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1 Uniform Convergence of Empirical Risks

In the previous lecture, we established that if the empirical risk converges uniformly to the
true risk, then minimizing empirical risk minimizes true risk asymptotically, which is what we
desire. We also saw examples where uniform convergence occurs trivially: in finite and finite-
range parameterizations. In today’s lecture we will show a powerful generalization, which gives
a sufficient (and in fact necessary, which we won’t show) condition for uniform convergence,
based on the complexity (annealed entropy) of the model class and the underlying distribution.
We will also introduce a technique which provides a conservative sufficient condition (finite VC
dimension) which is distribution-independent. We will elaborate on the latter in the next lecture.

1.1 Notation
The following are the notational conventions and basic defintitions we have been using:

Our data sample, or sample set, is denoted by z¢ = (21, ,20), where we have z; = (2;,v;).

- Our model class is C = {f(-,a) : a € A}.

0 ify, = f(z,0),

- We consider only indicator loss functions: L(z;, ) = { 1 otherwise

- Given the underlying distribution, the true risk associated with model « is R(«) = E[L(Z; «)].

The empirical risk for the same model given data z* is Rf,, (o) = ¢ Ele L(z;; ).

- The set of all achievable loss /-tuples given data z* is BA(2%) = {(L(z1, @), -+, L(z, a)) :
a € A}, itself a subset of all possible zero-one (-tuples, i.e. {0,1}".

- The cardinality of BA(2) is denoted by N*(z%) = |BA(2%)].

- We define the annealed entropy as H2  (¢) = InE[N*(Z*)]. It is a quantity that we will
interpret as a measure of the complexity of the model class together with the underlying

distribution, and it will appear in the bound we are about to derive.

1.2 Statement of Main Results

The following theorem establishes an upper bound on the probability of the uniform deviation
of the empirical risk from the true risk. The sufficient condition for uniform convergence is then
just a matter of restating the theorem in a corollary.

Theorem 1. Let C be a model class parametrized by o € A, and L(z;«) the corresponding
indicator loss functions, then for all € > 0 the following holds:

‘
LS L(Zi0) - B[L(Z; )
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We will prove this theorem in the next section. Meanwhile, the aforementioned corollary
immediately follows.




Corollary. If
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then the property of uniform convergence of the empirical risk holds. The converse is also true.

—0 as {— o0,

Proof. We will not show the converse. For the forward direction, simply note that if the condition
holds, then by choosing ¢ large enough, the exponent of the bound in Theorem 1 becomes negative,
and therefore the bound converges to zero. O

1.3 Data, Precision, and Confidence

An alternative perspective into these results is to ask the question of what precision does a given
amount ¢ of data provide within a certain desired probabilistic confidence 1 — n
More concretely we have that:

’R —R(a)’ < e(l,m),
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This follows from writing:
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which we can rearrange as
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with probability 1 — n, where
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As a result, one can potentially solve for the appropriate value of £ to provide a given precision
€ with confidence 1 — 7

2 Proof of the Main Theorem

We will divide the proof of Theorem 1 into three stages. In the first two stages, two different
symmetries are exploited to transform the problem and derive bounds. In the final stage, a key
idea is used to break the infinite parameter problem in a way similar to the finite case. Combined
with the bounds derived in the first two stages, this yields the statement of the theorem.

2.1 Symmetrization with Ghost Samples

We begin with some notations and definitions. Let z(!) be a sample set of ¢ points, and let z(?)
be an independent sample set of the same size (a ‘ghost’ sample set). Let 22 = 223 be the
extended sample set of 2¢ points, formed by concatenating the original and ghost sample sets.

Define the following:
¢
1
vz, a) = i ; L(z;a

v(z?,a) = ZLz“

i=0+1

)

(=) = sgp ‘V(Z(l), a) — E[L(Z; a)]

and

p(2%) = vz, a) —v(z®, 04)‘ .




Observe that we are interested in saying something about II. Much in the spirit of Cauchy
convergence, the following lemma tells us that we can alternatively look at the symmetrized
version, i.e. p.

Lemma 1. We have: )
p {H(z<1>) > e} <oP {p(ZM) >e— Z} .

Proof. Let 0(u) = I,~0(u) be the indicator function of {u|u > 0}, and write:

plozyse- i = [ o(o6-cr j)are)

/Z(l) /3(2) 0 (p(z%) —€+ %) dF(z®)dF(z™M)

I(z(D)
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where Q = {z(V : TI(zM) > ¢} ¢ 2,
Restricting our attention henceforth to () € Q, it suffices to show that I(z(1)) >
we will then have:

N O my_lpo_1 (1)
P{p(Z )> e £}22/QdF(z )_2PQ_2P{H(Z )>e}.

For that, first observe that for all 2 € Q there must exist at least one o* such that
vz, a*) — E[L(Z; a*)| > ¢, since otherwise IT = sup,, (-) < ¢, which means (") ¢ Q.
Next, write:

1 .
3 sice

p(*) = [0t — (=0 a")
> [u(=®,a%) ~ BIL(Z;0")]| + [(=D), @) - E[L(Z;0")
> \u ®),a%) ~ E[L(Z;0")]| + ¢
> ,a*> E[L(Z;0")] + ¢

Finally, it follows that:
Iy > / 9<V(z(2),a*)—E[L(Z;a*)] €—e+ é>dF( (2))
zZ(2)

_p {V(Zcz)’a*) > E[L(Z;a")] — %}

20
— P{ > L(Zia) > (E[L(Z;a*)] — 1}

i=+1
= P{Y >{q—1}, Y ~ Binomial(¢, q)
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2.2 Symmetrization with Random Swapping

The second stage of the proof is based on two techniques: symmetrizing with respect to swaps
between the original and ghost sample points, and conditioning on a given extended sample set.



Let ¢1,- -+, ¢ be i.i.d. Bernoulli random variables with p = % To formalize swaps, we define
the swap vector random variable o as follows:

C fitla =1,
Ti= N ity i=L+1,--- 20

The swapped extended sample set is then defined to be:
Zg-é = (20'17 T 7ZO'22)'

This consists of effectively independently swapping pairs of elements between the original
sample set and the ghost sample set. To see the usefulness of the construction, notice that,
conditioned on a given swap vector o, the probability of any event on the swapped extended
sample set is the same as the probability of the event on the original extended sample set,
because of the i.i.d. nature of the sample points:

P{S(ZO'U"' 7ZO'2£)|U = U} = P{S(Zl,--- 7226)}'

Thus, taking the expectation over o, we have that the probability of an event on the swapped
extended sample set is the same too:

P{g(ZO'M"' 720'22)} = E[P {g(ZO'N"' =ZU2e)|o'}] = P{g(Zlv"' 72%)}'

Recall that what we have yet to accomplish is to bound P {p(Z2) > €}, where € = ¢ — ;. By
introducing swaps, we can equivalently bound P {p(Z2‘) > €}, as we will do in the final stage
of the proof. The ability that we will need is to condition on a given extended sample set 22
Swaps allow us to do that in a meaningful fashion, via the following lemma.

Lemma 2. We have:

P {’u(Z((,l),a) - V(Zt(f),a)‘ > €

7% = 225} <2
Proof. We start by observing the following:

P {‘V(Zt(,l),a) - V(Zt(f),()é)’ > €

720 _ Zze}

‘
= P{%Z Zo; ZLZUH > e 2% = ”}
=1 i=0+1
1
= P{lS Z Zoii @) = L(Zo,, ;)] | > € 2% = 2%
Gi
First, notice that, conditioned on Z?¢ = 22¢, each (; is independent, because each then

depends only on ¢;. The distribution of each ¢; may vary. If L(z;a) — L(zi+¢;c) = 0 then (;
is deterministically 0. If L(z;;a) — L(zi4¢; ) = 1 or —1, then ¢; = +1 with equal probability
2, because of the random swapping. Hoeffding’s inequality for independent real valued random
variables & each bounded in an interval of width A;, can be written as follows:

P{Ye-E[Y ] >6}<2exp(2;)

In our case, we have that all {; are zero mean and that A; < 2, and the statement of the lemma

follows from: )
P{fize

_2
> E‘Zze = Zze} <2 ",



2.3 Equivalence Classes and Union Bound

The final ingredient of the proof consists of using the results so far to break the problem in
a way similar to the finite case. Recall that for every z2¢, the set B*(2%‘) defines an equiva-
lence relationship over A, which partitions it into a finite number of equivalence classes, mainly
NA(2%%) of them. More precisely, we can define the relationship as a; ~ ag if and only if
(L(z1501), - L(z20; 1)) = (L(21; ), - - - L(22¢; a2)). Let us construct the finite set A*(2%¢) by
choosing exactly one element from each equivalence class. Based on this key idea, we can use
union bounds together with the bounds we obtained by random swapping and conditioning, to
write:

P{p(Z*)>¢e} = P{p(Z¥) >¢e}
- E_P{p(Z?f)>€

720 _ 224}}

= E|P {sup v(ZWM, a) — U(Z((f),a)‘ > E|7% = z%}]
L a€A

= E|P sup  [v(ZW,a) —v(ZP),a)| > e|z% = 2
aEA*(Z26)

224}

= E|P U { v(ZW ) —v(ZP,a)| > €z
aEA*(Z2¢)

< E Z P{ v(ZW, ) —v(ZP,a)| > € 2% = 225}
LaeAr(22) |
< E Z 26_5%
|acr(z20)

- E _NA(ZM)267EZE} — 9mME[NYNZ¥)| =& _ 9 HY,,, (20~

Finally, by combining the above with the bound we have for the ghost sample set, we obtain
the statement of Theorem 1:

P{H(Z<1>) > e} < 2P {p(Z%) >e— %} < 4exp{ [W - (e— %)21 e}.

3 Vapnik-Chervonenkis (VC) Dimension

The bound obtained in section 2, via its corollary stated in section 1, provides a direct link
between uniform convergence and the growth of the complexity of a set. The complexity, however,
is measured with respect to the annealed entropy, which depends not only on the hyopthesis class,
but also on the underlying distibution.

However, it is desirable to obtain bounds that are distribution independent. Vapnik and
Chervonenkis suggested the following bound on the annealed entropy. Define the growth function
as follows:

GMo) = max In NA(229).

Clearly:

annl

H2 (1) =InE[N*(z%)] < lnmzanNA(zy) = GM0).

It follows that if % — 0 as ¢ — 0o so does

the uniform convergence of empirical risk follows.

A
H‘I%Z(M), and by the corollary in section 1,



The growth function is a combinatorial bound that depends on the model class alone, and
not on the underlying distribution. The price we pay is looseness: the condition on the growth
function is sufficient but not necessary, as can be attested by counterexamples (c.f. homework).

In the next lecture, we will show that its behavior is linear G*(¢) = £In2 up to a certain
point, which may be infinite, beyond which it grows logarithmically.

We define the VC dimension of a model class as the the largest value of ¢ where the growth

function is still linear:
h =max {¢: G*(() = (In2} .

From the behavior we just described and which is yet to prove, it follows that a finite VC
dimension implies uniform convergence. Infinite VC dimension, on the other hand does not
necessarily preclude that, because of the looseness of the bound.

An interesting alternative characterization of the VC dimension, which we will also prove
next time, is stated in terms of the ability of a model class to shatter data points.

Consider a model class C parametrized by a € A, and the corresponding indicator loss func-
tions L(-;@). C generates a family of sets A, = {z|L(z;a) = 1}. Consider a given 2, and let
B = {z1,---,z}. We say that {A,} shatters B if VS C B Ja € A such that S = BN A,. In
other words, C shatters z¢ if it can ‘select’ any subset of points.

It turns out that:

h = max {|B| : B shattered by {A,}}.



