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In this lecture we complete the elements from VC theory which we set forth in the past lectures.
In particular, we prove that the behavior of the growth function is linear until the VC dimension,
and logarithmic beyond. This is the property that establishes finite VC dimension as sufficient
for the uniform convergence of empirical risk. We also prove the equivalence between the two
definitions of VC dimension, in terms of the growth function and shattering. We conclude with
examples of various model classes.

Before we proceed, recall the following from last lecture:

- The set of all achievable loss `-tuples given data z1, · · · , zl is:

BΛ(z1, · · · , zl) = {(L(z1, α), · · · , L(z`, α)) : α ∈ Λ},

itself a subset of all possible zero-one `-tuples, i.e. {0, 1}`. The cardinality of BΛ(z`)
is denoted by NΛ(z1, · · · , zl = |BΛ(z1, · · · , zl)|. In the proof of the main theorem, we
have seen how NΛ(z1, · · · , zl) is the number of equivalence classes that produce the same
classfication error on the sample set.

- Define the growth function as

GΛ(`) = max
z1,··· ,zl

lnNΛ(z1, · · · , zl).

It serves as a worst case bound on the annealed entropy,

HΛ
ann(`) = lnENΛ(z1, · · · , zl) ≤ GΛ(`).

- The uniform convergence of empirical means property (UCEP) is satisfied if

lim
`→∞

GΛ(`)

`
= 0.

1 Behavior of the Growth Function

Theorem 1. The behavior of the growth function, illustrated above, is either:

GΛ(`) = ` ln 2, ∀`,

or there exists h ∈ Z
+, called the VC dimension of the class, such that:

GΛ(`)

{

= ` ln 2 for ` ≤ h,

≤ ln
∑h

i=0

(
`

i

)
≤

(
el
h

)h
= h(1 + ln `

h
) for ` > h.

Proof. See lecture handout, in the appendix.
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2 VC Dimension

We can rewrite the definition of the VC Dimension of the set of models parameterized by Λ as
follows:

h = max
{
` : GΛ(`) = ` ln 2

}
.

If the max does not exist then, by convention, h = ∞.
The following corollary immediately follows from this definition and the behavior of the growth

function:

Corollary. If the model class has finite VC dimension, then UCEP holds.

The alternative definition of VC dimension requires the notion of shattering.

Definition 1 (Shattering). Let {Aα} be a family of sets. Consider a given sample set z`, and
let B = {z1, · · · , z`}. We say that {Aα} shatters B if ∀S ⊂ B ∃α ∈ Λ such that S = B ∩ Aα. In
other words, {Aα} shatters B if it can ‘select’ any subset of points.

In our setting, we consider a model class C parametrized by α ∈ Λ, and the corresponding
indicator loss functions L(·; α). C generates the family of sets as follows: Aα = {z|L(z; α) = 1}.

The alternative definition of VC dimension is:

h′ = max {|B| : B shattered by {Aα}} .

Claim. We have h = h′.

Proof. We prove the two sides of the equality.

h ≤ h′ By the definition of h, we know that GΛ(h) = h ln 2. By the definition of GΛ, it
follows that there exists some zh such that NΛ(zh) = 2h. This means that all loss
h-tuples (L1, · · · , Lh) are possible for zh, and thus each is achievable by some value
of α. Let B = {z1, · · · , zh}, and choose any subset S ⊂ B. Select α? that gives a
loss h-tuple which is 1 exactly on S. By the definition of Aα, it follows that Aα? has
all the elements of S but none of B \ S. Therefore B ∩ Aα? = S and, since S was
arbitrary, {Aα} shatters B. By the definition of h′ we then have h′ ≥ |B| = h.

h ≥ h′ By the definition of h′, we know that there exists some B = {z1, · · · , zh′} that is
shattered by {Aα}. Choose any loss h′-tuple (L1, · · · , Lh′), and let S be the subset
of B where the losses are 1. Due to shatterability, there exists some α? such that
B ∩ Aα? = S. Aα? has all the elements of S but none of B \ S, and thus L(z; α) is 1
exactly on S: (L(z1; α

?), · · · , L(zh′ ; α?)) = (L1, · · · , Lh′). Since the choice of the loss
h′-tuple was arbitrary, it follows that all are achievable, and thus NΛ(zh′

) = 2h′

. By
the definition of GΛ(h′), GΛ(h′) ≥ lnNΛ(zh′

) = h′ ln 2. Since GΛ(`) ≤ ` ln 2, it follows
that in fact GΛ(h′) = h′ ln 2. Thus, by the definition of h, we have that h ≥ h′.

3 Model Class Examples

3.1 Glivenko-Cantelli

Aα = [0, α), α ∈ (0, 1]

We cannot shatter any set of two numbers because we cannot have j ∈ Aα and i 6∈ Aα if
j ≤ i. VC Dimension is 1.
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3.2 Rectangles

Aα = “All rectangles with sides parallel to the coordinate axes.”
VC dimension is at least 4 since we can shatter a set of four points in R2 arranged in a dia

mond. It is claimed that the VC dimension is, in fact, 4.

3.3 Convex Polytopes

Aα = “All convex polytopes in R2.”
Take a set of any number of points in R2 and arrange them as the vertices of a regular

polygon. Aα can shatter any number of points in such an arrangement, so h = ∞.

3.4 Separating Hyperplanes

Aα = {x|sgn(bT x) > 0, α = b ∈ Rn}
This is the set of separating hyperplanes passing through the origin (the analysis can readily

be extended to arbitrary hyperplanes). In R2, h = 2 by inspection.
In Rn we know the VC dimension is at least n since we can shatter the sample set produced

by placing one point on each coordinate axis: zn = (z1, · · · , zn), where

zi = ei = ( 0, · · · , 0, 1, 0, · · · , 0).
1 i n

Claim. We have: h=n.

Proof. We already showed that h ≥ n. We simply need to prove that h ≤ n. For the sake of
contradiction, suppose h ≥ n+1, so that some sample set of n+1 points, which we can represent
as a row-concatenated matrix x = [x1 · · ·xn+1] ∈ Rn×(n+1), is shattered by this class. This
means that any possible sign configuration can be achieved by some choice of weight vector b.
Let the matrix B = [b1 · · · b2n+1 ] be the row concatenation of weight vectors generating all 2n+1
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distinct sign combinations. Define the matrix Ṽ ∈ R(n+1)×2n+1

to be Ṽ = x′B. It follows that
V = sgn(Ṽ ) reproduces all sign configurations in 2n+1 columns:

V =






+ · · · −
...

. . .
...

+ · · · −






︸ ︷︷ ︸

2n+1

= sgn
















x′

1
...

x′

n+1






[
b1 · · · bn+1

]

︸ ︷︷ ︸

Ṽ











.

Now, choose an arbitrary vector c ∈ Rn+1 such that c′Ṽ = 0. Since one of the columns of Ṽ ,
say Ṽj , has the same sign configuration as c, it follows that 0 = c′Ṽj =

∑n+1
i=1 |ci||Ṽj |, and thus it

must be that c = 0. This means that Ṽ is full rank n + 1, which cannot be, since it is a product
of matrices each of rank less than or equal to n. This is the desired contradiction.

3.5 Remarks

- In general, the VC dimension is not equal to the number of free parameters in general (refer
to the homework for further).

- The VC dimension represents a worst-case scenario. Given a specific distribution, we can
sometimes get UCEP even though the VC dimension of the set of functions is ∞.
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Proof of the Growth Function Behavior

The proof follows from three lemmas.

Lemma 1. If for some sample set z` and for some n we have:

NΛ(z`) >

n−1∑

i=0

(
`

i

)

,

then there exists a subset z?n of length n, {z?
1 , · · · , z?

n} ⊂ {z1, · · · , z`} such that:

NΛ(z?n) = 2n.

Equivalently, the VC dimension of the model class is greater than n.

Proof. Let Φ(n, `) =
∑n−1

i=0

(
`

i

)

. Φ has the following properties:

Φ(1, `) = 1 (by definition),

Φ(n, `) = 2` if ` ≤ n + 1,

Φ(n, 1) = Φ(n, ` − 1) + Φ(n − 1, ` − 1) if n ≥ 2.

The latter follows from the equality:

(
`

i

)

=

(
` − 1

i

)

+

(
` − 1
i − 1

)

,

summing both sides from i = 1 to n − 1, we have:

n−1∑

i=1

(
`

i

)

︸ ︷︷ ︸

=

n−1∑

i=1

(
` − 1

i

)

︸ ︷︷ ︸

+

n−1∑

i=1

(
ell − 1
i − 1

)

︸ ︷︷ ︸

Φ(n, 1) − 1 = Φ(n, ` − 1) − 1 + Φ(n − 1, ` − 1).

We will consider three cases.

(1) When n = 1 and ∀`, then the condition reduces to NΛ(z`) > 1. That means that there exist
at least two distinct loss vectors, which must differ at some sample point z? ∈ {z1, · · · , z`},
i.,e. L(z?; α1) = 0 and L(z?; α2) = 1 for some α1, α2. Consequently, NΛ(z?) = 2, and the
result holds.

(2) When ` < n, the condition is never valid since N (z`) ≤ 2`, whereas the condition states
that:

NΛ(z`) >

n−1∑

i=0

(
`

i

)

=

`−1∑

i=0

(
`

i

)

= 2`.

Therefore the result holds trivially.

(3) In all other interesting cases, we proceed by double induction.

Induction on n

The basis of the outer induction is case (1): the lemma is true for n = 1, ∀`. The induction
is to assume the lemma is true for n ≤ N , ∀`, and to prove that it is true for n = N + 1,
∀`.
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Induction on `

The basis of the inner induction is case (2), the lemma is true for n = N + 1 and
` < n. The induction is to assume the lemma is true for n ≤ N + 1, ` ≤ L, and to
prove that it is true for n = N +1, ` = L+1. The condition is that for some selection
zL+1 the following is satisfied:

NΛ(zL+1) > Φ(N + 1, L + 1).

Given this, we need to show that there exists a subset {z?
1 , · · · , z?

N+1} such that:

NΛ(z?(N+1)) = 2N+1.

Consider the subset {z1, · · · , zL}. There can be two cases:

(a) NΛ(z1, · · · , zL) > Φ(N + 1, L).
By prior induction, this case is already established to validate the lemma. Thus,
there exists a subset of {z1, · · · , zL} of length N + 1, such that NΛ(z?(N+1)) =
2N+1, and the lemma holds.

(b) NΛ(z1, · · · , zL) ≤ Φ(N + 1, L).
Categorize all subsets A ⊂ {z1, · · · , zL} into two types: type I (decoupled from
zL) and type II (coupled with zL):

I. If there exists α such that L(A, α) = 1 (read L(z, α) = 1 ∀z ∈ A), L(Ac, α) = 1
and L(zL, α) = 1 and there exists α′ such that L(A, α′) = 1, L(Ac, α′) = 1
and L(zL, α′) = 0 (i.e. selection of A is decoupled from selection of zL.)

II. If either there exists α such that L(A, α) = 1, L(Ac, α) = 1 and L(zL, α) = 1
or there exists α′ such that L(A, α′) = 1, L(Ac, α′) = 1 and L(zL, α′) = 0
but not both (i.e. selection of A is coupled with selection of zL.)

Let K1=# of subsets of type I, and K2=# of subsets of type II. The following
equalities follow:

NΛ(z1, · · · , zL) = K1 + K2,

NΛ(z1, · · · , zL, zL+1) = 2K1 + K2, thus :

NΛ(z1, · · · , zL+1) = NΛ(z1, · · · , zL) + K1.

Now define Aα = {z|z ∈ {z1, · · · , zL} and L(z; α) = 1}, and let us restrict the
parameter space to only those that generate subsets of type I:

Λ̃ = {α | Aα is of type I}

Clearly, it follows that K1 = N Λ̃(z1, · · · , zL).

Note that, up to the induced steps, the validity of the lemma is confirmed for any
parameter space, including Λ̃. Therefore we have that:

- If K1 = N Λ̃(z1, · · · , zL) > Φ(N, L), then by induction there exists a subset

{z?
1 , · · · , z?

N} such that N Λ̃(z?
1 , · · · , z?

N) = 2N . It follows that NΛ(z?
1 , · · · , z?

N) =

2N , since 2N ≥ NΛ(z?N) ≥ N Λ̃(z?N) = 2N .
This means that Aα, α ∈ Λ̃ can select any subset of z?N . Also, these

Aα are decoupled from zL+1, i.e. type I (for zL and zL+1), so it follows
that A′

α = Aα ∩ {z?
1 , · · · , z?

N} are decoupled from zL+1, i.e. type I (for z?N

and zL+1). These two observations imply that all subsets of {z?
1 , · · · , z?

N} are
decoupled from zL+1, they are all type I, and thus K ′

1=# of subsets of type
I (for z?N and zL+1) = NΛ(z?N) = 2N .

Therefore the third equality above applies, and the lemma is true, since:

NΛ(z?
1 , · · · , z?

N , zL+1) = NΛ(z?
1 , · · · , z?

N) + K ′

1 = 2N+1.
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- If K1 = N Λ̃(z1, · · · , zL) ≤ Φ(N, L), then:

NΛ(z1, · · · , zL+1) = NΛ(z1, · · · , zL) + K1 (third equality)
≤ NΛ(z1, · · · , zL) + Φ(N, L) (current hypothesis)
≤ Φ(N + 1, L) + Φ(N, L) (case (b))
= Φ(N + 1, L + 1) (property of Φ)

This contradicts the hypothesized condition, and this case is thus impossible.

This completes the induction on `.

It follows that the induction on n is also complete.

Lemma 2. If for some n:

sup
z1,··· ,zn+1

NΛ(z1, · · · , zn+1) 6= 2n+1,

then for all ` > n

sup
z1,··· ,z`

NΛ(z1, · · · , z`) ≤ Φ(n + 1, `).

Proof. Assume the converse, for the sake of contradiction, i.e. there exists z1, · · · , z` such that:

NΛ(z1, · · · , z`) > Φ(n + 1, `)

Then, by Lemma 1, there exists a subset z?
1 , · · · , z?

n+1 such that NΛ(z?
1 , · · · , z?

n+1) = 2n+1, which
contradicts our hypothesis, as desired.

Corollary. If h=VC dimension of Λ, then

sup
z1,··· ,z`

NΛ(z1, · · · , z`) ≤ Φ(h + 1, `)

=
h∑

i=0

(
l

i

)

,

which is nothing but the number of subsets of a set of size `, of size at most h.

Lemma 3. We have:

Φ(n, `)
(1)

≤ 1.5
`n−1

(n − 1)!

(2)
< 1.5

[
e`

n − 1

]n−1

.

Proof. The following is a concise sketch:

(1) By induction.

(2) Using Stirling’s approximation.

Finally, Lemmas 2 and 3 combined establish the theorem.
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