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Reaction Channels
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Networks of Reaction Channels
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Mass Action Kinetics
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Systems Are Discrete



Systems Are Stochastic
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Probablility that the next reaction will be  at time :
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Gillespie Exact Method



Simulating the Gillespie Method

The Joint distribution can be broken 

into two simple distributions:

 The next reation time distribution:
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Gillespie Method Generates a 
Sample Path

• Method is “Exact” in 
the sense that it makes 
no averaging 
assumptions

• Gives a sample path a 
not a distribution



A Continuous Approximation
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Starting with the Master Equation:
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Approximating as continuous functions and Taylor expanding:
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Fokker Plank Steady State
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Bayesian Networks

BN – graphical model for probabilistic relationships 
between variables

Node probabilities are independent given node parents

– PB(x1, . . ., xn) = ∏i=1
n PB(xi|pa(Xi))

B �
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Dynamic Bayesian Networks

DBN – models stochastic evolution of variables over time
– Assumes time invariant evolution!

– Same independence given parents as BN, with 
pa(Xi[t]) ⊆ {X j[t-1]}

Consider as a constrained 
semiinfinite BN

Or parametrize by B0
and B

�

…

…

…



Model Selection for BNs
Define a BN Φ = (G, Θ)
• G structure

– Which connections, which entries in A matrix are nonzero

• Θ parameters
– Arise in conditional probabilities, values of nonzero entries 

in A, rate constants

Once structure is fixed, easier to find parameters �

maximum likelihood
Find structure - max P(G|X)

– i.e. maximize the probability that G is the correct model 
given that X is the data observed



Complete information
• Markov field is fully observed � can examine 

transitions independently
• Given N observations of the DBN up to time nt

– N*nt independent realizations of the BN B
�

– N independent realizations of the BN B0

May use standard techniques for model selection on 
the constrained semiinfinite Bayesian network 

-or-
Model selection using many realizations of smaller 

networks B
�

and B0



Model Selection for BNs

By Bayes rule: P(G|X) ∝ P(X|G)P(G)
– P(G) = prior probability of model G

– P(X|G) = likelihood � need to compute

Task:  
arg maxG P(G|X) = arg maxG log P(X|G) + log P(G) 



Model Selection for BNs�
likelihood

P(X|G) = ∫ P(X|G,Θ) P(Θ|G) dΘ = EΘ[P(X|G,Θ)]
– Integral hard to compute, requires priors on parameters

Likelihood penalties – a general class of model selection criteria
• Rather than comparing P(X|G), compare P(X|G, θ^G)
• θ^G(X) = arg maxθ P(X|G,θ) 

– θ^G is ML estimate of θ given X assuming G is correct model
• Penalty comes from limiting comparison to only a single 

parameter for a given model

• BIC = log P(X|G, θ^G) – K/2 log N
• AIC = log P(X|G, θ^G) – K/2



Model Selection for BNs – BIC

Recall Likelihood P(X|G) = ∫ P(X|G,Θ) P(Θ|G) dΘ

Use Laplace approximation for the integral and take 
logarithm
– Laplace approximation assumes θ Gaussian around θ^G, 

i.e. P(Θ|G) Gaussian

• BIC ignores any terms in approximation that are not O(N)
– Other terms may be computed for added accuracy

BIC = logP(X|G, θ^G) – K/2 log N
–K = # of parameters in model G



BIC � MDL
Regret – difference in code length between selected and baseline

Shtarkov: to minimize maximum regret, code data X according to 
distribution:

Q(X) =  P(X|G, θ^G) / compN (G, Θ)
where compN (G, Θ) = ΣX P(X|G, θ^G) = min Rmax

MDL Code length = - log Q(X)

• Recall from notes: log compN(G, Θ) ≈ K/2 log N
– Used a Laplace approximation here too!

�MDL code length = -log P(X|G, θ^G) + K/2 log N

Minimum description length = - BIC score!



Comments on BIC

• Does not require priors on parameters 
– Effect of parameter priors disappears with large N

• Good for large N � performance for small N?
• Consistent estimate � finds true model with large N 

(if true model is in model class)
• Intuitive – penalizes complex models without 

explicit priors on models
– Avoids overfitting

• If model priors available, may augment BIC 
– Recall log P(G|X) = log P(X|G) + log P(G) 

≈ logP(X|G, θ^G) - K/2*log(N) + log P(G)



Model Selection for BNs� AIC

Consider choosing Q(X) to minimize K-L distance between Q(X) 
and actual P(X|G,θ)

D(Q(X)||P(X|θ)) = EQ(X)[log(Q(X)) – log P(X|G,θ)]

With fixed G, don’t know actual θ (or P(X|G,θ)) � expect over θ
i.e. find Q(X) = arg minQ(X) Eθ[D(Q(X)||P(X|G,θ))]

Using Laplace approximation and similar analysis as before

– Assumes θ Gaussian around the ML estimate from the data θ^(X)

�code length of Q(X) minimizing the expected K-L distance is:

AIC = logP(X|G, θ^G) - K/2



AIC vs. BIC

BIC = logP(X|G, θ^G) – K/2 log N
AIC = logP(X|G, θ^G) – K/2

• BIC – minimized maximum regret
• AIC – minimized expected K-L distance  

– some kind of average regret?

• AIC not consistent
– Okay, since true model probably not in model class

• AIC better than BIC for small N
• Both include natural penalty on model complexity 

(without using explicit structure priors!)



Computation from Data – local search

For each fixed structure G and given data X, 
compute θ^G(X) = arg maxθ P(X|G,θ)

In practice, begin with some structure G and 
add or delete edges

If new structure gets higher BIC score, keep 
it, else revert and try again



Incomplete Information

Markov field no longer fully observed
– Can’t separate into many independent realizations of B

�

Structural EM solution
– Given the model and data, complete the state information
– Use model selection criteria on completed data to find a 

better model structure



EM – Expectation Maximization

Given Gn and θn, compute P(X|Y, Gn, θn)
– Complete the data

For each G and X, compute 
θ^G(X) = arg maxθ P(X|G,θ) 
– for BIC score

Find Gn+1 = arg maxG
EP(X|Y,Gn,θn)[ logP(X|G, θ^G) – K/2 log N] 
– Max over models

Given Gn+1 and observed data Y, find                       
θn+1 = arg maxθ EP(X|Y,Gn,θn)[logP(X|Gn+1, θ)] 
– Max over parameters, expected ML
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EM – Expectation Maximization

Given Gn and θθθθn, compute P(X|Y, Gn, θθθθn)
– Complete the data

For each G and X, compute 
θ^G(X) = arg maxθ P(X|G,θ) 
– for BIC score

Find Gn+1 = arg maxG
EP(X|Y,Gn,θn)[ logP(X|G, θ^G) – K/2 log N] 
– Max over models

Given Gn+1 and observed data Y, find                       
θn+1 = arg maxθ EP(X|Y,Gn,θn)[logP(X|Gn+1, θ)] 
– Max over parameters, expected ML
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EM – Expectation Maximization

Given Gn and θn, compute P(X|Y, Gn, θn)
– Complete the data

For each G and X, compute 
θθθθ^G(X) = arg maxθθθθ P(X|G,θθθθ) 
– for BIC score

Find Gn+1 = arg maxG
EP(X|Y,Gn,θn)[ logP(X|G, θ^G) – K/2 log N] 
– Max over models

Given Gn+1 and observed data Y, find                       
θn+1 = arg maxθ EP(X|Y,Gn,θn)[logP(X|Gn+1, θ)] 
– Max over parameters, expected ML
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EM – Expectation Maximization

Given Gn and θn, compute P(X|Y, Gn, θn)
– Complete the data

For each G and X, compute 
θ^G(X) = arg maxθ P(X|G,θ) 
– for BIC score

Find Gn+1 = arg maxG

EP(X|Y,Gn,θθθθn)[ logP(X|G, θθθθ^G) – K/2 log N] 
– Max over models

Given Gn+1 and observed data Y, find                       
θn+1 = arg maxθ EP(X|Y,Gn,θn)[logP(X|Gn+1, θ)] 
– Max over parameters, expected ML
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EM – Expectation Maximization

Given Gn and θn, compute P(X|Y, Gn, θn)
– Complete the data

For each G and X, compute 
θ^G(X) = arg maxθ P(X|G,θ) 
– for BIC score

Find Gn+1 = arg maxG
EP(X|Y,Gn,θn)[ logP(X|G, θ^G) – K/2 log N] 
– Max over models

Given Gn+1 and observed data Y, find                       
θθθθn+1 = arg maxθθθθ EP(X|Y,Gn,θθθθn)[logP(X|Gn+1, θθθθ)] 
– Max over parameters, expected ML
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EM in practice

• Compute full probability distribution 
of completions of data
– By simulation methods described before

• Computing ML and expected ML
• Convergence

– Enough to find an improving model in 
each step



Dynamic Optimization
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Computing First Order Sensitivities



Integrate the Sensitivity System 
Along with The Dynamic System 
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Adjoint Method
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Adjoint Sensitivity System

0(0)

( )

0
f

f
T

f
x

d f

dt x
d

df
dp

dp

x
x

T
x

d

dp

λ λ
ψ

λ

λ
ψ

  
   
   
  ∂  = −   ∂   
   −      

        ∂Ψ  =    ∂          





Conclusions

• Biochemical Signaling Pathways can be 
formulated as a DPN

• This formulation allows the structure of the 
network to be learned even in the case of 
partial observability

• Significant numerical challenges exist to 
make this feasible for large scale networks
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