P(Y* = v, X* = ¢). Assume for now that we are given all parameter values. We
then have:

P(Y'=v, X' =q) = P(Yy=w,X¢ = @Y~ = /71 X7 = ¢ P(Y = /7 X = )
=P(Yi=v,Xo=q|Xo—1 =v—1)PY =07 X =¢fh)

We are given the value of the first expression and have a recursion here. We can repeat this
procedure now on P(Y*~1 X*~1) and etc. till we get the following expression:

P(Y'=v,X"=q) = P(zo = qo) ¥ Hle P(Y; = v, Xi = ¢i| Xiz1 = qi—1)
¢
= P(zg = qo) ¥ Hizl g, 1q;0q; (Vi)

It follows that, where e is a vector with all entries equal to 1 and 7 is the distribution of the
initial state:



= ZP(IO =qo) X (H P(Y; = v, Xi = ¢i| Xi—1 = qi—1))
¢

= 7" x ([[M(i))e
i1

2 Computing P(X; =i|Y* =v)

We use a forward recursion and a backward recursion in order to compute this. Note that
this computation is a filtering problem if ¢ = ¢, a smoothing problem if ¢ < ¢ and a prediction
problem if ¢ > £. For the forward recursion, denote (i) = P(Y" = v*, X; = i). For the backward
recursion, denote (;(i) = P(Ytﬂ_1 =vf, X; = i), where Ytﬂ_l = {Yis1,Yiqo,..Yo}.

Note that in this notation, Ele (i) = P(Y* = v). Also, we have that:

4 l
Soa@)Bii) = Y P =0 X, =i)x PV, =vf, X, =i|X, =i,V =)
i=1 i=1

l
= Y PY'=0" X, =i, Y\ =0, X =)
=1

= E(Yé =v)

Using similar arguments, we can derive that P(X; = i|Y’ = v) = % It turns out

that we can set up a recursion for a (i) and £ (i) and we can find that oy (i) = > a;jibi(ve)ow—1(7)
and that £;(i) = >, a;jibi(ve)Bi+1(j). Now the value of a1 (j) = P(Y1 = v1, X1 = i) = b;(v1)m;
and the value of B,_1(i) = P(Y* = v|X,_1 = i) = b;(v;). Since both of these values are
known, we can compute a;(i) and 3;(i) for any t. From here, we can calculate P(X; = i|Y* =
v) = % The proof that oy (i) = >, a;ibi(vi)az—1(j) is shown below. The proof that
6,5(1) = Zj ajibi(vt)ﬂHl(j) is similar.

O[t(i) = P(Yt:I/t,Xt :Z)
= P(Ytilzytilvn:Vt;Xt:i)
= ZP(Yt_l:Vt_lvn:VtaXt:ivXt71:j>
J

= Y PMVi=w, Xi=ilX; 1 =4,V =v")P(X, g =4,V =0

= Zajibi(yt)at_l(j)

3 Computing the maximum likelihood estimates of 7, a;;, and b;(v)

The problem this section concerns itself with is finding the values 7, a;;, and b; (v) which maximize
the log-likelihood, log(P(Y™)). Let us assume that a;;, b;(v) are unknown and our class is C' =

aij,bi(v), where a denotes an instance of these parameters. Here, we have that R, (a) =



0

emp

% log P, (Y* = v). There s a result which says that if Y* is a stationary process, then R
lim—.oo 3 E(log(Pa(Y?))). Also, where oy = argmax(R,, (o)), we have that

emp

(@) —

a —> argmin(élim lD(P(Y‘f), P, (Y"))

Y4

By the results of section 2, the log-likelihood is given by 7 log > ™(q0) Hle Qg 1q;bq: (V).
Though this appears to look like the corresponding problem for Markov Models, it is nontrivial.
The main issue is the fact that the variables ¢ are unknown. It would be much easier if we did know
q, because then we wouldn’t have to deal with a log over a sum. The standard method for finding
solutions to this problem is an iterative algorithm known as the Expectation Maximization (EM)
Algorithm, which is often used to solve maximum likelihood problems which involve missing data.
Intuitively, here, ¢ is treated as though it were missing data. The algorithm attempts to find
parameters that maximize the expected value of the likelihood over the estimated distribution of

q. Given the new parameters, it can update the estimated distribution over ¢q. The algorithm is
written below.

1. Pick a
2. Expectation Step:

Set J(&,a) =3, log Ps(Yf=v, X! = q)P (Y =v, X" =¢q)
3. Maximization Step: Find o* = argmax; J(&, o)

4. Set a to be a* and return to step 2.

The justification for this algorithm is in the following proposition. Here, for shorthand,
P(Y* =v) is denoted P(v) and P(Y* = v, X* = q) is denoted P(v,q)

Theorem 1. If J(a*,a) > J(a,a), then Py (Y! =1v) > Py (Y =v)

Proof.
P (v) > g Par(v,9)
log Pol) = log 7Pa(u)
1 Pi(v,q)
= 10g PQ(V) ;Pa(yv Q)Pa(y7 Q)
1 (v,
> iy 3 Pala)lon )

The third line follows from Jensen’s Inequality and the fifth line follows from the given.
It turns out that the solution to this maximization problem in this case is as follows:



a* = (ﬂ-*’a*7b*)’

Such that :
(@) = Po(Y'=v,Xo=1)/P.(Y' =),
4 14
afy = Y Pa(Y'=v,X; 0 =0,X,=5)/> Pa(Y'=v,X 1 =1i),
t=1 t=1
14
biw) = Y Pa(Y'=u,X=i)/) Pu(Y'=v,X,=1).
{t : yy=v} t=1



