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1 Introduction to Learning
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Figure 1: Learning system diagram.

1.1 Ingredients of a Learning Problem

1. Data {(xi, yi), 1 ≤ i ≤ `} may be derived in multiple fashions

• Data composed of i.i.d. samples from a joint distribution ∼ F (x, y)

• Data based on a underlying dynamic function yi =f(xi, xi−1, . . . , xi−m, w)

• Data derived from a hidden Markov model (HMM)

2. Model Set of alternative models (e.g. i.i.d., linear regression models, or HMMs)

3. Algorithm for choosing the best model from the model set based on the data (i.e. A :
{(xi, yi)} → Model Set)

• ex: Empirical Risk Minimization
Model Set: {f(x, α), α ∈ Λ}

Empirical Risk: Remp(α) = 1
`

∑`

i=1 |yi − f(xi, α)|
2

Algorithm: α̂` = argminα Remp(α)

4. Error Criterion for evaluation

1.2 Questions We Might Ask

1. Learnability? {consistency; limiting behavior}

2. Rates of convergence? {Entropy of a model set; VC-dimension; asymptotic distribution}

3. Model quality evaluation / Model set selection?

• Universal coding (MDL)

• Structured risk minimization

4. Algorithms and computation?

• Batch vs. recursive
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2 Risk Minimization

2.1 Learning System Diagram
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F (x|y)

1. Generator selects the distribution function for the random variable X (i.e. ∼ F (x))

• Values for the random variable X may be produced randomly by the generator or
sampled / controlled by the learning machine

2. System or Channel produces a value for the random variable Y based on the conditional
distribution ∼ F (y|x), where X and Y are jointly distributed according to F (x, y)

3. Data are combined from the generator and the channel, z` = {(xi, yi), 1 ≤ i ≤ `}

• Data are i.i.d. samples ∼ F (x, y)

• Data are available to the learning machine, though we may only have partial informa-
tion

4. Learning Machine utilizes the data to select a model that produces Ȳ

2.2 Risk-Based Learning

For this problem, our model class, C = {f(x, α), α ∈ Λ}, is defined by the singleton function
f(·, ·) and a set of parameterizations α ∈ Λ. Thus, our learning question becomes what param-
eterization, α̂, to select to model the functional dependence of y on x (i.e. ŷ = f(x, α̂)). Note
that choosing an appropriate model class is referred to as the Model Selection problem, which
we will deal with later in the course. For now, we assume that the model class is provided and
we utilize the following function definitions.

• Cost {L : X × Y × Λ → R} L(xi, yi, α) is the cost of selecting parameter α relative to
observation (xi, yi) (i.e. comparing f(x, α) with y).

• Risk {R : Λ → R} is the expected cost of selecting parameter α over the joint distribution
of X and Y . Thus, R(α) ,

∫

L(x, y, α)dF (x, y), where dF (x, y) is the derivative of the
distribution function F (X, Y ).

• Empirical Risk {Remp : Λ → R} is the average cost of selecting parameter α over the

observed data. Thus, Remp(α) , 1
`

∑`

i=1 L(xi, yi, α).

The cost, L(x, y, α), is itself a random variable, and L(xi, yi, α) is independent for all i, since
we assume the observations (xi, yi) are independent. By the Strong Law of Large Numbers, we

therefore have that R`
emp(α)

a.s.
−→R(α) for all α. Thus, for risk minimization, we try to select

an α to minimize Remp(α). This raises the question of whether minα R`
emp(α) −→ minα R(α).

That is, do the pointwise convergence laws in probabibility ensure uniform convergence, and if
so, under what conditions? We will now consider a few scenarios where this connection holds.
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2.3 Classification / Pattern Recognition

Classification will often be the prototype example used for proofs due to its simplicity, though
the same reasoning extends to more complex scenarios. For classification problems, we assume
that Y ∈ {1, 2, . . . , k} with Y = φ(X). The function φ : Rn → {1, 2, . . . , k} defines a partition of
the X space (see Figure 2). Note that φ need not belong to the model class as we typically do
not know the ”true” relationship.

1 2

3
4

5

Figure 2: Sample data partition.

For a classification problem, how do we define the cost or risk? One intuitive approach is to
”count” the number of misclassifications. For this approach, we define the cost function as
follows.

L(x, y, α) =

{

0 if y = f(x, α)
1 if y 6= f(x, α)

As above, our risk R(α) = E[L] =
∫

L(x, y, α)dF (x, y) and our empirical risk R`
emp(α) =

1
`

∑`

i=1 L(xi, yi, α). Thus, our empirical risk equals the number of misclassifications divided
by the number of data observations, `. For this problem, using minα R`

emp(α) to select the
parameter is a reasonable choice.

• ex: (Rn = R)

A B

Figure 3: Region of misclassification.

Our (average) risk is the probability that a sample falls into a region of misclassification.
That is, R(α) = P[symmetric difference of A and B] (see Figure 3).

2.4 Regression

For regression problems, we estimate Y as a deterministic continuous function of X . Note that
we could instead start with y = f(x, α) + βw, where W is a random variable, but the reason-

ing is similar. For our cost function, we let L(x, y, α) = |y − f(x, α)|
2
, thus our risk becomes
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R(α) =
∫

|y − f(x, α)|
2
dF (x, y). Why do we call this regression? As you may have seen in

another course, we have that the conditional mean, E[Y |X ] = argming E[|y − g(x)|
2
]. That is,

the conditional mean minimizes the mean-squared error across all functions. Thus, we let our
regression function r(x) = argming E[|y − g(x)|

2
].

Since our model class does not include all functions, we would like to be sure that our pa-
rameterization approximates the true regression function. This is in the fact the case, which we
show as follows.

• Claim:
∫

|y − f(x, α)|
2
dF =

∫

|y − r(x)|
2
dF +

∫

|r(x) − f(x, α)|
2

dF

• Proof:

∫

|y − r(x) + r(x) − f(x, α)|
2
dF =

∫

|y − r(x)|
2
dF +

∫

|r(x) − f(x, α)|
2
dF

+

∫

[y − r(x)][r(x) − f(x, α)]dF

We leave it as an exercise to show that [y − r(x)][r(x) − f(x, α)] = 0.

Thus, for our regression problem we again minimize the empirical risk,
R`

emp(α) = 1
`

∑`

i=1 |yi − f(xi, α)|
2
. We still need to show convergence of R`

emp(α) to R(α)...

2.5 Density Estimation

For density estimation, we only observe X , thus our data is z` = {x1, . . . , xl}. We could have
considered this problem under one of the two previous scenarios with the functional relationship
being the identity map. We assume that each independent observation is distributed according

to a true, but unknown, probability density function p∗(x) = dF∗(x)
dx

. Thus, our model class,
C = {p(x, α), α ∈ Λ}, defines a set of parameterized probability density functions to choose
from. In this case, our cost function is L(x, y, α) = − log p(x, α), which is referred to as the
negative log-likelihood. As expected, our risk R(α) = −

∫

p∗(x) log p(x, α) and our empirical risk

R`
emp(α) = − 1

`

∑`

i=1 log p(xi, α). As before, we minimize our empirical risk in order to choose
the optimal parameterization.

2.6 Elements of Information Theory

Entropy. Assume we have X ∈ {1, 2, . . . , M} ∼ p(x), where we use the shorthand pi for p(i).

We define the Entropy of the distribution H(p) , −
∑M

i=1 pi log pi, though some texts will use the
notation H(X). Note that entropy is bounded, that is H(p) ≥ 0 and H(p) ≤ log M . Entropy is
a very useful concept in that it provides the fundamental limit of how small a compression can be.

For the continuous case, X ∈ R, we refer to the Differential Entropy. Differential Entropy
is defined as Ep[− log p(x)], which equals −

∫

p(x) log p(x)dx.

Kullback-Leibler Distance. The Kullback-Leibler Distance, D(f ‖ g) measures the difference
between how well the density function f fits data composed according to f and how well the
density function g fits data composed according to f . The definition and some properties follow.

• Definition: D(f ‖ g) , Ef log f(x)
g(x) = Ef log f(x) − Ef log g(x)

• Properties:

1. D(f ‖ g) ≥ 0.
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Proof:

−D(f ‖ g) = Ef log
g(x)

f(x)

≤ logEf

g(x)

f(x)
(1)

= log

∫

�
��f(x)

g(x)

�
��f(x)

dx

= 0 (2)

Step (1) holds due to Jensen’s Inequality. Step (2) holds since g(x) is a probability
density function and therefore integrates to 1.

2. D(f ‖ g) is jointly convex in f and g.
Proof:
By computation.

3.
∫

|f(x) − g(x)|dx ≤ 2
√

1 − exp{−D(f ‖ g) (Bretagnolle-Huber Inequality).
Proof:

−D(f ‖ g) =

∫

f(x) log
g(x)

f(x)
dx

=

∫

f(x)

(

log

[

min

(

g(x)

f(x)
, 1

)]

+ log

[

max

(

g(x)

f(x)
, 1

)])

dx

≤ log

∫

f(x)min

(

g(x)

f(x)
, 1

)

dx + log

∫

f(x)max

(

g(x)

f(x)
, 1

)

dx

= log

∫

min (f(x), g(x)) dx + log

∫

max (f(x), g(x)) dx (3)

Now, notice that we have the following relationships.

min(a, b) =
a + b

2
−

|a − b|

2

max(a, b) =
a + b

2
+

|a − b|

2

Thus, we can rewrite equation (3) as follows.

log

∫

min (f(x), g(x)) dx + log

∫

max (f(x), g(x)) dx

= log

∫
(

f(x) + g(x)

2
−

|f(x) − g(x)|

2

)

dx

+ log

∫
(

f(x) + g(x)

2
+

|f(x) − g(x)|

2

)

dx

= log

[

1 −

∫

|f(x) + g(x)|

2
dx

]

+ log

[

1 +

∫

|f(x) + g(x)|

2
dx

]

(4)

= log

[(

1 −

∫

|f(x) + g(x)|

2
dx

)

·

(

1 +

∫

|f(x) + g(x)|

2
dx

)]

= log

[

1 −

(

1

2

∫

|f(x) − g(x)|dx

)2
]

(5)

Equation (4) holds because f(x) and g(x) are both probability density functions, and

therefore so is f(x)+g(x)
2 . From equation (5) we obtain the desired result by simply

rearranging terms.

Now, going back to density estimation, we have that minα R(α) = minα D(p∗ ‖ p(·, α)).
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