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Outline

e Graphical Models and Recursive Inference (Pat)
Markovianity & Factorization
Exponential Families: Ising & Gaussian Models
Illustrative Example: 3 x 3 Ising Model
“Belief” Propagation: Sum/Max-Product & Gaussian Elim.

Exact inference gets hard! Many approximate methods...

e Model Identification in Exponential Families (Jason)

— Convexity & Duality in Exponential Families
— Variational Principles for Inference & Learning

— Information Geometry & Iterative Projection Methods




Graphical Models: Markovianity

e Graph G = (V, F) defines family of probability distributions

— Node set V' identifies random vector = (x1,...,z)y|)

— Edge set E indicates Markov properties with “separation”
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e Definition: Random vector x is Markov on G if and only if,
for every triplet A, S, B C V such that S separates A and B,

p(za,xzBlrs) =p(zalzs)p (2B|TS)




Graphical Models: Factorization
o Let edge set F define p(x) as product of “local” functions

e But is there a notion of “local” applicable for general G?
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— Choose domains C' C V over mazrimal cliques of G

— For each C, choose potential function Ve : Xo — (0, 00)

e Definition: p(z) factors over G if, for at least one collection
{1} of (maximal) clique potentials,

1 .
p(x) = Z lc_[ Yo(re) (Z € R for normalization)




Graphical Models: Punchline & Asides

Theorem (Hammersley-Clifford): “x Markov on G” and
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p(x) factors over G” define equivalent families of distributions

= Graph structure tied to complexity of inference/learning <«

Connection to Boltzmann distribution in statistical physics

p(z) = ~ exp (—H(z)) (energy H(z) = — X log e (ae)))

A

e Fuactor graphs characterize more specific “local” structure

p(z) X Y123i34 . P(x) X P123Y134 p() X P12923914734




Exponential Family Models

e All distributions on X that can be expressed in the form
p(x) =exp [0 ¢p(x) — ¥(F)] (¥ :R?Y— R for normalization)
with parameters € R? and features ¢ : X — R
e Ising Models: if z; € {—|—1, —1}, then d = |V| + |E

p(x) o< exp Z 0;ixix; + Zé’ T

| (.,.J)€EE eV

e Gaussian Models: if x ~ N(J th,J~1), let 6 = (h, J) so

1
p(x) o< exp [—aaz’Jx + h’x]

with matrix J sparse in correspondence with edge set E




Illustrative Example: 3 x 3 Ising Model
Graphical Model Samples

T; € {—1, —|—1}

p(x) = 3.016e-001 p(x) = 1.885e—-002 p(x) = 4.713e—003 p(x) = 4.713e—003

__

p(x) = 4.713e-003 p(x) = 1.178e-003 p(x) = 1.178e-003

@)

p(x) = 2.946e-004 p(x) = 2.946e-004 p(x) = 7.364e-005 p(x) = 7.364e-005

0; =0, 1€V
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“uniform”

p(x) = 4.603e-006 p(x) = 4.603e-006 p(x) = 1.151e-006 p(x) = 1.798e-008

Hz'j = 0.7, (?/,]) c kb
“attractive”




Illustrative Example: 3 x 3 Ising Model
Graphical Model Inference

x; € {—1, —|-1}

p(x]y) = 0.603 p(x]y) = 0.603

p(x|ly) = 0.262 p(x]y) = 0.262

@)

(9@:0, 1eV

“uniform” .

p(x]y) = 0.0855 p(x|ly) = 0.342

Hz'j = 0.7, (Z,]) c kb .
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“attractive”




Inference Problems & Variable Elimination

e Marginalization: compute p(z ) = va\A p(x)

— Elimination of nodes V'\ A by summation/integration

— Basic operation to compute conditionals and likelihoods

° Example: let p(lll') X w12¢13¢24¢35¢256 with ‘Xz| —rtforeeV
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— Direct computation of p(z1) = ) p(x) scales as r

L2,...,L¢6

— Exploiting factorization in computation of p(x1) scales as 3

p(x1) = % > V12> Y13 > s > 35 > ase

2

o Maz-Marginalization: compute v(x4) = maxg,,, , p(z)
— Elimination of nodes V'\ A by maximization

— Basic operation to compute a mode of p(x) (with caveat!)




Recursive Inference: ‘“Message-Passing”

e Discrete-variable chain with |[V| =4 = p(x) « 12923134

-
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e Key idea: apply most efficient elimination ordering
— Marginalization at all nodes share intermediate terms m;

— “Message” interpretation useful for distributed settings




“Belief” Propagation on Trees

o Markov tree:  p(x) o< [ ;o () H(i,j)eg (@i, )

20 NN N N
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e Sum-Product algorithm efficiently finds all marginals p(x;)

e Max-Product algorithm efficiently finds all max-marginals v(x;)




Gaussian Elimination (GE) is a form of BP!

Consider solution of Jx = h by Gausstan elimination. Partition
V = AU B and eliminate variables B from equations A we
obtain jA.CL’A = iLA where:

Ja = Ja—JasJs JB.A

ilA = hy— JA,nglhB

This is the Schur complement form of Gaussian elimination.
Let K (x;h,J) = exp{—32'Jz + h'x}. Then,

1. Integration: fxB K(za,zp;h, J)deg < K(xa;ha, Ja)

2. Mazimization: maxy, K(za,xg:h,J) = K(xa;ha, Ja)
Consequently, Gaussian BP involves identical steps as in GE.

The Kalman filter is also a form of BP on a Gauss-Markov

chain but is based on a directed (causal) factorization.
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Inference on Graphs with Cycles

e Still variable elimination...but complicated by “entanglement”

o Junction Tree algorithm performs exact computation
— Key idea: aggregate nodes to equivalent tree
{2,5,8}
O
{2458 — {2568
O 0
N N\,

{1,2,4 {478} {236} {689}

— Tractable if aggregates are low-order (i.e., low “treewidth”)




“Loopy Belief” Propagation

e Iterate BP equations at each node, ignorant of cycles

1

(t+1)(

j—i

m
keEN(j)\i
e Need not converge: approximation if it does converge
— Connection to coding: LDPC codes and “turbo codes”

— Connection to physics: minimizing Bethe free energy




More about Exponential Families®...

e The cumulant-generating function plays a central role:
U () = log/exp{9 - o(x) pdx

e.g., U() = —1logdet J(#) + const (Gaussian).

e Moment-generating property:

VI (0) = Egio(z)} =n(0)

where n are the moments = marginal probabilities (discrete),
means, variances and edge-covariances (Gaussian).

e The curvature of (@) is the Fisher information matrix:

VAU(0) = Eg{(d(x) — 1(0)) (d(x) —n(0))}

This is a spd covariance matrix, hence W(#) is convex.
2Barndorff-Nielsen ’78.




Variational Principles

Fenchel duality [Fenchel '49; Rockafellar ’74] The convex
conjugate of W equals the negative entropy as a function of the
moments.

V7 (n) = sup{n -0 = V(0)} = —h(n)
Due to convexity of ¥ it holds that (U*)* = W.

Learning Given a desired set of moments n* the corresponding

parameters * minimize the convex function:

f(0) =) —n"-0

In ML parameter estimation, n* are the empirical moments.

Inference Given 6* the corresponding moments n* minimize the

convex function:

g(n) =¥*(n) —0"-n

Leads to approximate inference [Wainwright & Jordan ’03].







Information Geometry?

e The Bregman distance® induced by ¥(0) equals the
Kullback-Leibler divergence.

D(07[|0) = W(0) — {0(07) + VE(07) - (0 —67)}
Similar relation holds between ¥*(n) and D(n||n*).

e Information Projection: let p € F and let £ C F is affine in 6.

= in D
pe = argmin (rllq)

Optimality condition: (n(q) —n(p)) L (8(E) — O(pe)).
o Pythagorean Relation: pge is unique member of £ satisfying
D(pllg) = D(pllpe) + D(pellq)

for all g € £.

aChentsov ’72; Efron ’78; Amari ’01.
PBregman ’67; Bauschke & Bowein 97.







M (p)

4D
D(plla) = D(plipe) + Dpella) -~ |

f

(pllpe) = h(pe) — h(p)




IPF as Projection onto Convex Sets

Iterate over cliques {C}} of graph G, update potentials to enforce
marginal constraints...

o [terative Proportional Fitting:* marginal pmfs p(zc, )

(k+1) _ (k) p(rcy)
q r)=q " (x) X
() () ) (20, )

b marginal covariances Pg,

e (Covariance Selection:
k41 k _ k) —
Jé,:r ) = C(Zk) + (Pckl - (Pék)) 1)

e Projection Interpretation:© M C F affine in 1 imposes

marginal moment constraints on clique C}.

(k+1) _ Dl
q arg min (pllg*™)

aKullback ’68.
PDempster ’77; Speed & Kiiveri ’86.
¢(Csiszar ’75.







Expectation-Maximization as Alternating Projections

o Let F = {py(x,y)} be an exponential family, given observations

Y1, .- -, Yn, Select § to maximize the (marginal) log-likelihood:

f(0) = Zlog/pg(x,yi)dx

Typically non-convex, possibly many local minima)

e Expectation-Maximization® (Alternating Projections): Let
¢ € F and D = {p(z,y)| [ p(z,y)dy = p*(y)}
1. (E-step) p**1) = argmin,ep D(p||¢'*)) (inference)

2. (M-step) ¢'*1) = argmin e+ D(p'**+1||q) (IPF)

= local minima of f(8).

aDempster, Laird & Rubin ’77.







Summary: Exponential Family Graphical Models
Graphical models combine graph theory and probability theory
Exponential family representation links to convex analysis

Lead to principled approximations for large-scale problems

— Inference: compute marginals/modes of a given p(x)

— Learning: design parameterized p(x) given sample data

Active research topics
— Approximate Inference

— Model Selection




