
Massachusetts Institute of Technology

6.435 Theory of Learning and System Identification

(Spring 2007)

Prof. Dahleh, Prof. Mitter Lecture 3
Scribed by Sleiman Itani T 2/13

In this lecture we will study some convergence results, keeping in our mind that our real
objective is to know how well we can approximate a distribution from the data.

1 Probability Convergence Results:

1.1 Axioms of Probability

A probability space is defined by a triplet (Ω, F ,P) where:

1. Ω is the sample space, a collection of all elements.

2. F is a collection of subsets of Ω that is a σ − field. It is the collection of events that we
are interested in. A σ − field F satisfies the following conditions:

(a) Φ ∈ F

(b) If ∀i ∈ N , ωi ∈ F then ∪∞

i=1ωi ∈ F

(c) If ω ∈ F then ωc ∈ F

3. P is a probability measure on F , i.e. P : F → [0, 1] such that:

(a) P(Φ) = 0 ,P(Ω) = 1

(b) If ∀i ∈ N , ωi ∈ F and ∀i 6= j , ωi ∩ ωj = Φ, then:

P(

∞
⋃

i=1

ωi) =

∞
∑

i=1

P(ωi)

1.2 Random Variables

A random variable is a mapping x : Ω → R (we will sometimes have x ∈ [0, 1]). A sequence of
RV’s is usually called a random process.

F (x) = P{ω|X(ω) ≤ x} is the cumulative distribution function. We are interested in se-
quences of RV’s or samples from a certain distribution and asking if they converge to the right
place.

1.3 Types of Convergence

Let Xn be a sequence of random variables. The following two types of convergence are of interest
to us:

1. Xn
p
−→ X , Xn converges to X in probability if:

∀ε > 0, P{ω| ||Xn(ω) − X(ω)|| > ε} → 0 as n → ∞

2. Xn
a.s.
−−→ X , Xn converges to X almost surely if:

P{ω| lim
n→∞

Xn(ω) 6= X(ω)} = 0
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Note that both kinds of convergence are very dependent on the measure used and that almost
sure convergence implies convergence in probability. To see an example of a sequence that
converges in probability and not almost surely, consider the following sequence Xn of independent
variables:

Xn =

{

1 with probability n−1

0 with probability 1 − n−1

It is easy to see that Xn
p
−→ 0 since:

∀ε > 0, P{ω| ||Xn(ω)|| > ε} = n−1 → 0 as n → ∞

But this sequence does not converge almost surely, because ∀ 0 < ε < 1:

P{ω| Xn(ω) < ε ∀ n ≥ m} = (1 − m−1)(1 − (m + 1)−1)...

= lim
M→∞

(

m − 1

m

) (

m

m + 1

)

· · ·

(

M

M + 1

)

= lim
M→∞

m − 1

M + 1
= 0 ∀ m

This means that for all m, the probability that the sequesnce enters the ε ball forever at (or
before) m is zero, and thus the probability that the sequence converges to 0 is 0.

2 Laws of Large Numbers

In this section we consider a sequence of i.i.d. random variables X1, X2, ... such that Xi : Ω →
[0, 1]. Here we assume that the sequence of random variables is produced from a sequence of trials
from one space that were mapped to [0, 1] by the same mapping, i.e. Xi = X(ωi), ωi ∈ Ω. It is
equivalent to assume that each trial is from a different space and mapping Xi = Xi(ωi), ωi ∈ Ωi.

Week Law of Large Numbers

1

l

∞
∑

l=1

Xi(ω)
p
−→ E[X ]

Strong Law of Large Numbers

1

l

∞
∑

l=1

Xi(ω)
a.s.
−−→ E[X ]

We now introduce some very interesting inequalities. Risk minimization uses results that are
similar to these results.

2.1 Hoeffding inequalities

∀ε, the sequence we have satisfies the following inequalities:

P{ω|
1

l

∞
∑

l=1

Xi(ω) − E[X ] > ε} ≤ e−2lε2

P{ω|
1

l

∞
∑

l=1

Xi(ω) − E[X ] < −ε} ≤ e−2lε2

P{ω| |
1

l

∞
∑

l=1

Xi(ω) − E[X ]| > ε} ≤ 2e−2lε2

Recalling some definitions from the previous lecture:

Rl
emp(α) =

1

l

l
∑

i=1

L(x, y, α)
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and
R(α) = E[L(x, y, α)]

We now know, by the SLLN that ∀α, Rl
emp(α)

a.s.
−−→ R(α). This convergence is point-wise in

α; we are interested in a convergence that is uniform in α:

sup
α

|Rl
emp(α) − R(α)|

p
−→ 0

We have to study the conditions under which the uniform convergence holds.

3 Non-parametric Density Estimation

Let X l : X1, X2, ..., Xl, we want to estimate F (x) and P (x) = dF (x)
dx

. The most intuitive approach
is the following: ∀x, our estimate for F (x) is number of x′

is that are less than x, normalized by
l. More formally, we define

θ(x) =

{

1 if x > 0
0 if x ≤ 0

And

Fl(x) =
1

l

l
∑

i=1

θ(x − Xi)

With these definitions, we can state the Glivenko-Cantelli theorem:

sup
x

|Fl(x) − F (x)|
a.s
−−→ 0

We even know that the error can be bounded by a decaying exponential. We usually need
to estimate not only F (x), but the probabilities of certain sets. Given A ⊆ [0, 1], we need to
estimate P (A) =

∫

A
dF (x). Our estimate is:

ν(X l, A) =

∫

A

dFl(x) =
#Xi ∈ A

l

We know by the SLLN that ∀A, ν(X l, A)
a.s.
−−→ P (A). Still, this convergence is not uniform in

A. A counter example is when the distribution is uniform, and therefore F (x) = x, ∀l, A =
xi, i = 1, 2, ..., l has P (A) = 0 and ν(xl, A) = 1. Therefore:

sup
A∈A

|ν(xl, A) − P (A)| = 1

Now we need to find collections of sets on which the convergence is uniform. A nontrivial
example is:

Ax = (0, x)|x ≤ 1

This is a direct result of the Glivenko-Cantelli theorem.
If the distribution is continuous, (P (x) = dF (x)

dx
is well defined everywhere) then ||Pl(x) −

P (x)||1 → 0 as l → ∞.
In this case, we can approximate the risk by the empirical risk:

sup
α

|

∫

L(x, y, α)Pl(x)dx −

∫

L(x, y, α)P (x)dx| ≤ max
x,y,α

|L(x, y, α)| ||Pl(x) − P (x)||1

Therefore if ||Pl(x) − P (x)||1 → 0 then the risk error → 0.
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