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Abstract

I will show that there is a deep relation between error-correction codes and certain mathemat-
ical models of spin glasses. In particular, minimum error probability decoding is equivalent to
(nding the ground state of the corresponding spin system. The most probable value of a sym-
bol is related to the magnetisation at a di*erent temperature. Convolutional codes correspond to
one-dimensional spin systems and Viterbi’s decoding algorithm to the transfer matrix algorithm
of statistical mechanics.

I will also show how the recently discovered (or rediscovered) capacity approaching codes
(turbo codes and low-density parity check codes) can be analysed using statistical mechanics. It
is possible to show, using statistical mechanics, that these codes allow error-free communication
for signal to noise ratio above a certain threshold. This threshold depends on the particular code,
and can be computed analytically in many cases. c© 2001 Published by Elsevier Science B.V.

It has been known [1–4] that error-correcting codes are mathematically equivalent to
some theoretical spin-glass models. As it is explained in Forney’s paper in this volume,
there have been recently very interesting new developments in error-correcting codes.
It is now possible to approach practically very close to Shannon’s channel capacity.
First came the discovery of turbo codes by Berrou and Glavieux [5] and later the
rediscovery of low-density parity check codes [6], (rst discovered by Gallager [7,8], in
his thesis, in 1962. Both turbo codes and low-density parity check (LPDC) codes are
based on random structures. It turns out, as I will explain later, that it is possible to
use their equivalence with spin glasses, to analyse them using the methods of statistical
mechanics.
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Let me start by (xing the notations. Each information message consists of a sequence
of K bits ũ= {u1; : : : ; uK}; ui=0 or 1. The binary vector ũ is called the source-word.
Encoding introduces redundancy into the message. One maps ũ → x̃ by encoding.
ũ→ x̃ has to be a one-to-one map for the code to be meaningful. The binary vector x̃
has N ¿K components. It is called a code-word. The ratio R=K=N which speci(es
the redundancy of the code, is called the rate of the code. One particularly important
family of codes are the so-called linear codes. Linear codes are de(ned by

x̃=Gũ :

G is a binary (i.e., its elements are zero or one) (N×K) matrix and the multiplication is
modulo two. G is called the generating matrix of the code. Obviously, by construction,
all the components xi of a code-word x are not independent. Of all the 2N binary
vectors only 2K =2NR, those corresponding to a vector ũ, are code-words. Code-words
satisfy the linear constraints (called parity check constraints) Hx̃=0 (modulo two),
where H is a (K × N ) binary matrix, called the parity check matrix. The connection
with spin variables is straightforward. ui → �i=(−1)ui ; xi → Ji=(−1)xi . It follows
that ui + uj = �i�j and

Ji=(−1)
∑

j Gijuj =Cik1···ki �k1 · · · �ki : (1)

The previous equation de(nes the “connectivity matrix” C in terms of the generating
matrix of the code G. Similarly, one can write the parity check constraints in the form

(−1)
∑

j Hljxj =1 → Ml
k1···kl Jk1 · · · Jkl =1 : (2)

This de(nes the “parity constraint matrix” M in terms of the parity check matrix H
of the code.
Code-words are sent through a noisy transmission channel and they get corrupted

because of the channel noise. If a Ji=±1 is sent, the output will be di*erent, in general,
a real number J outi . Let us call Q(J̃ out |J̃ ) dJ̃ out the probability for the transmission
channel’s output to be between J̃ out and J̃ +dJ̃ out , when the input was J̃ . The channel
“transition matrix” Q(J̃ out |J̃ ) is supposed to be known. We will assume that the noise
is independent for any pair of bits (“memoryless channel”), i.e.,

Q(J̃ out |J̃ )=
∏
i

q(J outi |Ji) : (3)

Communication is a statistical inference problem. Knowing the noise probability, i.e.,
q(J outi |Ji), the code (i.e., in the present case of linear codes knowing the generating
matrix G or the parity check matrix H) and the channel output J̃ out , one has to infer
the message that was sent. The quality of inference depends on the choice of the code.
We will now show that there exists a close mathematical relationship between

error-correcting codes and theoretical models of disordered systems. To every pos-
sible information message (source word) �̃ we can assign a probability Psource (̃�|J̃ out),
conditional on the channel output J̃ out . Or, equivalently, to any code-word J̃ we can
assign a probability Pcode(J̃ |J̃ out).
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Because of Bayes theorem, the probability for any code-word symbol (“letter”) Ji=
± 1; p(Ji|J outi ), conditional on the channel output J outi , is given by

lnp(Ji|J outi )= c1 + ln q(J outi |Ji)= c2 + hiJi ; (4)

where c1 and c2 are constants (nondepending on Ji) and

hi=
1
2
ln
q(J outi |+ 1)
q(J outi | − 1)

: (5)

It follows that

Pcode(J̃ |J̃ out)= c
∏
l

"(Ml
k1···kl Jk1 · · · Jkl ; 1)exp

(∑
i

hiJi

)
; (6)

where c is a normalising constant. The Kronecker "’s enforce the constraint that J̃
obeys the parity check equations (Eq. (2)), i.e., that it is a code-word. The "’s can be
replaced by a soft constraint,

Pcode(J̃ |J̃ out)= const exp
[
u
∑
l

Ml
k1···kl Jk1 · · · Jkl +

∑
i

hiJi

]
; (7)

where u→ ∞. We now de(ne the corresponding spin Hamiltonian by

−Hcode(J̃ )= ln Pcode(J̃ |J̃ out)= u
∑
l

Ml
k1···kl Jk1 · · · Jkl +

∑
i

hiJi : (8)

This is a spin system with multispin interactions and an in(nite ferromagnetic coupling
and a random external magnetic (eld.
Alternatively, one may proceed by solving the parity check constraints Ji=

Cik1···ki�k1 · · · �ki (i.e., by expressing the code-words in terms of the source-words).

Psource(�̃|J̃ out)= const exp
(∑

i

hiCik1···ki�k1 · · · �ki
)
; (9)

where the hi’s are given as before. The logarithm of Psource(�̃|J̃ out),

Hsource(�̃)=− ln Psource(�̃|J̃ out)=−
∑
i

hiCik1···ki�k1 · · · �ki (10)

has obviously the form of a spin glass Hamiltonian.
We have given two di*erent statistical mechanics formulations of error correcting

codes; one in terms of the sourceword probability Psource and the other in terms of
the code-word probability Pcode. Because of the one to one correspondence between
code-words and source-words, the two formulations are equivalent. In practice, how-
ever, it may make a di*erence. It may be more convenient to work with Psource or
Pcode, depending on the case. For the case of turbo codes (see later) it will be more
convenient to de(ne another probability, the “register word” probability.
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It follows that the most probable sequence (“word MAP decoding”) is given by the
ground state of this Hamiltonian (Hcode or Hsource, depending on the case). Instead of
considering the most probable instance, one may only be interested in the most probable
value �pi of the ith “bit” �i [9–11] (“symbol MAP decoding”). Because �i= ± 1, the
probability pi for �i=1 is simply related to mi, the average of �i; pi=(1 + mi)=2.

mi=
1
Z

∑
{�1···�N}

�i exp− H (̃�) Z =
∑

{�1···�N}
exp− H (̃�) �pi =sign(mi) : (11)

In the previous equation, mi is obviously the thermal average at temperature T =1. It
is amusing to notice that T =1 corresponds to Nishimori’s temperature [12].
When all messages are equally probable and the transmission channel is memoryless

and symmetric, i.e., when q(J outi |Ji)= q(−J outi | − Ji), the error probability is the same
for all input sequences. It is enough to compute it in the case where all input bits are
equal to one, i.e., when the transmitted code-word is the all zero’s code-word. In this
case, the error probability per bit Pe is Pe = (1−m(d))=2, where m(d) = (1=N )

∑N
i=1 �

(d)
i

and �(d)i is the symbol sequence produced by the decoding procedure.
This means that it is possible to compute the bit error probability, if one is able to

compute the magnetisation in the corresponding spin system.
Let me give a simple example of an R= 1

2 “convolutional” code. From the N source
symbols (letters) ui’s we construct the 2N code-word letters x1k ; x

2
k ; k =1; : : : ; N :

x1i = ui + ui−1 + ui−2; x2i = ui + ui−2 : (12)

It follows that

J 1k = �k�k−1�k−2; J 2k = �k�k−2 ; (13)

C(1; k)
ik1 ik2 ik3

= "k; ik1"k; ik2+1"k; ik3+2; C(2; k)
ik1 ik3

= "k; ik1"k; ik3+2 : (14)

The corresponding spin Hamiltonian is

−H =
1
w2

∑
k

J 1; outk �k�k−1�k−2 + J 2; outk �k�k−2 : (15)

Here I assumed a Gaussian noise. In that case, Eq. (5) reduces to hk = J outk =w2, where
w2 is the variance of the noise. This is a one-dimensional spin-glass Hamiltonian.
In fact, it is easy to see that convolutional codes correspond to one-dimensional spin
systems. Their ground state can be found using the T =0 transfer matrix algorithm. This
corresponds to the Viterbi algorithm in coding theory. For symbol MAP (maximum a
posteriori probability) decoding, one can use the T =1 transfer matrix algorithm. This
in turn is the BCJR algorithm in coding theory [13].
As it is explained in Forney’s paper in this volume, the newly discovered (or re-

discovered) capacity approaching codes are based on random constructions. Using the
equivalence explained above, it has been possible to analyse them using the methods
of statistical mechanics.
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Gallager’s low-density parity check (k; l) codes are de(ned by choosing at random
a sparse parity check matrix H as follows. H has N columns (we consider the case
of code-words of length N ). Each column of H has k elements equal to one and all
other elements equal to zero. Each row has l nonzero elements. It follows that H has
Nk=l rows and that the rate of the code is R=1 − k=l. It follows from Eq. (8) that
Gallager’s k; l codes correspond to diluted spin models with l-spin in(nite strength
ferromagnetic interactions in an external random (eld. It turns out that the belief prop-
agation algorithm, used to decode LPDC codes, amounts to an iterative solution of the
Thouless Anderson Palmer [14] (TAP) equations for spin glasses. A detailed analysis
of these codes is presented in Urbanke’s paper in this volume. Low-density parity check
codes have been analysed using statistical mechanics methods by Kabashima Kanter
and Saad [15,16] in the replica symmetric approximation. More recently, Montanari
[17] was able to establish the entire phase diagram of LDPC codes. For k; l→ ∞ with
k=l (xed, he showed that k; l codes correspond to a random energy model which can
be solved without replicas. There is a phase transition in this model, which occurs at a
critical value of the noise nc. nc separates a zero error phase from a high error phase.
nc in this case equals the value provided by Shannon’s channel capacity. For (nite k
and l, he found an exact one-step replica symmetry breaking solution. The location
of the phase transition determines nc. In this way he computed also for (nite values
of k and l the critical value of the noise below which error free communication is
possible. A di*erent value of nc; n

bp
c had already being computed by Richardson and

Urbanke [18] (see Urbanke’s paper in this volume). Richardson and Urbanke compute
nbpc by analysing the behaviour of the decoding algorithm, belief propagation in this
case. Statistical mechanics provides a threshold nc which, in principle, is di*erent from
nbpc . nc is reached by the optimum (but unknown) decoder.
Turbo codes also have been analysed using statistical mechanics [19,20]. Turbo

Codes are based on recursive convolutional codes. An example of nonrecursive convo-
lutional code was given in Eq. (12). The corresponding recursive code is given, most
conveniently, in terms of the auxiliary bits bi, de(ned below. The bi’s are stored in
the encoder’s memory registers, that’s why I call b̃ the “register word”.

x1i = ui; x2i = bi + bi−2; bi= ui + bi−1 + bi−2 : (16)

It follows that the source letters ui are given in terms of the auxiliary “register letters” bi

ui= bi + bi−1 + bi−2 : (17)

All additions are modulo two.
To construct a turbo code, one arti(cially considers a second source word ṽ, by

performing a permutation, chosen at random, on the original code-word ũ. So one
considers vi= uP(i) where j=P(i) is a (random) permutation of the K indices i and a
second “register word” ci; ci= vi + ci−1 + ci−2. Obviously,

vi= ci + ci−1 + ci−2 = uj = bj + bj−1 + bj−2; j=P(i) : (18)
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Eq. (18) can be viewed as a constraint on the two register words b̃ and c̃. Finally in
the present example, a rate R= 1

3 turbo code, one transmits the 3K letter code-word
x1i = ui; x

2
i = bi + bi−2; x3i = ci + ci−2; i=1; : : : ; K . Let us call, as before,

J *i =(−1)x
*
i ; *=1; 2; 3 ;

the channel inputs and J out;*i the channel outputs. In the previous, for reasons of con-
venience, we formulated convolutional codes using the source-word probability Psource

and LDPC codes using the code-word probability Pcode. The statistical mechanics of
turbo codes is most conveniently formulated in terms of the “register words” prob-
ability Preg(�̃; �̃|J̃ out) conditional on the channel outputs J̃ out , where �i=(−1)bi and
�i=(−1)ci . The logarithm of this probability provides the spin Hamiltonian

−H =
1
w2

∑
k

J out;1k �k�k−1�k−2 + J out;2k �k�k−2 + J out;3k �k�k−2 : (19)

Because of Eq. (18), the two spin chains �̃ and �̃ obey the constraints

�i�i−1�i−2 = �j�j−1�j−2; j=P(i) : (20)

(As previously, we have considered the case of a Gaussian noise of variance w2.) This
is an unusual spin Hamiltonian. Two short range one-dimensional chains are coupled
through the in(nite range, nonlocal constraint, Eq. (20). This constraint is nonlocal
because neighbouring i’s are not mapped to neighbouring j’s under the random per-
mutation. It turns out that this Hamiltonian can be solved by the replica method. One
(nds a phase transition at a critical value of the noise ncrit . For noises less than ncrit , the
magnetisation equals one, i.e., it is possible to communicate error free. In this respect,
turbo codes are similar to Gallager’s LDPC codes. The statistical mechanical models,
however, are completely di*erent. Let me also mention that, under some reasonable as-
sumptions, the iterative decoding algorithm for turbo codes (turbodecoding algorithm),
which I am not explaining here, can be viewed [20] as a time discretisation of the
Kolmogorov, Petrovsky and Piscounov equation [21]. This KPP equation has traveling
wave solutions. The velocity of the traveling wave, which is analytically computable,
corresponds to the convergence rate of the turbodecoding algorithm. The agreement
with numerical simulations is excellent.
So the equivalence between linear codes and theoretical models of spin glasses is

quite general and we have established the following dictionary of correspondence:

Error-correcting code⇔ Spin Hamiltonian

Signal to noise⇔ J 20 =NJ
2

Maximum likelihood Decoding⇔ Find a ground state

Error probability per bit⇔Ground state magnetisation

Sequence of most probable symbols⇔magnetisation at temperature T =1

Convolutional Codes⇔One-dimensional spin-glasses
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Viterbi decoding⇔ T =0 Transfer matrix algorithm

BCJR decoding⇔ T =1 Transfer matrix algorithm

Gallager LDPC codes⇔Diluted p-spin ferromagnets in a random "eld

Turbo Codes⇔Coupled spin chains PC

Zero error threshold⇔ Phase transition point

Belief propagation algorithm⇔ Iterative solution of TAP equations

I would like to conclude by pointing out some open questions.
What is the order of the phase transition? This question is particularly relevant for

turbo codes and has important implications for decoding.
What are the (nite size e*ects? This question is particularly relevant near the zero

error noise threshold (i.e., near the phase transition). The answer will depend on the
order of the transition.
How does the decoding complexity behave as one approaches the zero error noise

threshold? Is there a critical slowing down? As it was said before, the decoding al-
gorithms both for LDPC codes and turbo codes are heuristic and there are not known
results as one approaches the phase transition.
Is there a glassy phase in decoding? In other terms, do the heuristic decoding algo-

rithms reach the threshold of optimum decoding, computed by statistical mechanics, or
is there a (lower) noise “dynamical” threshold where decoding stops reaching optimal
performance?
I hope that at least some of the above questions will be answered in the near future.
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