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We have seen in the previous lecture the maximum margin hyperplane problem can be ex-
pressed as:

minimize 1
2ψ

′

ψ

subject to yi(ψ
′

xi − b) ≥ 1 ∀i

Let ψ◦ and b◦ denote the optimal solution of the above problem. Then it is straightforward to
see that the margin is equal to 1

|ψ◦| . Using duality we can conclude that the optimal hyperplane

can be written as a linear combination of the data points, i.e.

ψ◦ =
∑̀

i=1

a◦i yixi

with
a◦i (yi(ψ

◦xi − b◦) − 1) = 0,

so essentially a◦i > 0 only for those vectors that lie on the margin, i.e. yi(ψ
◦xi − b◦) − 1 = 0,

which we call the support vectors.

1 Statistical Properties of SVMs

Note that the solution to the dual of the maximum margin hyperplane problem is not necessarily
unique and each dual solution defines a set of support vectors. Let K` denote the number of
essential support vectors, i.e. the vectors that belong to the intersection of the support sets.
Obviously, K` ≤ n. Finally, note that from above we can write:

ψ◦′xj − b◦ =
∑̀

i=1

a◦i yix
′
ixj − b◦ = f(x, xj) − b◦

Next, we define a mapping from the sequences of data points to an element of the model class,
e.g. the set of separating hyperplanes. This effectively represent an algorithm. In particular,

α` : Z` → { separating hyperplanes }

z1 = (x1, y1), · · · , z` = (x`, y`) 7→ { optimal hyperplane }

As before we can define the expected risk of that mapping as:

E[R(α`)] = E[L(z, α`(Z
`))] = EZ1,··· ,Z`

EZ|Z1,··· ,Z`
[L(Z,α`(Z1, · · · , Z`))]

Note that the empirical risk is 0, since data is separable and we can always pick a hyperplane
that classifies all data points perfectly.

First we show the following proposition,

Proposition 1. E[R(α`)] ≤
E[K`+1]
`+1

Proof. The proof is using the ”leave one out one at a time” validation method. The main idea
is that points far from the margin do not really matter and can be discarded. In particular, let
z1, · · · , z`+1 be a sequence of samples. Let z−i denote the sequence that contains all but the ith

sample. Also let the loss function

L((x, y), α`(.)) =

{

1 if α`(.) misclassifies (x, y)
0 otherwise
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Finally, define the cross validation statistic as

L̄(z1, · · · , z`+1) =
1

`+ 1

`+1
∑

i=1

L(zi, α`(z−i))

Then,

Lemma 1. E[R(α`)] = E[L̄]

Proof.

E[L̄] =
1

`+ 1

`+1
∑

i=1

E[L(zi, α`(z−i))] =
1

`+ 1
(`+ 1)E[R(α`)] = E[R(α`)]

Finally, note that if L(zi, α`(z−i)) = 1 then zi has to belong to the set of essential support

vectors. Thus, we conclude that E[R(α`)] = E[L̄] ≤
E[K`+1]
`+1

2 SVM Extensions via Kernals

Now we are ready to define support vector machines as a simply a mapping from Rn to Rm for
the data points, where typically m > n. Namely,

φ : Rn → Rm

such that (xi, yi) 7→ (φ(xi), yi)

We can rewrite ψ◦ as

ψ◦ =
∑̀

i=1

a◦i yiφ(xi)

and

ψ◦φ(xj) − b◦ =
∑̀

i=1

a◦i yiφ(xi)φ(xj) − b◦

Define φ(xi)φ(xj) as K(xi, xj), the kernel function. One question that arises naturally at this
point is which kernels best separate the data. Also, given a kernel function K(xi, xj), does there
exist a mapping φ such that K(xi, xj) = φ(xi)φ(xj)?

The answer to the second question is given by Mercer’s Theorem. More precisely, suppose x
is mapped to some Hilbert space:

φ(x) = (φ1(x), φ2(x), · · · ).

Theorem 1. (Mercer’s)
A continuous symmetric function K(u, v) in L2(C), C compact, can be expanded as:

K(u, v) =

∞
∑

k=1

akφk(u)φk(v)

where ak > 0, if and only if
∫

C

∫

C

K(u, v)g(u)g(v)dudv ≥ 0,

for all g ∈ L2(C).

Followingly, we give a few examples of kernel functions:

• K(u, v) = [u′v + 1]d (polynomial function)

• K(u, v) = exp(−γ|u− v|2) (radial function)

• K(u, v) = 1
1+exp(cu′v+1) (segmoidal function)
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3 Extensions of VC Theory to General (Bounded) Loss Functions

In this section we will consider the case of non-binary loss functions (e.g. regression problem).
The main assumpion is that the loss function L(z, a) is bounded, i.e. b1 ≤ L(z, a) ≤ b2, ∀z. Then,
similarly we can define:

BΛ(z`) = {L(z1, a), · · · , L(z`, a)} ⊆ [a, b]`

which is a sequence of real numbers.
To define a similar notion as the VC dimension, we consider ε-covers of the BΛ(z`) object, i.e.

BΛ(z`) is contained in
⋃

i Ballε(ri). Associated with each BΛ(z`) and ε is the minimal ε-cover

(smallest number of such balls) which we denote by N̂(ε, z1, · · · , z`).
Similarly with the classification case we can define the annealed entropy as:

HΛ
annl(ε, `) = lnE[NΛ(ε, Z1, · · · , Z`)]

and the growth function as:

GΛ(ε, `) = sup
z1,··· ,z`

lnNΛ(ε, z1, · · · , z`)

The results that follow are similar to the indicator function case.
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