(Spring 2007)

Lecture 3
Scribed by Sleiman Itani

In this lecture we will study some convergence results, keeping in our mind that our real objective is to know how well we can approximate a distribution from the data.

1 Probability Convergence Results:

1.1 Axioms of Probability

A probability space is defined by a triplet $(\Omega, \mathscr{F}, \mathbf{P})$ where:

1. Ω is the sample space, a collection of all elements.
2. \mathscr{F} is a collection of subsets of Ω that is a $\sigma-$ field. It is the collection of events that we are interested in. A σ - field \mathscr{F} satisfies the following conditions:
(a) $\Phi \in \mathscr{F}$
(b) If $\forall i \in \mathbb{N}, \omega_{i} \in \mathscr{F}$ then $\cup_{i=1}^{\infty} \omega_{i} \in \mathscr{F}$
(c) If $\omega \in \mathscr{F}$ then $\omega^{c} \in \mathscr{F}$
3. \mathbf{P} is a probability measure on \mathscr{F}, i.e. $\mathbf{P}: \mathscr{F} \rightarrow[0,1]$ such that:
(a) $\mathbf{P}(\Phi)=0, \mathbf{P}(\Omega)=1$
(b) If $\forall i \in \mathbb{N}, \omega_{i} \in \mathscr{F}$ and $\forall i \neq j, \omega_{i} \cap \omega_{j}=\Phi$, then:

$$
\mathbf{P}\left(\bigcup_{i=1}^{\infty} \omega_{i}\right)=\sum_{i=1}^{\infty} \mathbf{P}\left(\omega_{i}\right)
$$

1.2 Random Variables

A random variable is a mapping $x: \Omega \rightarrow \mathbf{R}$ (we will sometimes have $x \in[0,1]$). A sequence of RV's is usually called a random process.
$F(x)=\mathbf{P}\{\omega \mid X(\omega) \leq x\}$ is the cumulative distribution function. We are interested in sequences of RV's or samples from a certain distribution and asking if they converge to the right place.

1.3 Types of Convergence

Let X_{n} be a sequence of random variables. The following two types of convergence are of interest to us:

1. $X_{n} \xrightarrow{p} X, X_{n}$ converges to X in probability if:

$$
\forall \epsilon>0, \mathbf{P}\left\{\omega \mid\left\|X_{n}(\omega)-X(\omega)\right\|>\epsilon\right\} \rightarrow 0 \text { as } n \rightarrow \infty
$$

2. $X_{n} \xrightarrow{\text { a.s. }} X, X_{n}$ converges to X almost surely if:

$$
\mathbf{P}\left\{\omega \mid \lim _{n \rightarrow \infty} X_{n}(\omega) \neq X(\omega)\right\}=0
$$

Note that both kinds of convergence are very dependent on the measure used and that almost sure convergence implies convergence in probability. To see an example of a sequence that converges in probability and not almost surely, consider the following sequence X_{n} of independent variables:

$$
X_{n}= \begin{cases}1 & \text { with probability } n^{-1} \\ 0 & \text { with probability } 1-n^{-1}\end{cases}
$$

It is easy to see that $X_{n} \xrightarrow{p} 0$ since:

$$
\forall \epsilon>0, \mathbf{P}\left\{\omega \mid\left\|X_{n}(\omega)\right\|>\epsilon\right\}=n^{-1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

But this sequence does not converge almost surely, because $\forall 0<\epsilon<1$:

$$
\begin{gathered}
\mathbf{P}\left\{\omega \mid X_{n}(\omega)<\epsilon \forall n \geq m\right\}=\left(1-m^{-1}\right)\left(1-(m+1)^{-1}\right) \ldots \\
=\lim _{M \rightarrow \infty}\left(\frac{m-1}{m}\right)\left(\frac{m}{m+1}\right) \cdots\left(\frac{M}{M+1}\right)=\lim _{M \rightarrow \infty} \frac{m-1}{M+1}=0 \forall m
\end{gathered}
$$

This means that for all m, the probability that the sequesnce enters the ϵ ball forever at (or before) m is zero, and thus the probability that the sequence converges to 0 is 0 .

2 Laws of Large Numbers

In this section we consider a sequence of i.i.d. random variables X_{1}, X_{2}, \ldots such that $X_{i}: \Omega \rightarrow$ $[0,1]$. Here we assume that the sequence of random variables is produced from a sequence of trials from one space that were mapped to $[0,1]$ by the same mapping, i.e. $X_{i}=X\left(\omega_{i}\right), \omega_{i} \in \Omega$. It is equivalent to assume that each trial is from a different space and mapping $X_{i}=X_{i}\left(\omega_{i}\right), \omega_{i} \in \Omega_{i}$.

Week Law of Large Numbers

$$
\frac{1}{l} \sum_{l=1}^{\infty} X_{i}(\omega) \xrightarrow{p} \mathbf{E}[X]
$$

Strong Law of Large Numbers

$$
\frac{1}{l} \sum_{l=1}^{\infty} X_{i}(\omega) \xrightarrow{\text { a.s. }} \mathbf{E}[X]
$$

We now introduce some very interesting inequalities. Risk minimization uses results that are similar to these results.

2.1 Hoeffding inequalities

$\forall \epsilon$, the sequence we have satisfies the following inequalities:

$$
\begin{gathered}
\mathbf{P}\left\{\omega \left\lvert\, \frac{1}{l} \sum_{l=1}^{\infty} X_{i}(\omega)-\mathbf{E}[X]>\epsilon\right.\right\} \leq e^{-2 l \epsilon^{2}} \\
\mathbf{P}\left\{\omega \left\lvert\, \frac{1}{l} \sum_{l=1}^{\infty} X_{i}(\omega)-\mathbf{E}[X]<-\epsilon\right.\right\} \leq e^{-2 l \epsilon^{2}} \\
\mathbf{P}\left\{\omega\left|\left|\frac{1}{l} \sum_{l=1}^{\infty} X_{i}(\omega)-\mathbf{E}[X]\right|>\epsilon\right\} \leq 2 e^{-2 l \epsilon^{2}}\right.
\end{gathered}
$$

Recalling some definitions from the previous lecture:

$$
R_{e m p}^{l}(\alpha)=\frac{1}{l} \sum_{i=1}^{l} L(x, y, \alpha)
$$

and

$$
R(\alpha)=\mathbf{E}[L(x, y, \alpha)]
$$

We now know, by the SLLN that $\forall \alpha, R_{\text {emp }}^{l}(\alpha) \xrightarrow{\text { a.s. }} R(\alpha)$. This convergence is point-wise in α; we are interested in a convergence that is uniform in α :

$$
\sup _{\alpha}\left|R_{e m p}^{l}(\alpha)-R(\alpha)\right| \xrightarrow{p} 0
$$

We have to study the conditions under which the uniform convergence holds.

3 Non-parametric Density Estimation

Let $X^{l}: X_{1}, X_{2}, \ldots, X_{l}$, we want to estimate $F(x)$ and $P(x)=\frac{d F(x)}{d x}$. The most intuitive approach is the following: $\forall x$, our estimate for $F(x)$ is number of $x_{i}^{\prime} s$ that are less than x, normalized by l. More formally, we define

$$
\theta(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

And

$$
F_{l}(x)=\frac{1}{l} \sum_{i=1}^{l} \theta\left(x-X_{i}\right)
$$

With these definitions, we can state the Glivenko-Cantelli theorem:

$$
\sup _{x}\left|F_{l}(x)-F(x)\right| \xrightarrow{a . s} 0
$$

We even know that the error can be bounded by a decaying exponential. We usually need to estimate not only $F(x)$, but the probabilities of certain sets. Given $A \subseteq[0,1]$, we need to estimate $P(A)=\int_{A} d F(x)$. Our estimate is:

$$
\nu\left(X^{l}, A\right)=\int_{A} d F_{l}(x)=\frac{\# X_{i} \in A}{l}
$$

We know by the SLLN that $\forall A, \nu\left(X^{l}, A\right) \xrightarrow{\text { a.s. }} P(A)$. Still, this convergence is not uniform in A. A counter example is when the distribution is uniform, and therefore $F(x)=x, \forall l, A=$ $x_{i}, i=1,2, \ldots, l$ has $P(A)=0$ and $\nu\left(x^{l}, A\right)=1$. Therefore:

$$
\sup _{A \in \mathscr{A}}\left|\nu\left(x^{l}, A\right)-P(A)\right|=1
$$

Now we need to find collections of sets on which the convergence is uniform. A nontrivial example is:

$$
A^{x}=(0, x) \mid x \leq 1
$$

This is a direct result of the Glivenko-Cantelli theorem.
If the distribution is continuous, $\left(P(x)=\frac{d F(x)}{d x}\right.$ is well defined everywhere) then $\| P_{l}(x)-$ $P(x) \|_{1} \rightarrow 0$ as $l \rightarrow \infty$.

In this case, we can approximate the risk by the empirical risk:

$$
\sup _{\alpha}\left|\int L(x, y, \alpha) P_{l}(x) d x-\int L(x, y, \alpha) P(x) d x\right| \leq \max _{x, y, \alpha}|L(x, y, \alpha)|\left\|P_{l}(x)-P(x)\right\|_{1}
$$

Therefore if $\left\|P_{l}(x)-P(x)\right\|_{1} \rightarrow 0$ then the risk error $\rightarrow 0$.

