Learning the Structure of Biochemical Signaling Pathways

Holly Waisanen
and

Joshua Apgar

Human Genome Project

System

Parts Catalog

What's Missing?

System

Parts Catalog

Models

System

Parts Catalog

Bacteriophage- λ Lysis Lysogeny

System

Parts Catalog

Model

Reaction Channels

Reaction	Type	Products	Rate
A \longrightarrow B	Unimolecular	1	$d x_{b}=a_{a, b} x_{a} d t$
A \rightarrow B	Unimolecular	2	$d x_{b}=a_{a, b c} x_{a} d t$ $d x_{c}=a_{a, b c} x_{a} d t$
(A)		Bimolecular	1

Networks of Reaction Channels

Mass Action Kinetics

$$
d x=\left(A^{(1)} x+A^{(2)} x \otimes x\right) d t
$$

$A_{i, j}^{(1)}=$ Probability that a given $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{x}_{\mathrm{j}}$ in time $d t$
$A_{i j, k}^{(2)}=$ Probability that a given pair $\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}} \rightarrow \mathrm{x}_{\mathrm{k}}$ in time $d t$

Systems Are Discrete

Systems Are Stochastic

Gillespie Exact Method

Probablility that the next reaction will be μ at time τ :

$$
p(\tau, \mu) d \tau=p_{0}(\tau) a_{\mu} d \tau \quad p_{0}(\tau)=\exp \left(-\sum_{\mu} a_{\mu} \tau\right)
$$

Which gives the joint probability distribution:
$p(\tau, \mu) d \tau=a_{\mu} \exp \left(-\sum_{\mu} a_{\mu} \tau\right) d \tau$

Simulating the Gillespie Method

The Joint distribution can be broken into two simple distributions:

- The next reation time distribution:

$$
p(\tau) d \tau=\left(\sum_{\mu} a_{\mu} d \tau\right) \exp \left(-\sum_{\mu} a_{\mu} \tau\right)
$$

- The next reation distribution:

$$
p(\mu \mid \tau) d \tau=\frac{a_{\mu}}{\sum_{\mu} a_{\mu}} d \tau
$$

Gillespie Method Generates a Sample Path

- Method is "Exact" in the sense that it makes no averaging assumptions
- Gives a sample path a not a distribution

A Continuous Approximation

Starting with the Master Equation:
$\frac{d p_{n}}{d t}=-\left(f_{n}+g_{n}\right) p_{n}+f_{n-1} p_{n-1}+g_{n+1} p_{n+1}$

This gives the Fokker Plank Equation:

$$
\frac{d p(n, t)}{d t}=-\frac{\partial}{\partial n}\left[(f(n)-g(n)) p(n)-\frac{1}{2} \frac{\partial}{\partial n} p(n)\right]
$$

Approximating as continuous functions and Taylor expanding:
$f(n-1) p(n-1)=f(n) p(n)-\frac{\partial}{\partial n} f(n) p(n)+\frac{1}{2} \frac{\partial^{2}}{\partial n^{2}} f(n) p(n)$
$f(n+1) p(n+1)=f(n) p(n)+\frac{\partial}{\partial n} f(n) p(n)+\frac{1}{2} \frac{\partial^{2}}{\partial n^{2}} f(n) p(n)$

Fokker Plank Steady State

At Steady State:
$0=-\frac{\partial}{\partial n}\left[(f(n)-g(n)) p(n)-\frac{1}{2} \frac{\partial}{\partial n} p(n)\right]$
$(f(n)-g(n)) p(n)-\frac{1}{2} \frac{\partial}{\partial n} p(n)=C$

But from positivity $\mathrm{c}=0$ so:

$$
\frac{1}{p(n)} \frac{\partial}{\partial n} p(n)=2(f(n)-g(n))
$$

$$
p(n)=\frac{A}{f(n)+g(n)} e^{-\varphi(n)} \quad \varphi(n)=2 \int_{0}^{n} \frac{g\left(n^{\prime}\right)-f\left(n^{\prime}\right)}{f\left(n^{\prime}\right)+g\left(n^{\prime}\right)} d n^{\prime}
$$

Bayesian Networks

BN - graphical model for probabilistic relationships between variables

Node probabilities are independent given node parents

$$
-\mathrm{P}_{\mathrm{B}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\prod_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{B}}\left(\mathrm{x}_{\mathrm{i}} \mid \operatorname{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

Dynamic Bayesian Networks

DBN - models stochastic evolution of variables over time

- Assumes time invariant evolution!
- Same independence given parents as BN, with

$$
\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}[\mathrm{t}]\right) \subseteq\left\{\mathrm{X}_{\mathrm{j}}[\mathrm{t}-1]\right\}
$$

Consider as a constrained semiinfinite BN

Or parametrize by B_{0} and B_{\rightarrow}

Model Selection for BNs

Define a BN $\Phi=(\mathrm{G}, \Theta)$

- G structure
- Which connections, which entries in A matrix are nonzero
- Θ parameters
- Arise in conditional probabilities, values of nonzero entries in A, rate constants

Once structure is fixed, easier to find parameters \rightarrow maximum likelihood
Find structure - max $\mathrm{P}(\mathrm{G} \mid X)$

- i.e. maximize the probability that G is the correct model given that X is the data observed

Complete information

- Markov field is fully observed \rightarrow can examine transitions independently
- Given N observations of the DBN up to time n_{t}
$-\mathrm{N} * \mathrm{n}_{\mathrm{t}}$ independent realizations of the $\mathrm{BN} \mathrm{B}_{\rightarrow}$
-N independent realizations of the BN_{0}
May use standard techniques for model selection on the constrained semiinfinite Bayesian network
-or-

Model selection using many realizations of smaller networks B_{\rightarrow} and B_{0}

Model Selection for BNs

By Bayes rule: $\mathrm{P}(\mathrm{G} \mid \mathrm{X}) \propto \mathrm{P}(\mathrm{X} \mid \mathrm{G}) \mathrm{P}(\mathrm{G})$
$-\mathrm{P}(\mathrm{G})=$ prior probability of model G
$-\mathrm{P}(\mathrm{X} \mid \mathrm{G})=$ likelihood \rightarrow need to compute

Task:
$\arg \max _{\mathrm{G}} \mathrm{P}(\mathrm{G} \mid \mathrm{X})=\arg \max _{\mathrm{G}} \log \mathrm{P}(\mathrm{X} \mid \mathrm{G})+\log \mathrm{P}(\mathrm{G})$

Model Selection for BNs \rightarrow

 likelihood$P(X \mid G)=\int P(X \mid G, \Theta) P(\Theta \mid G) d \Theta=E_{\Theta}[P(X \mid G, \Theta)]$

- Integral hard to compute, requires priors on parameters

Likelihood penalties - a general class of model selection criteria

- Rather than comparing $P(X \mid G)$, compare $P\left(X \mid G, \theta^{\wedge}{ }_{G}\right)$
- $\theta^{\wedge}{ }_{G}(X)=\arg \max _{\theta} \mathrm{P}(X \mid \mathrm{G}, \theta)$
$-\theta^{\wedge}{ }_{G}$ is ML estimate of θ given X assuming G is correct model
- Penalty comes from limiting comparison to only a single parameter for a given model
- $\mathrm{BIC}=\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N}$
- $\operatorname{AIC}=\log P\left(X \mid G, \theta^{\wedge}{ }_{G}\right)-K / 2$

Model Selection for BNs - BIC

Recall Likelihood $\mathrm{P}(\mathrm{X} \mid \mathrm{G})=\int \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \Theta) \mathrm{P}(\Theta \mid \mathrm{G}) \mathrm{d} \Theta$

Use Laplace approximation for the integral and take logarithm

- Laplace approximation assumes θ Gaussian around $\theta^{\wedge}{ }_{G}$, i.e. $P(\Theta \mid G)$ Gaussian
- BIC ignores any terms in approximation that are not $\mathrm{O}(\mathrm{N})$
- Other terms may be computed for added accuracy

$$
\begin{gathered}
\mathrm{BIC}=\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta_{\mathrm{G}}^{\wedge}\right)-\mathrm{K} / 2 \log \mathrm{~N} \\
-\mathrm{K}=\# \text { of parameters in model } \mathrm{G}
\end{gathered}
$$

BIC $\leftarrow \rightarrow$ MDL

Regret - difference in code length between selected and baseline

Shtarkov: to minimize maximum regret, code data X according to distribution:

$$
\mathrm{Q}(\mathrm{X})=\mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right) / \operatorname{comp}_{\mathrm{N}}(\mathrm{G}, \Theta)
$$

where $\operatorname{comp}_{\mathrm{N}}(\mathrm{G}, \Theta)=\Sigma_{\mathrm{X}} \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)=\min \mathrm{R}_{\max }$
MDL Code length $=-\log \mathrm{Q}(\mathrm{X})$

- Recall from notes: $\log \operatorname{comp}_{\mathrm{N}}(\mathrm{G}, \Theta) \approx \mathrm{K} / 2 \log \mathrm{~N}$
- Used a Laplace approximation here too!
\rightarrow MDL code length $=-\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)+\mathrm{K} / 2 \log \mathrm{~N}$

Minimum description length $=-$ BIC score $!$

Comments on BIC

- Does not require priors on parameters
- Effect of parameter priors disappears with large N
- Good for large $\mathrm{N} \rightarrow$ performance for small N ?
- Consistent estimate \rightarrow finds true model with large N (if true model is in model class)
- Intuitive - penalizes complex models without explicit priors on models
- Avoids overfitting
- If model priors available, may augment BIC
- Recall $\log \mathrm{P}(\mathrm{G} \mid X)=\log \mathrm{P}(\mathrm{X} \mid \mathrm{G})+\log \mathrm{P}(\mathrm{G})$

$$
\approx \log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 * \log (\mathrm{~N})+\log \mathrm{P}(\mathrm{G})
$$

Model Selection for BNs \rightarrow AIC

Consider choosing $\mathrm{Q}(\mathrm{X})$ to minimize K -L distance between $\mathrm{Q}(\mathrm{X})$ and actual $P(X \mid G, \theta)$
$\mathrm{D}(\mathrm{Q}(\mathrm{X}) \| \mathrm{P}(\mathrm{X} \mid \theta))=\mathrm{E}_{\mathrm{Q}(\mathrm{X})}[\log (\mathrm{Q}(\mathrm{X}))-\log \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta)]$
With fixed G , don't know actual $\theta($ or $\mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta)) \rightarrow$ expect over θ i.e. find $\mathrm{Q}(\mathrm{X})=\arg \min _{\mathrm{Q}(\mathrm{X})} \mathrm{E}_{\theta}[\mathrm{D}(\mathrm{Q}(\mathrm{X}) \| \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta))]$

Using Laplace approximation and similar analysis as before

- Assumes θ Gaussian around the ML estimate from the data $\theta^{\wedge}(\mathrm{X})$
\rightarrow code length of $\mathrm{Q}(\mathrm{X})$ minimizing the expected K - L distance is:

$$
\mathrm{AIC}=\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2
$$

AIC vs. BIC

$$
\begin{gathered}
\mathrm{BIC}=\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N} \\
\mathrm{AIC}=\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2
\end{gathered}
$$

- BIC - minimized maximum regret
- AIC - minimized expected K-L distance
- some kind of average regret?
- AIC not consistent
- Okay, since true model probably not in model class
- AIC better than BIC for small N
- Both include natural penalty on model complexity (without using explicit structure priors!)

Computation from Data - local search

For each fixed structure G and given data X, compute $\theta^{\wedge}{ }_{G}(X)=\arg \max _{\theta} \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta)$

In practice, begin with some structure G and add or delete edges
If new structure gets higher BIC score, keep it, else revert and try again

Incomplete Information

Markov field no longer fully observed

- Can't separate into many independent realizations of B_{\rightarrow} Structural EM solution
- Given the model and data, complete the state information
- Use model selection criteria on completed data to find a better model structure

EM - Expectation Maximization

Given G^{n} and θ^{n}, compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}, \mathrm{G}^{\mathrm{n}}, \theta^{\mathrm{n}}\right)$

- Complete the data

For each G and X , compute $\theta_{G}^{\wedge}(X)=\arg \max _{\theta} \mathrm{P}(X \mid G, \theta)$

- for BIC score

Find $G^{n+1}=\arg \max _{G}$
$\mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta n)}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N}\right]$

- Max over models

Given $\mathrm{G}^{\mathrm{n}+1}$ and observed data Y , find
$\theta^{n+1}=\arg \max _{\theta} \mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}^{\mathrm{n}+1}, \theta\right)\right]$

- Max over parameters, expected ML

EM - Expectation Maximization

Given G^{n} and $\theta^{\mathbf{n}}$, compute $P\left(X \mid Y, G^{n}, \theta^{\mathbf{n}}\right)$

- Complete the data

For each G and X , compute $\theta^{\wedge}{ }_{G}(X)=\arg \max _{\theta} \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta)$

- for BIC score

Find $G^{n+1}=\arg \max _{G}$
$\mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N}\right]$

- Max over models

Given $\mathrm{G}^{\mathrm{n}+1}$ and observed data Y , find
$\theta^{n+1}=\arg \max _{\theta} \mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}^{\mathrm{n}+1}, \theta\right)\right]$

- Max over parameters, expected ML

EM - Expectation Maximization

Given G^{n} and θ^{n}, compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}, \mathrm{G}^{\mathrm{n}}, \theta^{\mathrm{n}}\right)$

- Complete the data

For each G and X, compute $\theta^{\wedge}{ }_{G}(\mathbf{X})=\arg \max _{\theta} \mathbf{P}(\mathbf{X} \mid \mathbf{G}, \theta)$

- for BIC score

Find $\mathrm{G}^{\mathrm{n}+1}=\arg \max _{\mathrm{G}}$
$\mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta n)}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N}\right]$

- Max over models

Given $\mathrm{G}^{\mathrm{n}+1}$ and observed data Y , find
$\theta^{n+1}=\arg \max _{\theta} \mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}^{\mathrm{n}+1}, \theta\right)\right]$

- Max over parameters, expected ML

EM - Expectation Maximization

Given G^{n} and θ^{n}, compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}, \mathrm{G}^{\mathrm{n}}, \theta^{\mathrm{n}}\right)$

- Complete the data

For each G and X , compute $\theta^{\wedge}{ }_{G}(X)=\arg \max _{\theta} \mathrm{P}(\mathrm{X} \mid \mathrm{G}, \theta)$

- for BIC score

Find $\mathbf{G}^{\mathbf{n + 1}}=\arg \max _{\mathbf{G}}$
$\mathbf{E}_{\mathbf{P}(\mathbf{X} \mid \mathbf{Y}, \mathbf{G n}, \theta n)}\left[\log \mathbf{P}\left(\mathbf{X} \mid \mathbf{G}, \theta^{\wedge}{ }_{G}\right)-K / 2 \log \mathrm{~N}\right]$

- Max over models

Given $\mathrm{G}^{\mathrm{n}+1}$ and observed data Y , find
$\theta^{\mathrm{n}+1}=\arg \max _{\theta} \mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}^{\mathrm{n}+1}, \theta\right)\right]$

- Max over parameters, expected ML

EM - Expectation Maximization

Given G^{n} and θ^{n}, compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}, \mathrm{G}^{\mathrm{n}}, \theta^{\mathrm{n}}\right)$

- Complete the data

For each G and X , compute $\theta^{\wedge}{ }_{G}(X)=\arg \max _{\theta} \mathrm{P}(X \mid G, \theta)$

- for BIC score

Find $G^{n+1}=\arg \max _{G}$
$\mathrm{E}_{\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Gn}, \theta \mathrm{n})}\left[\log \mathrm{P}\left(\mathrm{X} \mid \mathrm{G}, \theta^{\wedge}{ }_{\mathrm{G}}\right)-\mathrm{K} / 2 \log \mathrm{~N}\right]$

- Max over models

Given $\mathbf{G}^{\mathbf{n + 1}}$ and observed data Y, find $\theta^{\mathrm{n}+1}=\arg \max _{\theta} \mathbf{E}_{\mathbf{P}(\mathbf{X} \mid \mathbf{Y}, \mathbf{G n}, \theta \mathrm{n})}\left[\log \mathbf{P}\left(\mathbf{X} \mid \mathbf{G}^{\mathrm{n}+1}, \theta\right)\right]$

- Max over parameters, expected ML

EM in practice

- Compute full probability distribution of completions of data
- By simulation methods described before
- Computing ML and expected ML
- Convergence
- Enough to find an improving model in each step

Dynamic Optimization

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=f(x(p, t), p) \\
x(0)=x_{0}
\end{array}\right. \\
& \hat{p=\arg \min \Psi\left(x\left(p, T_{f}\right)\right)} \\
& \frac{d}{d p} \Psi=?
\end{aligned}
$$

Computing First Order Sensitivities

$$
\begin{aligned}
& \frac{d}{d p} \Psi\left(x\left(p, T_{f}\right)\right)=\left(\left.\frac{\partial \Psi}{\partial x} \frac{d x}{d p}\right|_{t=T_{f}}\right. \\
& \frac{d}{d t} \frac{d x}{d p}=\frac{d}{d p} \frac{d x}{d t}=\frac{d}{d p} f(x(p), p) \\
& \frac{d}{d p} \& \frac{d}{d p} f(x(p, t), p)=\frac{\partial f}{\partial x} \frac{d x}{d p}+\frac{\partial f}{\partial p} \frac{d p}{d p} \\
& \frac{d}{d t} \frac{d x}{d p}=\frac{\partial f}{\partial x} \frac{d x}{d p}+\frac{\partial f}{\partial p} \frac{d p}{d p}
\end{aligned}
$$

Integrate the Sensitivity System Along with The Dynamic System

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left[\begin{array}{c}
x \\
\frac{d x}{d p}
\end{array}\right]=\left[\begin{array}{l}
f(x(p, t), p) \\
\frac{\partial f}{\partial x} \frac{d x}{d p}+\frac{\partial f}{\partial p}
\end{array}\right] \\
{\left[\left.\begin{array}{c}
x \\
\frac{d x}{d p}
\end{array}\right|_{t=0}=\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right]\right.}
\end{array}\right.
$$

Adjoint Method

$$
\left\{\begin{array}{l}
\not \partial=-\frac{\partial f}{\partial x} \lambda \\
\left.\lambda_{T_{f}} \equiv \frac{\partial \Psi}{\partial x}\right|_{T_{f}}
\end{array}\right.
$$

$$
\frac{d}{d t} \frac{d \psi}{d p}=\frac{d}{d p} \frac{d}{d t} \psi=\frac{d}{d p} \frac{d \psi}{d x} \frac{d x}{d t}=-\frac{d f}{d p} \lambda
$$

Adjoint Sensitivity System

$$
\left\{\begin{aligned}
\frac{d}{d t}\left[\begin{array}{c}
x \\
\lambda \\
\frac{d \psi}{d p}
\end{array}\right] & =\left[\begin{array}{c}
f \\
-\frac{\partial f}{\partial x} \lambda \\
-\frac{d f}{d p} \lambda
\end{array}\right] \\
{\left[\begin{array}{c}
x(0) \\
\lambda\left(T_{f}\right) \\
\frac{d \psi}{d p}
\end{array}\right] } & =\left[\begin{array}{c}
x_{0} \\
\left.\frac{\partial \Psi}{\partial x}\right|_{T_{f}} \\
0
\end{array}\right]
\end{aligned}\right.
$$

Forward Model

Adjoint Model

Conclusions

- Biochemical Signaling Pathways can be formulated as a DPN
- This formulation allows the structure of the network to be learned even in the case of partial observability
- Significant numerical challenges exist to make this feasible for large scale networks

References:

[1] Hirotugu Akaike. A new look at the statistical model identification. IEEE Trans. on Automatic Control, 19(6):716-723, 1974.
[2] Chachuat B, Singer AB, and Barton PI. Global mixed-integer dynamic optimization. AIChE Journal, 2004. In Press.
[3] Andrew Barron, Rissanen Jorma, and Bin Yu. The minimum description length principle in coding and modeling. IEEE Trans. on Information Theory, 44(6):2743-2760, 1998.
[4] Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, and Hoek JB. Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. PNAS, 99(23):15245-15245, 2002.
[5] Heckerman D. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.
[6] Munther Dahleh. Lecture notes on mdl, from 17 march 05, 2005. [7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.
[8] Gillespie DT. General method for numerically simulating stochastic time evolution of coupled chemicalreactions. Journal of Computational Physics, 22(4):403-434, 1976.
[9] Gillespie DT. Exact stochastic simulation of coupled chemical-reactions. Journal of Phys. Chem., 81(25):2340-2361, 1977.
[10] Sontag E, Kiyatkin A, and Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics, 20(12):1877-1886, 2004.
[11] Nir Friedman. Learning belief networks in the presence of missing values and hidden variables. In International Conference in Machine Learning, 1997.
[12] Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure of dynamic probabilistic networks. In Uncertainty in Artificial Intelligence, 1998.
[13] David Heckerman. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.
[14] Michael Jordan and Chris Bishop. Introduction to Graphical Models (Ch 10).
[15] Sachs K, Gifford D, Jaakkola T, Sorger P, and Lauffenburger DA. Bayesian network approach to cell signaling pathway modeling. Sci STKE, 148:PE38, 2002.
[16] Friedman N, Murphy K, and Russell S. Learning the structure of dynamic probabilistic networks. UAI-1998, 1998.
[17] Schuster S and Hofer T. Determining all extremem semi-positive conservation relations in chemical-reaction systems - a test criterion for conservativity. Journal of the Chemical Society-Farady Trans., 87(16):2561-2566, 1991.
[18] Ghahramani Z. Learning dynamic bayesian networks. In Lecture Notes in Artificial Intelligence, 1997.

