Exponential Family Graphical Models: Inference, Learning and Convexity

Jason Johnson \& Pat Kreidl

May 10, 2005

Outline

- Graphical Models and Recursive Inference (Pat)
- Markovianity \& Factorization
- Exponential Families: Ising \& Gaussian Models
- Illustrative Example: 3×3 Ising Model
- "Belief" Propagation: Sum/Max-Product \& Gaussian Elim.
- Exact inference gets hard! Many approximate methods...
- Model Identification in Exponential Families (Jason)
- Convexity \& Duality in Exponential Families
- Variational Principles for Inference \& Learning
- Information Geometry \& Iterative Projection Methods

Graphical Models: Markovianity

- Graph $G=(V, E)$ defines family of probability distributions
- Node set V identifies random vector $x=\left(x_{1}, \ldots, x_{|V|}\right)$
- Edge set E indicates Markov properties with "separation"

- Definition: Random vector x is Markov on G if and only if, for every triplet $A, S, B \subset V$ such that S separates A and B,

$$
p\left(x_{A}, x_{B} \mid x_{S}\right)=p\left(x_{A} \mid x_{S}\right) p\left(x_{B} \mid x_{S}\right)
$$

Graphical Models: Factorization

- Let edge set E define $p(x)$ as product of "local" functions
- But is there a notion of "local" applicable for general G ?
- Choose domains $C \subset V$ over maximal cliques of G

- For each C, choose potential function $\psi_{C}: \mathcal{X}_{C} \rightarrow(0, \infty)$
- Definition: $p(x)$ factors over G if, for at least one collection $\left\{\psi_{C}\right\}$ of (maximal) clique potentials,

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right) \quad(Z \in \mathbb{R} \text { for normalization })
$$

Graphical Models: Punchline \& Asides

- Theorem (Hammersley-Clifford): " x Markov on G " and " $\mathrm{p}(\mathrm{x})$ factors over G " define equivalent families of distributions \Rightarrow Graph structure tied to complexity of inference/learning \Leftarrow
- Connection to Boltzmann distribution in statistical physics

$$
p(x)=\frac{1}{Z} \exp (-H(x)) \quad\left(\text { energy } H(x)=-\sum_{C} \log \left[\psi_{C}\left(x_{C}\right)\right]\right)
$$

- Factor graphs characterize more specific "local" structure

Exponential Family Models

- All distributions on \mathcal{X} that can be expressed in the form

$$
p(x)=\exp \left[\theta^{\prime} \phi(x)-\Psi(\theta)\right] \quad\left(\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { for normalization }\right)
$$

with parameters $\theta \in \mathbb{R}^{d}$ and features $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$

- Ising Models: if $x_{i} \in\{+1,-1\}$, then $d=|V|+|E|$ and

$$
p(x) \propto \exp \left[\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right]
$$

- Gaussian Models: if $x \sim N\left(J^{-1} h, J^{-1}\right)$, let $\theta=(h, J)$ so

$$
p(x) \propto \exp \left[-\frac{1}{2} x^{\prime} J x+h^{\prime} x\right]
$$

with matrix J sparse in correspondence with edge set E

Illustrative Example: 3×3 Ising Model

Illustrative Example: 3×3 Ising Model

Inference Problems \& Variable Elimination

- Marginalization: compute $p\left(x_{A}\right)=\sum_{x_{V \backslash A}} p(x)$
- Elimination of nodes $V \backslash A$ by summation/integration
- Basic operation to compute conditionals and likelihoods
- Example: let $p(x) \propto \psi_{12} \psi_{13} \psi_{24} \psi_{35} \psi_{256}$ with $\left|\mathcal{X}_{i}\right|=r$ for $i \in V$
- Direct computation of $p\left(x_{1}\right)=\sum_{x_{2}, \ldots, x_{6}} p(x)$ scales as r^{6}
- Exploiting factorization in computation of $p\left(x_{1}\right)$ scales as r^{3}

$$
p\left(x_{1}\right)=\frac{1}{Z} \sum_{x_{2}} \psi_{12} \sum_{x_{3}} \psi_{13} \sum_{x_{4}} \psi_{24} \sum_{x_{5}} \psi_{35} \sum_{x_{6}} \psi_{256}
$$

- Max-Marginalization: compute $\nu\left(x_{A}\right)=\max _{x_{V \backslash A}} p(x)$
- Elimination of nodes $V \backslash A$ by maximization
- Basic operation to compute a mode of $p(x)$ (with caveat!)

Recursive Inference: "Message-Passing"

- Discrete-variable chain with $|V|=4 \Rightarrow p(x) \propto \psi_{12} \psi_{23} \psi_{34}$

- Key idea: apply most efficient elimination ordering
- Marginalization at all nodes share intermediate terms m_{i}
- "Message" interpretation useful for distributed settings

"Belief" Propagation on Trees

- Markov tree: $\quad p(x) \propto \prod_{i \in V} \psi\left(x_{i}\right) \prod_{(i, j) \in E} \psi\left(x_{i}, x_{j}\right)$

- Sum-Product algorithm efficiently finds all marginals $p\left(x_{i}\right)$

$$
\begin{aligned}
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}} \psi\left(x_{i}, x_{j}\right)\left(\psi\left(x_{j}\right) \prod_{k \in N(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)\right) \\
p\left(x_{v}\right) & \propto \psi\left(x_{v}\right) \prod_{i \in N(v)} m_{i \rightarrow v}\left(x_{v}\right)
\end{aligned}
$$

- Max-Product algorithm efficiently finds all max-marginals $\nu\left(x_{i}\right)$

Gaussian Elimination (GE) is a form of BP!

- Consider solution of $J x=h$ by Gaussian elimination. Partition $V=A \cup B$ and eliminate variables B from equations A we obtain $\hat{J}_{A} x_{A}=\hat{h}_{A}$ where:

$$
\begin{aligned}
& \hat{J}_{A}=J_{A}-J_{A, B} J_{B}^{-1} J_{B, A} \\
& \hat{h}_{A}=h_{A}-J_{A, B} J_{B}^{-1} h_{B}
\end{aligned}
$$

This is the Schur complement form of Gaussian elimination.

- Let $K(x ; h, J)=\exp \left\{-\frac{1}{2} x^{\prime} J x+h^{\prime} x\right\}$. Then, 1. Integration: $\int_{x_{B}} K\left(x_{A}, x_{B} ; h, J\right) d x_{B} \propto K\left(x_{A} ; \hat{h}_{A}, \hat{J}_{A}\right)$ 2. Maximization: $\max _{x_{B}} K\left(x_{A}, x_{B} ; h, J\right)=K\left(x_{A} ; \hat{h}_{A}, \hat{J}_{A}\right)$ Consequently, Gaussian BP involves identical steps as in GE.
- The Kalman filter is also a form of BP on a Gauss-Markov chain but is based on a directed (causal) factorization.

Inference on Graphs with Cycles

- Still variable elimination...but complicated by "entanglement"

- Junction Tree algorithm performs exact computation
- Key idea: aggregate nodes to equivalent tree

- Tractable if aggregates are low-order (i.e., low "treewidth")

"Loopy Belief" Propagation

- Iterate BP equations at each node, ignorant of cycles

- Need not converge: approximation if it does converge
- Connection to coding: LDPC codes and "turbo codes"
- Connection to physics: minimizing Bethe free energy

More about Exponential Families ${ }^{\text {a }}$...

- The cumulant-generating function plays a central role:

$$
\Psi(\theta)=\log \int \exp \{\theta \cdot \phi(x)\} d x
$$

e.g., $\Psi(\theta)=-\frac{1}{2} \log \operatorname{det} J(\theta)+$ const (Gaussian).

- Moment-generating property:

$$
\nabla \Psi(\theta)=\mathbb{E}_{\theta}\{\phi(x)\} \equiv \eta(\theta)
$$

where η are the moments \equiv marginal probabilities (discrete), means, variances and edge-covariances (Gaussian).

- The curvature of $\Psi(\theta)$ is the Fisher information matrix:

$$
\nabla^{2} \Psi(\theta)=\mathbb{E}_{\theta}\left\{(\phi(x)-\eta(\theta))^{\prime}(\phi(x)-\eta(\theta))\right\}
$$

This is a spd covariance matrix, hence $\Psi(\theta)$ is convex.

[^0]
Variational Principles

Fenchel duality [Fenchel '49; Rockafellar '74] The convex conjugate of Ψ equals the negative entropy as a function of the moments.

$$
\Psi^{*}(\eta) \equiv \sup _{\theta}\{\eta \cdot \theta-\Psi(\theta)\}=-h(\eta)
$$

Due to convexity of Ψ it holds that $\left(\Psi^{*}\right)^{*}=\Psi$.
Learning Given a desired set of moments η^{*} the corresponding parameters θ^{*} minimize the convex function:

$$
f(\theta)=\Psi(\theta)-\eta^{*} \cdot \theta
$$

In ML parameter estimation, η^{*} are the empirical moments.
Inference Given θ^{*} the corresponding moments η^{*} minimize the convex function:

$$
g(\eta)=\Psi^{*}(\eta)-\theta^{*} \cdot \eta
$$

Leads to approximate inference [Wainwright \& Jordan '03].

Information Geometry ${ }^{\text {a }}$

- The Bregman distance ${ }^{\mathrm{b}}$ induced by $\Psi(\theta)$ equals the Kullback-Leibler divergence.

$$
D\left(\theta^{*} \| \theta\right)=\Psi(\theta)-\left\{\Psi\left(\theta^{*}\right)+\nabla \Psi\left(\theta^{*}\right) \cdot\left(\theta-\theta^{*}\right)\right\}
$$

Similar relation holds between $\Psi^{*}(\eta)$ and $D\left(\eta \| \eta^{*}\right)$.

- Information Projection: let $p \in \mathcal{F}$ and let $\mathcal{E} \subset \mathcal{F}$ is affine in θ.

$$
p_{\mathcal{E}} \equiv \arg \min _{q \in \mathcal{E}} D(p \| q)
$$

Optimality condition: $(\eta(q)-\eta(p)) \perp\left(\theta(\mathcal{E})-\theta\left(p_{\mathcal{E}}\right)\right)$.

- Pythagorean Relation: $p_{\mathcal{E}}$ is unique member of \mathcal{E} satisfying

$$
D(p \| q)=D\left(p \| p_{\mathcal{E}}\right)+D\left(p_{\mathcal{E}} \| q\right)
$$

for all $q \in \mathcal{E}$.

[^1]
\[

$$
\begin{aligned}
& \mathcal{F} \\
& \mathcal{M}(p) \\
& D(p \| q)=D\left(p \| p_{\mathcal{E}}\right)+D\left(p_{\mathcal{E}} \| q\right),
\end{aligned}
$$
\]

IPF as Projection onto Convex Sets

Iterate over cliques $\left\{C_{k}\right\}$ of graph \mathcal{G}, update potentials to enforce marginal constraints...

- Iterative Proportional Fitting: ${ }^{\text {a }}$ marginal pmfs $p\left(x_{C_{k}}\right)$

$$
q^{(k+1)}(x)=q^{(k)}(x) \times \frac{p\left(x_{C_{k}}\right)}{q^{(k)}\left(x_{C_{k}}\right)}
$$

- Covariance Selection: ${ }^{\text {b }}$ marginal covariances $P_{C_{k}}$

$$
J_{C_{k}}^{(k+1)}=J_{C_{k}}^{(k)}+\left(P_{C_{k}}^{-1}-\left(P_{C_{k}}^{(k)}\right)^{-1}\right)
$$

- Projection Interpretation: ${ }^{\text {c }} \mathcal{M}_{k} \subset \mathcal{F}$ affine in η imposes marginal moment constraints on clique C_{k}.

$$
q^{(k+1)}=\arg \min _{p \in \mathcal{M}_{k}} D\left(p \| q^{(k)}\right)
$$

[^2]

Expectation-Maximization as Alternating Projections

- Let $\mathcal{F}=\left\{p_{\theta}(x, y)\right\}$ be an exponential family, given observations y_{1}, \ldots, y_{n}, select θ to maximize the (marginal) log-likelihood:

$$
f(\theta) \equiv \sum_{i} \log \int p_{\theta}\left(x, y_{i}\right) d x
$$

Typically non-convex, possibly many local minima!

- Expectation-Maximization ${ }^{\text {a }}$ (Alternating Projections): Let $q^{(0)} \in \mathcal{F}$ and $\mathcal{D}=\left\{p(x, y) \mid \int p(x, y) d y=p^{*}(y)\right\}$

1. (E-step) $p^{(k+1)}=\arg \min _{p \in \mathcal{D}} D\left(p \| q^{(k)}\right)$ (inference)
2. (M-step) $q^{(k+1)}=\arg \min _{q \in \mathcal{F}} D\left(p^{(k+1)} \| q\right.$) (IPF)
\Rightarrow local minima of $f(\theta)$.

[^3]

Summary: Exponential Family Graphical Models

- Graphical models combine graph theory and probability theory
- Exponential family representation links to convex analysis
- Lead to principled approximations for large-scale problems
- Inference: compute marginals/modes of a given $p(x)$
- Learning: design parameterized $p(x)$ given sample data
- Active research topics
- Approximate Inference
- Model Selection

[^0]: ${ }^{\text {a }}$ Barndorff-Nielsen ${ } 78$.

[^1]: ${ }^{\text {a }}$ Chentsov '72; Efron '78; Amari '01.
 ${ }^{\text {b }}$ Bregman '67; Bauschke \& Bowein '97.

[^2]: ${ }^{\text {a }}$ Kullback '68.
 ${ }^{\text {b }}$ Dempster ' 77 ; Speed \& Kiiveri ' 86.
 ${ }^{\mathrm{c}}$ Csiszar ${ }^{\mathrm{C}} 75$.

[^3]: ${ }^{\text {a }}$ Dempster, Laird \& Rubin '77.

