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In this lecture, we introduce support vector machines (SVMs). The technique refers to a model
class of separating hyperplanes and an algorithm which finds the hyperplane with optimal margin.
The terminology comes from the fact that the characterization of the optimal hyperplane consists
of a select number of data samples, the so-called support vectors. We will give the setup of the
problem, and show how dualizing the optimization gives the aforementioned characterization.
Interest in SVMs is due to the non-linear extensions with kernels, and due to its theoretical
generalization ability (fast convergence of the empirical risk). We will elaborate these in the next
lecture.

1 Support Vector Machines

1.1 Optimal Separating Hyperplane

We are given a sample set z`, zi = (xi, yi), xi ∈ Rn and yi ∈ {−1}. We assume that the samples
are separable, in the sense that a separating hyperplane parameterized by φ ∈ Rn and c ∈ R

exists such that:
φ′xi > c if yi = 1
φ′xi < c if yi = −1

We denote the index sets by
I1 = {i : yi = 1},
I2 = {i : yi = −1}.

The margin of the separting hyperplane is denoted by ρ(φ) and is defined as follows:

c1(φ)
4
= mini∈I1 φ

′xi

c2(φ)
4
= maxi∈I2 φ

′xi

ρ(φ)
4
= 1

2 [c1(φ) − c2(φ)]

We would like to define an optimal hyperplane to be one that maximizes this margin. However,
in order for the scale not to be a factor, we would require the norm of φ to be bounded. More
precisely, an optimal hyperplane is the solution of the following optimization:

(φ◦, c◦) = argmaxφ,c ρ(φ)
s.t. |φ| ≤ 1

φ′xi > c, i ∈ I1
φ′xi < c, i ∈ I2,

1.2 Existence and Uniqueness

Claim. The optimal φ◦ exists and is unique.

Proof. Sketch:

- Existence follows from continuity of ρ(φ0) and compactness of the domain.

- For uniqueness:

· φ◦ is on the boundary, i.e. |φ◦| = 1. Indeed, if |φ◦| < 1 then φ◦

|φ◦| is a solution (with

an appropriately chosen c◦), and it produces a larger margin, which cannot be.
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· For the sake of contradiction, suppose there exist distinct φ1 and φ2, both optimal. It
follows that they both lie on the boundary. But observe that λφ1 + (1 − λ)φ2 is also
optimal, yet it lies in the interior, which is the contradiction we desire.

Corollary. c◦ = c1(φ
◦)+c2(φ

◦)
2 is optimal and unique.

2 LQP Formulation and Duality

We start by observing the follow:

- When i ∈ I1, we have that φ◦′xi − c◦ > c1(φ
◦) − c◦ = ρ(φ◦).

- When i ∈ I2, we have that φ◦′xi − c◦ < c2(φ
◦) − c◦ = −ρ(φ◦).

We can write these more compactly as follows:

yi(φ
◦′xi − c◦) > ρ(φ◦), ∀i.

If we normalize by ρ(φ◦), we obtain:

yi

[ (
φ◦

ρ(φ◦)

)

︸ ︷︷ ︸

ψ

′

xi −
c◦

ρ(φ◦)
︸ ︷︷ ︸

b

]

> 1, ∀i.

2.1 LQP Primal Formulation

From above, we have that:
yi(ψ

′xi − b) > 1, ∀i.

Intuitively, maximizing the margin should be equivalent to minimizing |ψ|. This is indeed
the case, as is formalized in the following proposition, which casts the optimization as a LQP
problem.

Proposition 1. Let:

(ψ◦, b◦) = argminψ,b
1
2ψ

′ψ

s.t. yi(ψ
′xi − b) > 1, ∀i.

Then:

φ◦ =
ψ◦

|ψ◦|
, c◦ =

b◦

|ψ◦|

characterize the optimal hyperplane, and ρ(φ◦) = |ψ◦|−1.

Proof. Let φ◦ be defined as above. Then:

ρ(φ◦) =
1

2
[c1(φ

◦) − c2(φ
◦)]

=
1

2|ψ◦|

[

min
I1

ψ′xi
︸ ︷︷ ︸

≥1+b

−max
I2

ψ′xi
︸ ︷︷ ︸

≤−1+b

]

≥
1

|ψ◦|

To show optimality of the margin, it’s therefore enough to show that it is impossible to have
a strict inequality, i.e. ρ(φ◦) > |ψ◦|−1. For the sake of contradiction, assume that is indeed the
case. Define:

ψ̃ =
φ◦

ρ(φ◦)
=

ψ◦

|ψ◦|ρ(φ◦)
.

2



Notice that ψ̃ satisifies the constraints (with properly chosen b̃) since for all i:

yi(ψ
◦′xi − b) > 1

∴ yi(φ
◦′xi − c◦) > 1

|ψ◦| > ρ(φ◦)

∴ yi

[(
φ◦

ρ(φ◦)

)′

xi −
c◦

ρ(φ◦)

]

> 1

∴ yi(ψ̃
′xi − b̃) > 1.

It follows that ψ̃ is feasible. But, by hypothesis, |ψ◦|ρ(φ◦) > 1, thus |ψ̃| < |ψ◦| and therefore
ψ◦ is not optimal, which is the contradiction we desire.

2.2 LQP Dual Formulation

By introducing the multipliers a1, · · · , a`, we can write the Lagrangian of the primal problem as
follows:

L(ψ, b, a) =
1

2
ψ′ψ −

∑̀

i=1

ai [yi(ψ
′xi − b) − 1]

The constrained optimization is therefore equivalent to:

max
ai≥0

min
ψ,b

L(ψ, b, a)

The conditions for optimality are:

∂L

∂ψ
= 0 and

∂L

∂b
= 0,

and the alignment conditions are:

ai [yi(ψ
′xi − b) − 1] = 0.

Thus:

∂L

∂ψ
= ψ? −

∑̀

i=1

aiyixi = 0 ⇒ ψ? =
∑̀

i=1

aiyixi,

∂L

∂b
=

∑̀

i=1

aiyi = 0.

Observe that it follows that:

ψ?′xj =
∑̀

i=1

aiyi(x
′
ixj),

and after some manipulation the dual problem can be written as:

a◦ = argmaxa
∑`

i=1 ai −
1
2

∑`

i,j=1 aiajyiyjx
′
ixj

s.t. ai ≥ 0 ∀i,
∑`
i=1 aiyi = 0.

Finally, the alignment conditions dictate that:

a◦i 6= 0 iff yi(ψ
◦′xi − b) = 1.
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2.3 Observations

The dual problems reveals a host of interesting properties. As an immediate consequence of the
alignment conditions, ψ◦ (ψ? evaluated at a◦) is expressed in terms of the support vectors alone.
This representation may not be unique, due to multiple dual solutions, but the fact that only
a handful of vectors dictate the solution will be crucial in the next section and lecture, when
proving the statistical properties of SVMs.

Moreover, from the structure of the dual problem, it is clear that the solution depends only
on the inner products x′ixj , and not on the individual points. This is the main idea used in kernal
extensions of SVMs.

Finally, it is worth mentioning that there is no duality gap. The primal optimal cost is
1
2ψ

◦′ψ◦, and due to the alignment conditions we have:

L(ψ◦, b◦, a◦) =
1

2
ψ◦′ψ◦.

Also, by summing all alignment conditions, we obtain:

∑

a◦i yi(ψ
◦′xi − b) =

∑

a◦i yi

(∑

a◦jyjx
′
j

)

xi =
∑

a◦i ,

which gives us the dual cost:

1

2

∑̀

i=1

a◦i = L(ψ◦, b◦, a◦) =
1

2
ψ◦′ψ◦.

3 Statistical Properties

In this section, we outline a theoretical motivation for using SVMs. In particular, we state a
result which shows that the optimal hyperplane has a desirable convergence property.

Let K`= # of essential support vectors, that is the cardinality of the intersection of all sets
of possible support vectors, resulting from different solutions of the dual problem.

Claim. We have:

K` ≤ n

Proof. (next time)
The claim follows from using the representation ψ◦ =

∑
a◦i yixi.

In our analysis so far, we have considered convergence properties with respect to the model
class itself. In that context, recall that our task was reduced to obtaining a parameter α that
minimizes empirical risk. When many solutions are possible, e.g. many separating hyperplanes
exist, the details of the algorithm can provide us more information.

Let us specify an algorithm, which is nothing but a family of function α`(·):

α` : Z` → C
z` 7→ (ψ, b)

(x1, y1), · · · , (x`, y`) 7→ optimal hyperplane.

It follows that α`(Z
`) is a random variable, and we can consider the associated ensemble

performance, i.e. the expected value of the risk:

E
[
R

(
α`(Z

`)
)] 4

= E
[
L

(
X,Y ;α`(Z

`)
)]
.

Claim. We have:

E
[
R

(
α`(Z

`)
)]

≤
E[K`+1]

`+ 1
.
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Proof. (next time)
The claim follows from a technique in the style of cross-validation. One data point is removed

at a time, and only support vectors affect the solution if removed.

This convergence result can be shown to surpass that of non-optimal hyperplane algorithms,
such as the perceptron.

Finally, this line of investigation is related to the area of active learning, where data is chosen
adaptively. By choosing data such that K` is kept small, faster convergence can be achieved.
Despite a gain in speed, disadvantages of the technique include the fact that errors in the data,
if allowed, are reinforced.
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