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Reaction Channels

Reaction Type Products Rate
‘ —" Unimolecular 1 o, = 8,
‘ - ‘ Unimolecular , X, = @, Xt

T © dx, = @, X dt
W @ Bimolecular . dx, = a, X xdt

‘/'




Networks of Reaction Channels




Mass Action Kinetics

dx = (A‘l)x + A¥x [ x) dt

(1) _ ags . . .
A’/ = Probability that a given, x>, x In tine
s = Probability that a given pair x +% X

In timedt



Systems Are Discrete
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Systems Are Stochastic
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Gillespie Exact Method
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Probablility that the next reaction wbke i/ at timer

p(r, L)dr = p,(r)a,dr P, (1) = exp(—z aﬂrj

Which gives the joint probability distribution:

p(r,u)dr =a, exp(—z aﬂr) dr
U



Simulating the Gillespie Method
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The Joint distribution can be broker
Into two simple distributions:
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Gillespie Method Generates a
Sample Path

e Method is “Exact” In

the sense that it make /b
no averaging
assumptions

* Gives a sample path - Markov process

not a distribution

time



A Continuous Approximation
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Starting with the Master Equation: This gives the Fokker Plank Equation:
dp, _ dp(n,t 0 10
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Approximating as continuous functionsdahaylor expanding

f(n-1)p(n-1)= f (n)p(n)—:—nf (n)p(n)+%% f ()p(n)
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Fokker Plank Steady

At Steady State:
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Bayesian Networks

BN — graphical model for probabilistic relationships
between variables
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Node probabilities are independent given node paren
— Pa(Xy, - - o %) = [Ti=1" Pe(Xi[pa(Xx))



Dynamic Bayesian Networks

DBN — models stochastic evolution of variables auae
— Assumes time invariant evolution!
— Same independence given parents as BN, with

pa(x[t]) U {X;[t-1]}

Consider as a constrained Or parametrize by B
semiinfinite BN




Model Selection for BNSs

Define a BN® = (G, 0)
e (G structure
— Which connections, which entries in A matrix are nonzero

e O parameters

— Avrise in conditional probabilities, values of nonzero entries
In A, rate constants

Once structure is fixed, easier to find parameters
maximum likelihood

Find structure - max P(G|X)

— I.e. maximize the probability that G is the correct model
given that X is the data observed



Complete information

« Markov field is fully observed> can examine
transitions independently

« Given N observations of the DBN up to time n
— N*n, independent realizations of the BN, B
— N independent realizations of the Bly B

May use standard techniques for model selection on
the constrained semiinfinite Bayesian network

_Or_
Model selection using many realizations of smaller
networks By, and B,



Model Selection for BNSs

By Bayes rule: P(G|XJ P(X|G)P(G)
— P(G) = prior probability of model G
— P(X|G) = likelihood=> need to compute

Task:
arg max, P(G|X) = arg maxlog P(X|G) + log P(G)



Model Selection for BNs>
likelihood

P(X|G) =] P(X|GO) POIG) d = E;[P(X|GO)]
— Integral hard to compute, requires priors on parameters

Likelihood penalties — a general class of model selection criteria
« Rather than comparing P(X|G), compare P(X{G)
« B0":(X) = arg max P(X|GH)

— 0" Is ML estimate ob given X assuming G Is correct model

* Penalty comes from limiting comparison to only a single
parameter for a given model

* BIC =log P(X|G,0";) —K/2log N
* AIC =log P(X|G,0";) — K/2



Model Selection for BNs — BIC
Recall Likelihood P(X|G) $P(X|G®) PO|G) dd

Use Laplace approximation for the integral and take
logarithm

— Laplace approximation assune&aussian arounel,
l.e. PE|G) Gaussian

« BIC ignores any terms in approximation that are not O(N)
— Other terms may be computed for added accuracy

BIC = logP(X|G,0";) —K/2 log N
—K = # of parameters in model G




BIC <> MDL

Regret — difference in code length between selected and baseline

Shtarkov: to minimize maximum regret, code data X according to
distribution:

Q(X) = P(X|G,0";) / comp (G, ©)
where comp (G, O) = 2, P(X|G,0%;) =min R, _,
MDL Code length = - log Q(X)

« Recall from notes: log comfG, ©) = K/2 log N
— Used a Laplace approximation here too!

- MDL code length = -log P(X|&";) + K/2 log N

Minimum description length = - BIC score!



Comments on BIC

Does not require priors on parameters
— Effect of parameter priors disappears with large N

Good for large N> performance for small N?

Consistent estimate finds true model with large N
(if true model Is In model class)

Intuitive — penalizes complex models without
explicit priors on models
— Avoids overfitting

If model priors available, may augment BIC
— Recall log P(G|X) = log P(X|G) + log P(G)
= logP(X|G,0";) - K/I2*log(N) + log P(G)



Model Selection for BNs> AIC

Consider choosing Q(X) to minimize K-L distance between Q(X)
and actual P(X|®)

D(Q(X)|[P(XP)) = Eqll0g(Q(X)) —log P(X|GH)]
With fixed G, don’t know actud (or P(X|G@)) > expect oveb
.e. find Q(X) = arg mig,, E[D(Q(X)|IP(X|GH))]

Using Laplace approximation and similar analysis as before
— Assumed® Gaussian around the ML estimate from the 8&{X)
—>code length of Q(X) minimizing the expected K-L distance is:

AIC = logP(X|G,8") - K/2




AlIC vs. BIC

BIC = logP(X|G,0";) —K/2 log N
AIC = logP(X|G,0";) — K/2

BIC — minimized maximum regret

AlIC — minimized expected K-L distance
— some kind of average regret?

AlIC not consistent
— Okay, since true model probably not in model class
AIC better than BIC for small N

Both include natural penalty on model complexity
(without using explicit structure priors!)



Computation from Data — local searct

For each fixed structure G and given data X,
computeb” . (X) = arg max P(X|GH)

In practice, begin with some structure G and
add or delete edges

If new structure gets higher BIC score, keep
it, else revert and try again



Incomplete Information
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Markov field no longer fully observed
— Can’t separate into many independent realizations,of B

Structural EM solution
— Given the model and data, complete the state information

— Use model selection criteria on completed data to find a
better model structure



EM — Expectation Maximization

Given G and0", compute P(X]Y, G 8"
— Complete the data

For each G and X, compute
0":(X) = arg max P(X|GH)

— for BIC score

Find G*1= arg max
Eoxiv.cnon)l 109P(X|G,6%;) —K/2 log N]
— Max over models

Given G*land observed data Y, find
6™ = arg may Ep v gnenl09P (X|G™, 0)]
— Max over parameters, expected ML



EM — Expectation Maximization

Given G" and 0", compute P(X|Y, G, O")
— Complete the data

For each G and X, compute
0":(X) = arg max P(X|GH)

— for BIC score

________________

Find @*t=argmax | X
Ebxiv.cnonl 109P(X|G,0%;) — K/2 Iog N]
— Max over models

Given @*land observed data Y, find
6™ = arg may Ep v gnenl09P (X|G™, 0)]
— Max over parameters, expected ML



EM — Expectation Maximization

Given G and0", compute P(X]Y, G 8"
— Complete the data

For each G and X, compute
0" 5(X) = arg maxy P(X|G.,0)
— for BIC score

Find G*1= arg max
Epxv.anonl 109P(X|G,0%) —Ki2log N] g}
— Max over models

Given G*land observed data Y, find
6™ = arg may Ep v gnenl09P (X|G™, 0)]
— Max over parameters, expected ML



EM — Expectation Maximization

Given G and0", compute P(X]Y, G 8"
— Complete the data

For each G and X, compute
0":(X) = arg max P(X|GH)
— for BIC score
Find G = arg max;
Ecxy ananl 109P(X|G, 8% ;) — K/2 log N]
— Max over models

Given @*1and observed data Y, find
6™ = arg may Ep v gnen[l09P (X|G™, 0)]

— Max over parameters, expected ML




EM — Expectation Maximization

Given G and0", compute P(X]Y, G 8"
— Complete the data
For each G and X, compute
0":(X) = arg max P(X|GH)
— for BIC score
Find G™*1 = arg max
EP(X|Y,Gn9n)[ logP(X|G,0";) — K/2 log N]
— Max over models

Given G"*1 and observed data Y, find
0" = arg maxg Epxy n en)109P(X|G™, 6)]
— Max over parameters, expected ML




EM In practice

« Compute full probabillity distribution
of completions of data

— By simulation methods described before
e Computing ML and expected ML

e Convergence

— Enough to find an improving model in
each step



Dynamic Optimization

&= f(x(p,t), p)
' X(0) =X,

9
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dp



Computing First Order Sensitivities
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Integrate the Sensitivity System
Along with The Dynamic System

d'x' f(X(p,t),p) ]
| ax| = | of dx_ of
| dp_  Oxdp Jp |
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Adjoint Method
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Adjoint Sensitivity System
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Forward Model

~

local perturbation

Adjoint Model

~

area of
possible origin




Conclusions

* Biochemical Signaling Pathways can be
formulated as a DPN

 This formulation allows the structure of the
network to be learned even In the case of
partial observability

« Significant numerical challenges exist to
make this feasible for large scale networks



References:

[1] Hirotugu Akaike. A new look at the statistical model identification. IEEE Trans. on Automatic Control, 19(6):716—723, 1974.
[2] Chachuat B, Singer AB, and Barton PI. Global mixed-integer dynamic optimization. AIChE Journal, 2004. In Press.

[3] Andrew Barron, Rissanen Jorma, and Bin Yu. The minimum description length principle in coding and modeling. IEEE Trans. on
Information Theory, 44(6):2743—-2760, 1998.

[4] Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, and Hoek JB. Untangling the wires: A strategy to trace
functional interactions in signaling and gene networks. PNAS, 99(23):15245-15245, 2002.

[5] Heckerman D. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.

[6] Munther Dahleh. Lecture notes on mdl, from 17 march 05, 2005. [7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.

[8] Gillespie DT. General method for numerically simulating stochastic time evolution of coupled chemicalreactions. Journal of
Computational Physics, 22(4):403—-434, 1976.

[9] Gillespie DT. Exact stochastic simulation of coupled chemical-reactions. Journal of Phys. Chem., 81(25):2340-2361, 1977.

[10] Sontag E, Kiyatkin A, and Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene
expression, protein and metabolite data. Bioinformatics, 20(12):1877-1886, 2004.

[11] Nir Friedman. Learning belief networks in the presence of missing values and hidden variables. In International Conference in
Machine Learning, 1997.

[12] Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure of dynamic probabilistic networks. In Uncertainty in
Artificial Intelligence, 1998.

[13] David Heckerman. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.
[14] Michael Jordan and Chris Bishop. Introduction to Graphical Models (Ch 10).

[15] Sachs K, Gifford D, Jaakkola T, Sorger P, and Lauffenburger DA. Bayesian network approach to cell signaling pathway
modeling. Sci STKE, 148:PE38, 2002.

[16] Friedman N, Murphy K, and Russell S. Learning the structure of dynamic probabilistic networks. UAI-1998, 1998.

[17] Schuster S and Hofer T. Determining all extremem semi-positive conservation relations in chemical-reaction systems - a test
criterion for conservativity. Journal of the Chemical Society-Farady Trans., 87(16):2561-2566, 1991.

[18] Ghahramani Z. Learning dynamic bayesian networks. In Lecture Notes in Artificial Intelligence, 1997.



