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Outline

• Graphical Models and Recursive Inference (Pat)

– Markovianity & Factorization

– Exponential Families: Ising & Gaussian Models

– Illustrative Example: 3 × 3 Ising Model

– “Belief” Propagation: Sum/Max-Product & Gaussian Elim.

– Exact inference gets hard! Many approximate methods...

• Model Identification in Exponential Families (Jason)

– Convexity & Duality in Exponential Families

– Variational Principles for Inference & Learning

– Information Geometry & Iterative Projection Methods
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Graphical Models: Markovianity

• Graph G = (V,E) defines family of probability distributions

– Node set V identifies random vector x = (x1, . . . , x|V |)

– Edge set E indicates Markov properties with “separation”
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• Definition: Random vector x is Markov on G if and only if,

for every triplet A,S,B ⊂ V such that S separates A and B,

p (xA, xB |xS) = p (xA|xS) p (xB |xS)
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Graphical Models: Factorization

• Let edge set E define p(x) as product of “local” functions

• But is there a notion of “local” applicable for general G?

– Choose domains C ⊂ V over maximal cliques of G
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– For each C, choose potential function ψC : XC → (0,∞)

• Definition: p(x) factors over G if, for at least one collection

{ψC} of (maximal) clique potentials,

p(x) =
1

Z

∏

C

ψC(xC) (Z ∈ R for normalization)
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Graphical Models: Punchline & Asides

• Theorem (Hammersley-Clifford): “x Markov on G” and

“p(x) factors over G” define equivalent families of distributions

⇒ Graph structure tied to complexity of inference/learning ⇐

• Connection to Boltzmann distribution in statistical physics

p(x) =
1

Z
exp (−H(x)) (energy H(x) = −

∑

C log [ψC(xC)])

• Factor graphs characterize more specific “local” structure
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p(x) ∝ ψ123ψ134p(x) ∝ ψ123ψ134 p(x) ∝ ψ12ψ23ψ14ψ34
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Exponential Family Models

• All distributions on X that can be expressed in the form

p(x) = exp [θ′φ(x) − Ψ(θ)] (Ψ : R
d → R for normalization)

with parameters θ ∈ R
d and features φ : X → R

d

• Ising Models: if xi ∈ {+1,−1}, then d = |V | + |E| and

p(x) ∝ exp




∑

(i,j)∈E

θijxixj +
∑

i∈V

θixi





• Gaussian Models: if x ∼ N(J−1h, J−1), let θ = (h, J) so

p(x) ∝ exp

[

−
1

2
x′Jx+ h′x

]

with matrix J sparse in correspondence with edge set E
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Illustrative Example: 3 × 3 Ising Model

p(x) = 3.016e−001p(x) = 1.885e−002p(x) = 4.713e−003p(x) = 4.713e−003p(x) = 4.713e−003p(x) = 1.178e−003p(x) = 1.178e−003p(x) = 1.178e−003p(x) = 2.946e−004p(x) = 2.946e−004p(x) = 7.364e−005p(x) = 7.364e−005p(x) = 4.603e−006p(x) = 4.603e−006p(x) = 1.151e−006p(x) = 1.798e−008

p(x) = 3.016e−001 p(x) = 1.885e−002 p(x) = 4.713e−003 p(x) = 4.713e−003

p(x) = 4.713e−003 p(x) = 1.178e−003 p(x) = 1.178e−003 p(x) = 1.178e−003

p(x) = 2.946e−004 p(x) = 2.946e−004 p(x) = 7.364e−005 p(x) = 7.364e−005

p(x) = 4.603e−006 p(x) = 4.603e−006 p(x) = 1.151e−006 p(x) = 1.798e−008
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6



Illustrative Example: 3 × 3 Ising Model

y p(x|y) = 0.603p(x
i
|y) p(x|y) = 0.603

y p(x|y) = 0.181p(x
i
|y) p(x|y) = 0.0113

y p(x|y) = 0.342p(x
i
|y) p(x|y) = 0.0855

y p(x|y) = 0.262p(x
i
|y) p(x|y) = 0.262
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Graphical Model Inference

xi ∈ {−1,+1}
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θi = 0, i ∈ V
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θij = 0.7, (i, j) ∈ E
︸ ︷︷ ︸

“attractive”
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Inference Problems & Variable Elimination

• Marginalization: compute p(xA) =
∑

xV \A
p(x)

– Elimination of nodes V \A by summation/integration

– Basic operation to compute conditionals and likelihoods

• Example: let p(x) ∝ ψ12ψ13ψ24ψ35ψ256 with |Xi| = r for i ∈ V

– Direct computation of p(x1) =
∑

x2,...,x6
p(x) scales as r6

– Exploiting factorization in computation of p(x1) scales as r3

p(x1) =
1

Z

∑

x2

ψ12

∑

x3

ψ13

∑

x4

ψ24

∑

x5

ψ35

∑

x6

ψ256

• Max-Marginalization: compute ν(xA) = maxxV \A
p(x)

– Elimination of nodes V \A by maximization

– Basic operation to compute a mode of p(x) (with caveat!)
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Recursive Inference: “Message-Passing”

• Discrete-variable chain with |V | = 4 ⇒ p(x) ∝ ψ12ψ23ψ34

PSfrag replacements
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︸ ︷︷ ︸

m2(x1)

• Key idea: apply most efficient elimination ordering

– Marginalization at all nodes share intermediate terms mi

– “Message” interpretation useful for distributed settings
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“Belief” Propagation on Trees

• Markov tree: p(x) ∝
∏

i∈V ψ(xi)
∏

(i,j)∈E ψ(xi, xj)

• Sum-Product algorithm efficiently finds all marginals p(xi)

mj→i(xi) =
∑

xj

ψ(xi, xj)



ψ(xj)
∏

k∈N(j)\i

mk→j(xj)





p(xv) ∝ ψ(xv)
∏

i∈N(v)

mi→v(xv)

• Max-Product algorithm efficiently finds all max-marginals ν(xi)

10



Gaussian Elimination (GE) is a form of BP!

• Consider solution of Jx = h by Gaussian elimination. Partition

V = A ∪B and eliminate variables B from equations A we

obtain ĴAxA = ĥA where:

ĴA = JA − JA,BJ
−1
B JB,A

ĥA = hA − JA,BJ
−1
B hB

This is the Schur complement form of Gaussian elimination.

• Let K(x;h, J) = exp{− 1
2x

′Jx+ h′x}. Then,

1. Integration:
∫

xB
K(xA, xB ;h, J)dxB ∝ K(xA; ĥA, ĴA)

2. Maximization: maxxB
K(xA, xB ;h, J) = K(xA; ĥA, ĴA)

Consequently, Gaussian BP involves identical steps as in GE.

• The Kalman filter is also a form of BP on a Gauss-Markov

chain but is based on a directed (causal) factorization.
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Inference on Graphs with Cycles

• Still variable elimination...but complicated by “entanglement”

• Junction Tree algorithm performs exact computation

– Key idea: aggregate nodes to equivalent tree
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6

{1,2,4} {4,7,8} {2,3,6} {6,8,9}

{2,5,8}

{2,5,6,8}{2,4,5,8}

2 31

5

7 8 9

64

– Tractable if aggregates are low-order (i.e., low “treewidth”)
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“Loopy Belief” Propagation

• Iterate BP equations at each node, ignorant of cycles
PSfrag replacements
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• Need not converge: approximation if it does converge

– Connection to coding: LDPC codes and “turbo codes”

– Connection to physics: minimizing Bethe free energy
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More about Exponential Familiesa...

• The cumulant-generating function plays a central role:

Ψ(θ) = log

∫

exp{θ · φ(x)}dx

e.g., Ψ(θ) = − 1
2 log det J(θ) + const (Gaussian).

• Moment-generating property:

∇Ψ(θ) = Eθ{φ(x)} ≡ η(θ)

where η are the moments ≡ marginal probabilities (discrete),

means, variances and edge-covariances (Gaussian).

• The curvature of Ψ(θ) is the Fisher information matrix :

∇2Ψ(θ) = Eθ{(φ(x) − η(θ))′(φ(x) − η(θ))}

This is a spd covariance matrix, hence Ψ(θ) is convex.
aBarndorff-Nielsen ’78.
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Variational Principles

Fenchel duality [Fenchel ’49; Rockafellar ’74] The convex

conjugate of Ψ equals the negative entropy as a function of the

moments.

Ψ∗(η) ≡ sup
θ

{η · θ − Ψ(θ)} = −h(η)

Due to convexity of Ψ it holds that (Ψ∗)∗ = Ψ.

Learning Given a desired set of moments η∗ the corresponding

parameters θ∗ minimize the convex function:

f(θ) = Ψ(θ) − η∗ · θ

In ML parameter estimation, η∗ are the empirical moments.

Inference Given θ∗ the corresponding moments η∗ minimize the

convex function:

g(η) = Ψ∗(η) − θ∗ · η

Leads to approximate inference [Wainwright & Jordan ’03].
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Information Geometrya

• The Bregman distanceb induced by Ψ(θ) equals the

Kullback-Leibler divergence.

D(θ∗‖θ) = Ψ(θ) − {Ψ(θ∗) + ∇Ψ(θ∗) · (θ − θ∗)}

Similar relation holds between Ψ∗(η) and D(η‖η∗).

• Information Projection: let p ∈ F and let E ⊂ F is affine in θ.

pE ≡ arg min
q∈E

D(p‖q)

Optimality condition: (η(q) − η(p)) ⊥ (θ(E) − θ(pE)).

• Pythagorean Relation: pE is unique member of E satisfying

D(p‖q) = D(p‖pE) +D(pE‖q)

for all q ∈ E .
aChentsov ’72; Efron ’78; Amari ’01.
bBregman ’67; Bauschke & Bowein ’97.
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θ∗ θ

D(θ∗||θ)

Ψ(θ)

Ψ̄(θ; θ∗)
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q

p

M(p)

D(p‖q) = D(p‖pE) +D(pE‖q)

pE
D(pE‖q) E

D(p‖pE) = h(pE) − h(p)

F
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IPF as Projection onto Convex Sets

Iterate over cliques {Ck} of graph G, update potentials to enforce

marginal constraints...

• Iterative Proportional Fitting:a marginal pmfs p(xCk
)

q(k+1)(x) = q(k)(x) ×
p(xCk

)

q(k)(xCk
)

• Covariance Selection:b marginal covariances PCk

J
(k+1)
Ck

= J
(k)
Ck

+ (P−1
Ck

− (P
(k)
Ck

)−1)

• Projection Interpretation:c Mk ⊂ F affine in η imposes

marginal moment constraints on clique Ck.

q(k+1) = arg min
p∈Mk

D(p‖q(k))

aKullback ’68.
bDempster ’77; Speed & Kiiveri ’86.
cCsiszar ’75.
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Expectation-Maximization as Alternating Projections

• Let F = {pθ(x, y)} be an exponential family, given observations

y1, . . . , yn, select θ to maximize the (marginal) log-likelihood:

f(θ) ≡
∑

i

log

∫

pθ(x, yi)dx

Typically non-convex, possibly many local minima!

• Expectation-Maximizationa (Alternating Projections): Let

q(0) ∈ F and D = {p(x, y)|
∫
p(x, y)dy = p∗(y)}

1. (E-step) p(k+1) = arg minp∈DD(p‖q(k)) (inference)

2. (M-step) q(k+1) = arg minq∈F D(p(k+1)‖q) (IPF)

⇒ local minima of f(θ).

aDempster, Laird & Rubin ’77.
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Summary: Exponential Family Graphical Models

• Graphical models combine graph theory and probability theory

• Exponential family representation links to convex analysis

• Lead to principled approximations for large-scale problems

– Inference: compute marginals/modes of a given p(x)

– Learning: design parameterized p(x) given sample data

• Active research topics

– Approximate Inference

– Model Selection
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