Massachusetts Institute of Technology 6.435 Theory of Learning and System Identification

(Spring 2007)

Prof. Dahleh, Prof. Mitter
Lecture 9
Scribed by Kostas Bimpikis

We have seen in the previous lecture the maximum margin hyperplane problem can be expressed as:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \psi^{\prime} \psi \\
\text { subject to } & y_{i}\left(\psi^{\prime} x_{i}-b\right) \geq 1 \quad \forall i
\end{array}
$$

Let ψ° and b° denote the optimal solution of the above problem. Then it is straightforward to see that the margin is equal to $\frac{1}{\left|\psi^{\circ}\right\rangle}$. Using duality we can conclude that the optimal hyperplane can be written as a linear combination of the data points, i.e.

$$
\psi^{\circ}=\sum_{i=1}^{\ell} a_{i}^{\circ} y_{i} x_{i}
$$

with

$$
a_{i}^{\circ}\left(y_{i}\left(\psi^{\circ} x_{i}-b^{\circ}\right)-1\right)=0
$$

so essentially $a_{i}^{\circ}>0$ only for those vectors that lie on the margin, i.e. $y_{i}\left(\psi^{\circ} x_{i}-b^{\circ}\right)-1=0$, which we call the support vectors.

1 Statistical Properties of SVMs

Note that the solution to the dual of the maximum margin hyperplane problem is not necessarily unique and each dual solution defines a set of support vectors. Let K_{ℓ} denote the number of essential support vectors, i.e. the vectors that belong to the intersection of the support sets. Obviously, $K_{\ell} \leq n$. Finally, note that from above we can write:

$$
\psi^{\circ} x_{j}-b^{\circ}=\sum_{i=1}^{\ell} a_{i}^{\circ} y_{i} x_{i}^{\prime} x_{j}-b^{\circ}=f\left(x, x_{j}\right)-b^{\circ}
$$

Next, we define a mapping from the sequences of data points to an element of the model class, e.g. the set of separating hyperplanes. This effectively represent an algorithm. In particular,

$$
\begin{gathered}
\alpha_{\ell}: \mathcal{Z}^{\ell} \rightarrow\{\text { separating hyperplanes }\} \\
z_{1}=\left(x_{1}, y_{1}\right), \cdots, z_{\ell}=\left(x_{\ell}, y_{\ell}\right) \mapsto\{\text { optimal hyperplane }\}
\end{gathered}
$$

As before we can define the expected risk of that mapping as:

$$
\mathbf{E}\left[R\left(\alpha_{\ell}\right)\right]=\mathbf{E}\left[L\left(z, \alpha_{\ell}\left(Z^{\ell}\right)\right)\right]=\mathbf{E}_{Z_{1}, \cdots, Z_{\ell}} \mathbf{E}_{Z \mid Z_{1}, \cdots, Z_{\ell}}\left[L\left(Z, \alpha_{\ell}\left(Z_{1}, \cdots, Z_{\ell}\right)\right)\right]
$$

Note that the empirical risk is 0 , since data is separable and we can always pick a hyperplane that classifies all data points perfectly.

First we show the following proposition,
Proposition 1. $\mathbf{E}\left[R\left(\alpha_{\ell}\right)\right] \leq \frac{\mathbf{E}\left[K_{\ell+1}\right]}{\ell+1}$
Proof. The proof is using the "leave one out one at a time" validation method. The main idea is that points far from the margin do not really matter and can be discarded. In particular, let $z_{1}, \cdots, z_{\ell+1}$ be a sequence of samples. Let z_{-i} denote the sequence that contains all but the $i^{\text {th }}$ sample. Also let the loss function

$$
L\left((x, y), \alpha_{\ell}(.)\right)=\left\{\begin{array}{l}
1 \text { if } \alpha_{\ell}(.) \text { misclassifies }(x, y) \\
0 \text { otherwise }
\end{array}\right.
$$

Finally, define the cross validation statistic as

$$
\overline{\mathbf{L}}\left(z_{1}, \cdots, z_{\ell+1}\right)=\frac{1}{\ell+1} \sum_{i=1}^{\ell+1} L\left(z_{i}, \alpha_{\ell}\left(z_{-i}\right)\right)
$$

Then,
Lemma 1. $\mathbf{E}\left[R\left(\alpha_{\ell}\right)\right]=\mathbf{E}[\overline{\boldsymbol{L}}]$
Proof.

$$
\mathbf{E}[\overline{\mathbf{L}}]=\frac{1}{\ell+1} \sum_{i=1}^{\ell+1} \mathbf{E}\left[L\left(z_{i}, \alpha_{\ell}\left(z_{-i}\right)\right)\right]=\frac{1}{\ell+1}(\ell+1) \mathbf{E}\left[R\left(\alpha_{\ell}\right)\right]=\mathbf{E}\left[R\left(\alpha_{\ell}\right)\right]
$$

Finally, note that if $L\left(z_{i}, \alpha_{\ell}\left(z_{-i}\right)\right)=1$ then z_{i} has to belong to the set of essential support vectors. Thus, we conclude that $\mathbf{E}\left[R\left(\alpha_{\ell}\right)\right]=\mathbf{E}[\overline{\mathbf{L}}] \leq \frac{\mathbf{E}\left[K_{\ell+1}\right]}{\ell+1}$

2 SVM Extensions via Kernals

Now we are ready to define support vector machines as a simply a mapping from \mathbf{R}^{n} to \mathbf{R}^{m} for the data points, where typically $m>n$. Namely,

$$
\begin{aligned}
\phi: \mathbf{R}^{n} & \rightarrow \mathbf{R}^{m} \\
\text { such that }\left(x_{i}, y_{i}\right) & \mapsto\left(\phi\left(x_{i}\right), y_{i}\right)
\end{aligned}
$$

We can rewrite ψ° as

$$
\psi^{\circ}=\sum_{i=1}^{\ell} a_{i}^{\circ} y_{i} \phi\left(x_{i}\right)
$$

and

$$
\psi^{\circ} \phi\left(x_{j}\right)-b^{\circ}=\sum_{i=1}^{\ell} a_{i}^{\circ} y_{i} \phi\left(x_{i}\right) \phi\left(x_{j}\right)-b^{\circ}
$$

Define $\phi\left(x_{i}\right) \phi\left(x_{j}\right)$ as $K\left(x_{i}, x_{j}\right)$, the kernel function. One question that arises naturally at this point is which kernels best separate the data. Also, given a kernel function $K\left(x_{i}, x_{j}\right)$, does there exist a mapping ϕ such that $K\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right) \phi\left(x_{j}\right)$?

The answer to the second question is given by Mercer's Theorem. More precisely, suppose x is mapped to some Hilbert space:

$$
\phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \cdots\right) .
$$

Theorem 1. (Mercer's)
A continuous symmetric function $K(u, v)$ in $L_{2}(C), C$ compact, can be expanded as:

$$
K(u, v)=\sum_{k=1}^{\infty} a_{k} \phi_{k}(u) \phi_{k}(v)
$$

where $a_{k}>0$, if and only if

$$
\int_{C} \int_{C} K(u, v) g(u) g(v) \mathrm{d} u \mathrm{~d} v \geq 0
$$

for all $g \in L_{2}(C)$.
Followingly, we give a few examples of kernel functions:

- $K(u, v)=\left[u^{\prime} v+1\right]^{d}$ (polynomial function)
- $K(u, v)=\exp \left(-\gamma|u-v|^{2}\right)$ (radial function)
- $K(u, v)=\frac{1}{1+\exp \left(c u^{\prime} v+1\right)}$ (segmoidal function)

3 Extensions of VC Theory to General (Bounded) Loss Functions

In this section we will consider the case of non-binary loss functions (e.g. regression problem). The main assumpion is that the loss function $L(z, a)$ is bounded, i.e. $b_{1} \leq L(z, a) \leq b_{2}, \forall z$. Then, similarly we can define:

$$
B^{\Lambda}\left(z^{\ell}\right)=\left\{L\left(z_{1}, a\right), \cdots, L\left(z_{\ell}, a\right)\right\} \subseteq[a, b]^{\ell}
$$

which is a sequence of real numbers.
To define a similar notion as the VC dimension, we consider ϵ-covers of the $B^{\Lambda}\left(z^{\ell}\right)$ object, i.e. $B^{\Lambda}\left(z^{\ell}\right)$ is contained in $\bigcup_{i} \operatorname{Ball}\left(r_{i}\right)$. Associated with each $B^{\Lambda}\left(z^{\ell}\right)$ and ϵ is the minimal ϵ-cover (smallest number of such balls) which we denote by $\hat{N}\left(\epsilon, z^{1}, \cdots, z^{\ell}\right)$.

Similarly with the classification case we can define the annealed entropy as:

$$
H_{a n n l}^{\Lambda}(\epsilon, \ell)=\ln \mathbf{E}\left[N^{\Lambda}\left(\epsilon, Z_{1}, \cdots, Z_{\ell}\right)\right]
$$

and the growth function as:

$$
G^{\Lambda}(\epsilon, \ell)=\sup _{z_{1}, \cdots, z_{\ell}} \ln N^{\Lambda}\left(\epsilon, z_{1}, \cdots, z_{\ell}\right)
$$

The results that follow are similar to the indicator function case.

