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In this lecture we will study some convergence results, keeping in our mind that our real
objective is to know how well we can approximate a distribution from the data.
1 Probability Convergence Results:
1.1 Axioms of Probability
A probability space is defined by a triplet (2, %, P) where:

1. Q is the sample space, a collection of all elements.

2. . is a collection of subsets of 2 that is a ¢ — field. It is the collection of events that we
are interested in. A o — field .7 satisfies the following conditions:

(a) e .7
(b) If Vi e N ,w; € Z then U2 w; € F
(¢) f we .Z then w® € .7
3. P is a probability measure on .7, i.e. P : % — [0, 1] such that:
(a) P(®)=0,P(02) =1
(b) IfVie N ,w; € % and Vi # j ,w; Nwj = ©, then:
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1.2 Random Variables

A random variable is a mapping x : @ — R (we will sometimes have = € [0,1]). A sequence of
RV’s is usually called a random process.

F(z) = P{w|X(w) < z} is the cumulative distribution function. We are interested in se-
quences of RV’s or samples from a certain distribution and asking if they converge to the right
place.

1.3 Types of Convergence

Let X,, be a sequence of random variables. The following two types of convergence are of interest
to us:

1. X, & X, X,, converges to X in probability if:

Ve > 0, P{w| | Xn(w) = X (W)|| > €} = 0asn — oo

2. X, 225 X, X, converges to X almost surely if:

P{w]| nlLIr;OXn(w) #X(w)}=0



Note that both kinds of convergence are very dependent on the measure used and that almost
sure convergence implies convergence in probability. To see an example of a sequence that
converges in probability and not almost surely, consider the following sequence X,, of independent
variables:

X 1 with probability n~?
"7 1 0 with probability 1 —n~!

It is easy to see that X,, 2 0 since:
Ve >0, P{w| || Xp(w)|| > e} =n"t—0asn —
But this sequence does not converge almost surely, because V 0 < € < 1:

Plw| X,(w)<eVn>ml=1-m H1-(m+1)")...

= lim m-1 m M = lim m_l—OVm
T Mo\ m m+1 M+1) MosoM+1

This means that for all m, the probability that the sequesnce enters the € ball forever at (or
before) m is zero, and thus the probability that the sequence converges to 0 is 0.

2 Laws of Large Numbers

In this section we consider a sequence of i.i.d. random variables X7, X5, ... such that X; : Q —
[0,1]. Here we assume that the sequence of random variables is produced from a sequence of trials
from one space that were mapped to [0, 1] by the same mapping, i.e. X; = X (w;), w; € Q. It is
equivalent to assume that each trial is from a different space and mapping X; = X;(w;), w; € ;.

Week Law of Large Numbers
1 o0
7 ZXi(w) - E[X]
=1

Strong Law of Large Numbers
Xi(w) == E[X]

o~ =
WK

=1

We now introduce some very interesting inequalities. Risk minimization uses results that are
similar to these results.

2.1 Hoeffding inequalities

Ve, the sequence we have satisfies the following inequalities:

P{Wl %ZXZ(M) — E[X] > 6} < e—2le2
=1

P{w| %ZXl(W) —E[X] < —€} < o2l
=1

P{w| |—ZX [X]| > €} < 272

Recalling some definitions from the previous lecture:
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and
R(a) = E[L(‘Tv Y, a)]

We now know, by the SLLN that Va, RL, (a) %2 R(a). This convergence is point-wise in

emp
a; we are interested in a convergence that is uniform in a:

sup | R, (@) — R(a)| = 0

emp
We have to study the conditions under which the uniform convergence holds.

3 Non-parametric Density Estimation

Let X!: X1, Xo, ..., X;, we want to estimate F/(x) and P(z) = %:(Ez). The most intuitive approach
is the following: Vz, our estimate for F'(z) is number of z}s that are less than z, normalized by
. More formally, we define

1 ifz>0
9(5”):{ 0 ifzr<0

And
F(z) =

o~ =

l

With these definitions, we can state the Glivenko-Cantelli theorem:
sup |Fi(x) — F(x)] %50

We even know that the error can be bounded by a decaying exponential. We usually need
to estimate not only F'(z), but the probabilities of certain sets. Given A C [0, 1], we need to
estimate P(A) = [, dF(z). Our estimate is:

WX, a) = [ am) = EXEL
A

We know by the SLLN that VA, v(X! A) % P(A). Still, this convergence is not uniform in
A. A counter example is when the distribution is uniform, and therefore F(z) = x, VI, A =
z;,i=1,2,....0 has P(A) = 0 and v(z!, A) = 1. Therefore:

sup |v(a!, A) = P(4)| =1
Aedd
Now we need to find collections of sets on which the convergence is uniform. A nontrivial

example is:
A* = (0,2)]z <1

This is a direct result of the Glivenko-Cantelli theorem.

If the distribution is continuous, (P(z) = %gf) is well defined everywhere) then ||P(z) —
P(z)||l1 = 0asl — oo.

In this case, we can approximate the risk by the empirical risk:

sup| / L(z.y,0) P (x)dz — / L.y, ) P(z)ds] < max | L(z, v, 0)] | B(z) ~ P(2)]l

Therefore if ||P;(x) — P(z)||1 — 0 then the risk error — 0.



