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1 Example of Uniform Convergence of Empirical Risk:

Discrete random variables with finite range

Let X be a Random Variable with finite range: X : Ω → {1, ..., M} Let realization X` =
x1, x2, ..., xl. We would like to estimate the density of X .

Assume we have picked some model class, C. In the case where we would impose no restric-
tions, our model class, C, would be the set of M nonnegative numbers that add to 1. Here,
instead, we assume a general model class: C = {Pα : Pα is a probability mass function on
{1, ..., M}, α ∈ Λ}

Recall that the risk function we used in density estimation was log likelihood. For any α, the
likelihood function is given by:

R`
emp(α) =

1

`
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log Pα(xi) =
mj

`

m
∑

j=1

log Pα(j)

where mj is the number of times xi = j. The expected risk is then:

R(α) = E(log Pα(x)) =

m
∑

i=1

P (i) logPα(i)

Our problem would be to obtain αML = argmax(R`
emp(α))

In the case where we impose no restrictions, we will leave it as an exercise to show that
α = (p̂1, p̂2, ..., p̂m), where p̂j,ML =

mj

`

We would like to show that the empirical risk converges almost surely to the risk uniformly
over α. In other words, we would like to show that:
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To do this, notice:
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We know, by the strong law of large numbers that |
mj

`
− P (j)| converges almost surely to

zero. Since m is finite, we have that
∑m

j=1 |
mj

`
− P (j)| converges almost surely to zero. Since

maxj | log Pα(j)| stays constant as ` increases, we get that
∑m

j=1 |
mj

`
− P (j)|maxj | log Pα(j)|

converges almost surely to zero for any α. It follows that as long as C is such that ∀j, Pα(j) 6= 0
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when α ∈ C, we have supα maxj | log Pα(j)| ×
∑m

j=1 |
mj

`
− P (j)| converges to zero as ` → ∞

almost surely, so that the empirical risk converges to the risk almost surely, uniformly over α.
We can then draw the conclusion that maxα R`

emp(α) → maxα R(α) as ` → ∞, which is a
consequence of uniform convergence. This is formalized in the next section. We can also show
that no matter how we parameterize, we are minimizing the KL distance to the true distribution
by maximizing the likelihood. This is shown below:

argmax
α

R(α) = argmax
α

E[log Pα(x)]

= argmax
α

(E[log Pα(x)] − E[log P (x)])

= argmax
α

−D(P ||Pα)

= argmin
α

D(P ||Pα)

2 When Does the Empirical Risk Converge to the Risk Uniformly?

2.1 A proof that uniform convergence implies convergence of the minimum of the empir-

ical risk

First we will formally prove that if the empirical risk converges to the risk, uniformly over α,
then the minimum empirical risk converges to the minimal risk:

Theorem 1. If ∀ε > 0 P(supα |R`
emp(α) − R(α)| > ε) → 0 as ` → ∞, then ∀ε > 0 and η > 0,

∃L such that with probability 1 − η, |minα R`
emp(α) − minα R(α)| < ε for all ` > L.

Proof. Let αl = argminα R`
emp(α) and let α0 = argminα R(α). Fix ε and choose L large enough,

so that P (supα|R
`
emp(α) − R(α)| > ε) ≤ η for all ` > L. Then, for ` > L, we have that with

probability 1 − η:

R`
emp(αl) ≤ R`

emp(α0)

≤ R(α0) + ε

≤ R(αl) + ε

≤ R`
emp(αl) + 2ε

The first inequality follows from the definition of αl and the third follows from the definition
of α0. The second and fourth inequalities follow from the fact that P(supα |R`

emp(α) − R(α)| >

ε) ≤ η. Now, subtracting the first, fourth, and sixth expression by R`
emp(αl) + ε, we get that

−ε ≤ R(α0) − R`
emp(αl) ≤ ε. Hence, we have |R`

emp(αl) − R(α0)| < ε, so we conclude that:

|minα R`
emp(α) − minα R(α)| < ε, which completes our proof.

2.2 The Case of Finite Parametrization

Consider the case where |Λ| = N < ∞. Last lecture, we showed that P (|R`
emp(α)−R(α)| > ε) ≤

2e−`ε2

. Since the supremum over a finite set is less than or equal to the sum, we then get that

P

(

sup
α∈Λ

|R`
emp(α) − R(α)| > ε

)

≤ P





n
∑

j=1

|R`
emp(αj) − R(αj)| > ε



 ≤ 2Ne−`ε2

Let η = 2Ne−`ε2

to complete the proof that we have uniform convergence in this case. We now
have a way to determine L, given any η and ε, which is what we needed in the proof. If we want
an expression for ε, we can solve the equation η = 2Ne−`ε2

, to determine that ε = ( ln 2N−ln η
`

)
1
2
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2.3 The Case of Infinite Parametrization

Here, we will concentrate on the indicator function, so for simplicity, assume we are in the context
of a classification problem, so that L(x, y, α) ∈ {0, 1}.

Let z` = {(x1, y1), ..., (xl, yl)} = {z1, z2, ..., zl} Hence, L(z, α) ≡ L(x, y, α). Define the set of
`-dimensional vectors, BΛ(z`), its cardinality NΛ(z`), and the quantity Hannl(`) as follows:

BΛ(z`) = {(L(z1, α), L(z2, α), ..., L(zl, α)) : α ∈ Λ}

NΛ(z`) = |BΛ(z`)|

Hannl(`) = lnE(NΛ(z`))

Note that BΛ(z`) ⊂ {0, 1}`, and thus NΛ(z`) ≤ 2`. Hannl(`) is referred to as the annealed
entropy of the set Λ.

Example: The Glivenko-Cantelli case
Recall the Glivenko-Cantelli Theorem from last lecture, which said that empirical frequencies

converge almost surely to probabilities uniformly over A ∈ A∗, where A∗ = {[0, x), x ∈ (0, 1]}.
Now let A∗ be our class. Suppose we have ` samples now, where xi all lie between 0 and 1
according to some unspecified distribution. Let the corresponding yi in each case be either 0 or
1. Let IA(x) be the indicator function which = 1 if x ∈ A, and is zero otherwise. Then, we have
that L(z, A) is the indicator function which = 1, when IA(x) 6= y and is zero otherwise. Hence,
we have a classification problem, where our allowed set of functions is IA(x), A ∈ A∗.

One can see from here that over all A ∈ A∗, there are only ` + 1 possible distinct vectors of
losses. This is because when the right endpoint of A occurs between x(i) and x(i+1), where it is

between the two points does not change the vector of losses (Here, x(j) denotes the jth smallest
sample). Since there are ` + 1 possible positions for the endpoint of A, we get our result.

It follows then that for any fixed sample of size `, NΛ(z`) ≤ `+1. Hence, HΛ
annl(`) ≤ ln(`+1).

The theorem and the corollary below will show that this implies that the uniform convergence
property is guaranteed.

Theorem 2.

P(sup
α∈Λ

∣

∣R`
emp(α) − R(α)

∣

∣ > ε) ≤ 4e

[

HΛ
annl

(2l)

`
−(ε− 1

`
)2
]

`

Corollary. If HΛ
annl(2l) grows sub-linearly, i.e.:

HΛ
annl(2l)

`
→ 0 as ` → ∞,

then uniform convergence is guaranteed.

3


