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tBelief propagation (BP) was only supposed to work for tree-likenetworks but works surprisingly well in many appli
ations involvingnetworks with loops, in
luding turbo 
odes. However, there hasbeen little understanding of the algorithm or the nature of thesolutions it �nds for general graphs.We show that BP 
an only 
onverge to a stationary point of anapproximate free energy, known as the Bethe free energy in statis-ti
al physi
s. This result 
hara
terizes BP �xed-points and makes
onne
tions with variational approa
hes to approximate inferen
e.More importantly, our analysis lets us build on the progress madein statisti
al physi
s sin
e Bethe's approximation was introdu
edin 1935. Kiku
hi and others have shown how to 
onstru
t more a
-
urate free energy approximations, of whi
h Bethe's approximationis the simplest. Exploiting the insights from our analysis, we de-rive generalized belief propagation (GBP) versions of these Kiku
hiapproximations. These new message passing algorithms 
an besigni�
antly more a

urate than ordinary BP, at an adjustable in-
rease in 
omplexity. We illustrate su
h a new GBP algorithm ona grid Markov network and show that it gives mu
h more a

uratemarginal probabilities than those found using ordinary BP.1 Introdu
tionLo
al \belief propagation" (BP) algorithms su
h as those introdu
ed by Pearl areguaranteed to 
onverge to the 
orre
t marginal posterior probabilities in tree-likegraphi
al models. For general networks with loops, the situation is mu
h less 
lear.



On the one hand, a number of resear
hers have empiri
ally demonstrated goodperforman
e for BP algorithms applied to graphs with loops. One dramati
 
ase isthe near Shannon-limit performan
e of \Turbo 
odes", whose de
oding algorithm isequivalent to BP on a loopy graph [3, 9℄. Other su

essful 
ases in
lude 
omputervision problems and medi
al diagonsis [3, 2, 11℄ suggesting the su

ess of BP onloopy graphs is not limited to 
oding appli
ations. On the other hand, for othergraphs with loops, BP may give poor results or fail to 
onverge [11℄.For a general graph, little has been understood about what approximation BPrepresents, and how it might be improved. This paper's goal is to provide thatunderstanding and introdu
e a set of new algorithms resulting from that under-standing. We show that BP is the �rst in a progression of lo
al message-passingalgorithms, ea
h giving equivalent results to a 
orresponding approximation fromstatisti
al physi
s known as the \Kiku
hi" approximation to the Gibbs free energy.These algorithms have the attra
tive property of being user-adjustable: by pay-ing some additional 
omputational 
ost, one 
an obtain 
onsiderable improvementin the a

ura
y of one's approximation, and 
an sometimes obtain a 
onvergentmessage-passing algorithm when ordinary BP does not 
onverge.2 Belief propagation �xed-points are zero gradient points ofthe Bethe free energyFor the purpose of analyzing and des
ribing BP we assume that we are given anundire
ted graphi
al model of N nodes with pairwise potentials (a pairwise MarkovRandom Field). Any graphi
al model 
an be 
onverted into this form before doinginferen
e through a suitable 
lustering of nodes into larger nodes [15℄. Through thistransformation, one 
an apply all the results in this paper to arbitrary graphi
almodels in
luding those with higher-order potentials. We will give expli
it examplesof this in later se
tions.The state of ea
h unobserved node i is denoted by xi, and we assume ea
h unob-served node is 
onne
ted to an observed node yi. The joint probability distributionfun
tion is given byP (x1; x2; :::; xN jy) = 1ZYij  ij(xi; xj)Yi  i(xi; yi) (1)where  i(xi; yi) is the lo
al \eviden
e" for node i,  ij(xi; xj) is the 
ompatibilitymatrix between nodes i and j, and Z is a normalization 
onstant. In what follows,we simplify notation and write  i(xi) as shorthand for  i(xi; yi).The standard BP update rules are:mij(xj)  kXxi  ij(xi; xj) i(xi) Yk2N(i)njmki(xi) (2)bi(xi)  k i(xi) Yk2N(i)mki(xi) (3)where k denotes a normalization 
onstant and N(i)nj means all nodes neighboringnode i, ex
ept j. Here mij refers to the message that node i sends to node j andbi is the belief (approximate marginal posterior probability) at node i, obtained by



multiplying all in
oming messages to that node by the lo
al eviden
e. Similarly, we
an de�ne the belief bij(xi; xj) at the pair of nodes (xi; xj) as the produ
t of thelo
al potentials and all messages in
oming to the pair of nodes:bij(xi; xj) = k�ij(xi; xj) Yk2N(i)njmki(xi) Yl2N(j)nimlj(xj) (4)where �ij(xi; xj) �  ij(xi; xj) i(xi) j(xj).For a tree, the BP iterations 
onverge to a unique �xed point and the beliefsare equal to the posterior marginals bi(xi) = P (xi) (e.g. [12℄). Similarly, one
an show that for a tree the pairwise beliefs are equal to the posterior marginalsbij(xi; xj) = P (xi; xj). The following 
laim 
hara
terizes bi and bij for an arbitrarygraph, showing that they are equivalent to the marginal probabilities obtained inthe Bethe approximation developed in statisti
al physi
s [1℄.Claim 1: Let fmijg be a set of BP messages and let fbij ; big be the beliefs 
al
ulatedfrom those messages. Then the beliefs are �xed-points of the BP algorithm if andonly if they are zero gradient points of the Bethe free energy, F� :F�(fbij ; big) = �Xij Xxi;xj bij(xi; xj) ln�ij(xi; xj) +Xi (qi � 1)Xxi bi(xi) ln i(xi)+Xij Xxi;xj bij(xi; xj) ln bij(xi; xj)�Xi (qi � 1)Xxi bi(xi) ln bi(xi)(5)subje
t to the normalization and marginalization 
onstraints: Pxi bi(xi) = 1,Pxi bij(xi; xj) = bj(xj). (qi is the number of neighbors of node i.)Proof: We add Lagrange multipliers to form a Lagrangian L: �ij(xj) is the multi-plier 
orresponding to the 
onstraint that bij(xi; xj) marginalizes down to bj(xj),and 
ij ; 
i are multipliers 
orresponding to the normalization 
onstraints. The equa-tion �L�bij(xi;xj) = 0 gives: ln bij(xi; xj) = ln(�ij(xi; xj))+�ij(xj)+�ji(xi)+ 
ij � 1.The equation �L�bi(xi) = 0 gives: (qi�1)(ln bi(xi)+1) = ln i(xi)+Pj2N(i) �ji(xi)+
i. Setting �ij(xj) = lnQk2N(j)nimkj(xj) and using the marginalization 
on-straints, we �nd that the stationary 
onditions on the Lagrangian are equivalentto the BP �xed-point 
onditions. To go in the opposite dire
tion, if we are givenbij ; bi; �ij(xj) that 
orrespond to a zero-gradient point, we setmij(xj) = bj(xj)exp(�ij(xj)) .Be
ause bij ; bi; �ij satisfy the stationarity 
onditions, mij de�ned in this way mustbe a �xed point of BP. Thus there is a one-to-one 
orrepsonden
e between �xed-points of BP and staionary points of the Bethe free energy. 2(Empiri
ally, we �nd that stable BP �xed-points 
orrespond to lo
al minima of theBethe free energy, rather than maxima or saddle-points.)Using the marginalization 
onditions and the de�nition of �(xi; xj) the Bethe freeenergy 
an also be written:F�(fbij ; big) = �Xij Xxi;xj bij(xi; xj) ln ij(xi; xj)�Xi Xxi bi(xi) ln i(xi)+Xij Xxi;xj bij(xi; xj) ln bij(xi; xj)�Xi (qi � 1)Xxi bi(xi) ln bi(xi)(6)



Where does the Bethe free energy 
ome from? We will dis
uss the physi
s intuitionbehind it in se
tion 3 but to make the formula less mysterious we now show thatit is an exa
t free energy when the graph is a tree. In other words, minimizing theBethe free energy for a tree is equivalent to performing exa
t inferen
e.The exa
t free energy is simply the average energy minus the entropy:F (fb(x)g) =Xx b(x)E(x) +Xx b(x) log b(x) (7)where b(x) is the \belief" in a state x and E(x) the \energy" of x motivated byBoltzmann's law P (xjy) = 1Z e�E(x):E(x) = � logP (xjy)� logZ = �X<ij> log ij(xi; xj)�Xi log i(xi) (8)Note that F is (up to a 
onstant) the KL divergen
e between b(x) and P (xjy) sothat F is minimized when b(x) = P (xjy).By substituting equation 8 in the average energy we obtain:Xx b(x)E(x) = �Xij Xxi;xj bij(xi; xj) ln ij(xi; xj)�Xi Xxi bi(xi) ln i(xi) (9)so that the �rst two terms of the Bethe free energy (eq. 6) are exa
tly the averageenergy.If the graph is a tree, then we 
an restri
t the minimization to the 
lass of b(x)that satisfy the 
onditional independen
es implied by the graph. Su
h b(x) 
an bewritten as a produ
t of beliefs over 
liques, divided by beliefs over separator sets(see e.g. [12℄). In our setting, the 
liques are pairs of nodes and the separator setsare single nodes so that: b(x) = Q<ij> bij(xi; xj)Qi bi(xi)qi�1 (10)If we substitute equation 10, into the expression for the negative entropyPx b(x) ln b(x) we obtain the last two terms of the Bethe free energy (eq. 6). Thusfor a tree graph, the Bethe free energy is exa
t and it will be minimized whenbij(xi; xj) = P (xi; xj jy) and bi(xi) = P (xijy).2.1 Spe
ial 
ase: turbo 
odesWe follow the formulation of Turbo de
oding presented in [10℄. An unknown binaryve
tor u is en
oded using two 
onstituent 
odes, ea
h of whi
h is easy to de
ode byitself and the results are transmitted over a noisy 
hannel giving two observationsy1; y2. The task of Turbo de
oding is to infer the values of bits of u from the twoobservations y1; y2. The de
oder knows the prior distribution over u (whi
h weassume here is uniform) and the two 
onditional probabilities pi(u) = p(yiju).The turbo de
oding algorithm iterates the following iterations:�i(ui)  k Xw:wi=ui p1(w)Yj 6=i�j(wj) (11)�i(ui)  k Xw:wi=ui p2(w)Yj 6=i �j(wj) (12)



message 1

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

message 2Figure 1: The Turbo 
ode stru
ture. Running BP on this graph is equivalent tothe turbo de
oding algorithm.and the marginal probability over ui is approximated by:b(ui) = k�i(ui)�i(ui) (13)after the iterations have 
onverged (or rea
hed a maximal number of iterations).Note that the Turbo de
oding algorithm as formulated here requires summing overan exponentially large number of states in ea
h iteration. The reason this is possibleis that the likelihoods p1(w); p2(w) 
ome from an easy to de
ode 
ode. In otherwords, there is a fa
torization stru
ture on these likelihoods that 
orrespond to asingly-
onne
ted graph: this enables turbo de
oders to 
ompute the exponentialsum over states in linear time. Essentially, this is done by an algorithm equivalentto BP.As shown in [16, 8, 9℄, the Turbo de
oding algorithm is equivalent to belief propaga-tion. In our undire
ted formalism, it is equivalent to iterating the BP equations onthe graph shown in �gure 1. The top and bottom nodes 
orrespond to 
odewordsw1; w2 and the nodes in the middle layer 
orrespond to unknown bits. The poten-tials between nodes are set to delta fun
tions:  (w1; ui) = 1 if the ith bit of w1,w1i is equal to ui and zero otherwise. Nodes w1 and w2 have observation potentialsp1(w); p2(w) 
orresponding to the likelihood of a 
odeword from one 
onstituent
ode.When BP is run on this graph, the messages rea
hing ui are exa
tly �i; �i usedin turbo de
oding and equations 11{12 follow dire
tly from the standard BP up-dates [14℄. The BP formalism also allows us to 
ompute beliefs over w1; w2 givenby: b1(w) = kp1(w)Yi �i(wi) (14)



b2(w) = kp2(w)Yi �i(wi) (15)(16)Applying 
laim 1 to the graph shown in �gure 1 gives a Bethe free energy thatin
ludes joint beliefs of the form b(wi; uj), but be
ause the energy is in�nite for anysu
h belief for whi
h wij 6= uj su
h beliefs must be of the form b(wi)Æ(wij � uj) forthe Bethe free energy to be �nite. Using this fa
t, we 
an simplify the Bethe freeenergy. The simpli�ed free energy is now only a fun
tion of b1(w); b2(w) and bi(ui).Corollary 1: Let �i; �i be a set of Turbo de
oding messages and let fbi(w); bi(ui)gbe the beliefs 
al
ulated from those messages. Then the beliefs are �xed-points ofthe Turbo de
oding algorithm if and only if they are zero gradient points of theBethe free energy, F� :F� = �Xx b1(w) ln p1(w) +Xw b1(w) ln b1(w) (17)�Xx b2(w) ln p2(w) +Xw b2(w) ln b2(w) (18)�Xi Xui bi(ui) ln bi(ui) (19)subje
t to the 
onstraints that b1(w) and b2(w) marginalize down to bi(ui) for all i.Proof: This follows from 
laim 1. Alternatively, one 
an prove it dire
tly by addingLagrange multipliers ��(ui) enfor
es the 
onstraint that b1(w) marginalize downto bi(ui) and ��(ui) enfor
es the 
onstraint that b2(w) marginalize down to bi(ui).Setting ��(ui) = ln�(ui); ��(ui) = ln�(ui) gives a set of Lagrange multipliers thatsatisfy the stationarity 
onditions if and only �; � are �xed points of the turbode
oding algorithm. 22.2 Spe
ial 
ase: low density parity 
he
k 
odesFigure 2 shows the pairwise MRF 
orresponding to a low density parity 
he
k 
ode.We use Roman letters like i to denote the bits and Greek letters like � to denotethe parity 
he
ks. In this example, the bits i 
an be in one of two states denoted byxi, while the 
he
k bits 
an be in one of eight states denoted by x�. If the ith bitis 
onne
ted to the �th 
he
k node, then we use the notation x�(i) to denote thestate that the ith node should be in to 
orrespond with the �th 
he
k node being inthe state x�. The pairwise potentials  (xi; x�) are set to one if x�(i) = xi and zerootherwise. The singleton potentials are set to  i(xi) = p(yijxi) for the bit nodeswhile  �(x�) is one if x� 
orresponds to an even parity state and zero otherwise.The BP update rules on this Markov graph give the Gallager de
oding algorithm:m�i(xi)  Xx�:x�(i)=xi  �(x�) Yk2N(�)nimk�(x�) (20)mi�(x�)   i(x�(i)) Y�2N(i)n�m�i(x�(i)) (21)



Figure 2: The pairwise Markov graph for a rate 1=3, (3; 2) low density parity 
he
k
ode. The nodes in the bottom layer represent unknown bits and the nodes in thetop layer represent triplets of bits. Ea
h triplet node has an observation 
onne
tedto it that gives zero posterior probability if the triplet has odd parity. The nodesin the bottom layer have observation nodes that 
orrespond to noisy versions of theunknown bits. The potentials between the bit nodes and the triplet nodes are setto one or zero depending on whether the triplet agrees with the bit node.bi(xi)   i(xi) Y�2N(i)m�i(xi) (22)b�(x�)   (x�) Yi2N(�)mi�(x�) (23)Applying 
laim to �gure 2 will again give a Bethe free energy that depends onjoint beliefs of the form b(x�; xi) but be
ause of the in�nite energy asso
iated with
on�gurations for whi
h x�(i) 6= xi, b(x�; xi) must be of the form b(x�)Æ(x�(i)�xi).Thus we obtain a simpli�ed Bethe free energy that depends only on b(x�) and b(xi).Corollary 2: A set of messages and beliefs are �xed-points of the Gallager de
odingalgorithm for LDPC 
odes if and only if they are stationary points of:F� = �Xi Xxi bi(xi) ln i(xi)�X� Xx� b�(x�) ln �(x�) (24)+X� Xx� b�(x�) ln b�(x�)�Xi (qi � 1)Xxi bi(xi) ln bi(xi) (25)subje
t to the 
onstraint that b�(x�) marginalize down to bi(xi) for all i 2 N(�).Proof: This again follows from 
laim 1 or 
an be proven dire
tly by adding Lagrangemultipliers �i�(xi) that enfor
e the 
onstraint that b(x�) marginalize down to xi.If we de�ne ��i(xi) = lnm�i(xi) we �nd that the �xed-point equations for BP areequivalent to the stationarity 
onditions for F� . 22.3 Impli
ationsThe fa
t that F�(fbij ; big) is bounded below implies that the BP equations alwayspossess a �xed-point (obtained at the global minimum of F�). To our knowledge,
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7 8 9(b)Figure 3: Two examples for the Kiku
hi approximations. See text for details.this is the �rst proof of existen
e of �xed-points for a general graph with arbitrarypotentials (see [13℄ for a more proof for the spe
ial 
ase of turbo 
odes).The free energy formulation 
lari�es the relationship to variational approa
hes whi
halso minimize an approximate free energy [6℄. For example, the mean �eld approx-imation �nds a set of fbig that minimize:FMF (fbig) = �Xij Xxi;xj bi(xi)bj(xj) ln ij(xi; xj)+Xi Xxi bi(xi) [ln bi(xi)� ln i(xi)℄(26)subje
t to the 
onstraint Pi bi(xi) = 1.The Bethe free energy in
ludes �rst-order terms bi(xi) as well as se
ond-order termsbij(xi; xj), while the mean �eld free energy uses only the �rst order ones. The BPfree energy is exa
t for trees while the mean �eld one is not. Furthermore theoptimization methods are di�erent: typi
ally FMF is minimized dire
tly in theprimal variables fbig: it is easy to de�ne lo
al updates for bi(xi) that minimizeFMF at every iteration. In 
ontrast, the BP iterations work with the messageswhi
h are 
ombinations of the dual variables f�ij(xj)g. The BP iterations do notne
essarily minimize F� at every iteration: in fa
t, for intermediate iterations thebij ; bi 
al
ulated using BP do not satisfy the marginalization 
onstrains.Kabashima and Saad [17℄ have previously pointed out the 
orresponden
e betweenBP and the Bethe approximation (expressed using the TAP formalism) for somespe
i�
 graphi
al models with random disorder. Our proof answers in the aÆrma-tive their question about whether there is a \deep general link between the twomethods." [17℄3 Kiku
hi Approximations to the Free EnergyThe Bethe approximation, for whi
h the energy and entropy are approximated byterms that involve at most pairs of nodes, is the simplest version of the Kiku
hi\
luster variational method." [7, 4, 5℄ In a general Kiku
hi approximation, the en-ergy(or entropy) is approximated as a sum of the energies(or entropies) of basi
 
lus-ters of nodes, minus the energies(or entropies) of over-
ounted 
luster interse
tions,minus the energies(or entropies) of the over-
ounted interse
tions of interse
tions,and so on.



Figure 3a shows an example. To obtain the Bethe approximation, we use as basi

lusters the set of all pairs of nodes. The Bethe entropy is the sum of all entropiesin the basi
 
lusters minus the entropies of over-
ounted 
luster interse
tions.H�(x) = H(x12) +H(x23) +H(x45) +H(x56) (27)+H(x14) +H(x25) +H(x36) (28)�H(x1)�H(x3)�H(x6)�H(x4) (29)�2H(x2)� 2H(x5) (30)where we denote by H(xi) the entropy of xi: H(xi) = �Pxi P (xi) lnP (xi). Notethat this is exa
tly the Bethe entropy used in 
laim 1. Intuitively, be
ause x1appears in two 
lusters, its entropy was over-
ounted so it is subtra
ted on
e. Thenode, x2, on the other hand, appears in three 
lusters, so its entropy is subtra
tedtwi
e.A di�erent Kiku
hi approximation for the same quantity 
an be obtained when weuse quartets of nodes as the basi
 
lusters. The entropy in �gure 3a would then beapproximated as: HK4(x) = H(x1245) +H(x2356)�H(x25) (31)Here nodes x2 and x5 appear together in two 
lusters so we subtra
t their entropy.Figure 3b shows a more generi
 situation. If we again use quartets of nodes as thebasi
 
lusters we have:HK4 = H(x1245) +H(x2356) +H(x4578) +H(x5689)�H(x25)�H(x45)�H(x56)�H(x58)+H(x5) (32)Here the nodes x2 x5 appear together in two 
lusters so we subtra
t their entropyon
e and similarly for 4; 5 5; 6 and 5; 8. But on
e we do that we see that node x5appears in four 
lusters and its entropy is subtra
ted four times (in four di�erentpairs of nodes) so we need to add the entropy of node x5 again.The Kiku
hi average energy is based on a similar intuition. De�ne the energy of aregion by: Er(xr) � � lnYij  ij(xi; xj)� lnYi  i(xi) � � ln r(xr) (33)where the produ
ts are over all nodes or pairs of nodes that are 
ontained in regionr. And denote by �E(xr; b) the average of the energy with respe
t to the belief�E(xr ; b) =Pxr br(xr)Er(xr). Then the average energy of �gure 3b using quartetsof nodes is: �EK4 = �E(x1245) + �E(x2356) + �E(x4578) + �E(x5689)� �E(x25)� �E(x45)� �E(x56)� �E(x58)+ �E(x5) (34)(where we have suppressed the dependen
e of �E on b)



For a general graph, let R be a set of regions that in
lude some 
hosen basi
 
lus-ters of nodes, their interse
tions, the interse
tions of the interse
tions, and so on.The 
hoi
e of basi
 
lusters determines the Kiku
hi approximation{for the Betheapproximation, the basi
 
lusters 
onsist of all linked pairs of nodes. Let xr be thestate of the nodes in region r and br(xr) be the \belief" in xr.The Kiku
hi free energy isFK =Xr2R 
r Xxr br(xr)Er(xr) +Xxr br(xr) log br(xr)! (35)where 
r is the over-
ounting number of region r, de�ned by: 
r = 1�Ps2super(r) 
swhere super(r) is the set of all super-regions of r. For the largest regions in R,
r = 1. The belief br(�r) in region r has several 
onstraints: it must sum to oneand be 
onsistent with the beliefs in regions whi
h interse
t with r. In general,in
reasing the size of the basi
 
lusters improves the approximation one obtains byminimizing the Kiku
hi free energy.4 Generalized belief propagation (GBP)Minimizing the Kiku
hi free energy subje
t to the 
onstraints on the beliefs isnot simple. Nearly all appli
ations of the Kiku
hi approximation in the physi
sliterature exploit symmetries in the underlying physi
al system and the 
hoi
e of
lusters to redu
e the number of equations that need to be solved from O(N) toO(1). But just as the Bethe free energy 
an be minimized by the BP algorithm, weintrodu
e a 
lass of analogous generalized belief propagation (GBP) algorithms thatminimize an arbitrary Kiku
hi free energy. These algorithms represent an advan
ein physi
s, in that they open the way to the exploitation of Kiku
hi approximationsfor inhomogeneous physi
al systems.There are in fa
t many possible GBP algorithms whi
h all 
orrespond to the sameKiku
hi approximation. We present a \
anoni
al" GBP algorithm whi
h has theni
e property of redu
ing to ordinary BP at the Bethe level. We introdu
e messagesmrs(xs) between all regions r and their \dire
t sub-regions" s. (De�ne the setsubd(r) of dire
t sub-regions of r to be those regions that are sub-regions of rbut have no super-regions that are also sub-regions of r, and similarly for the setsuperd(r) of \dire
t super-regions.") It is helpful to think of this as a messagefrom those nodes in r but not in s (whi
h we denote by rns) to the nodes in s.Intuitively, we want messages to propagate information that lies outside of a regioninto it. Thus, for a given region r, we want the belief br(xr) to depend on exa
tlythose messages mr0s0 that start outside of the region r and go into the region r. Wede�ne this set of messages M(r) to be those messages mr0s0(xs0 ) su
h that regionr0ns0 has no nodes in 
ommon with region r, and su
h that region s0 is a sub-regionof r or the same as region r. We also de�ne the set M(r; s) of messages to be allthose messages that start in a sub-region of r and also belong to M(s), and wede�ne M(r)nM(s) to be those messages that are in M(r) but not in M(s).The 
anoni
al generalized belief propagation update rules are:mrs  �24Xxrns  rns(xrns) Ymr00s002M(r)nM(s)mr00s0035 = Ymr0s02M(r;s)mr0s0 (36)



br  � r(xr) Ymr0s02M(r)mr0s0 (37)where for brevity we have suppressed the fun
tional dependen
es of the beliefs andmessages. The messages are updated starting with the messages into the smallestregions �rst. One 
an then use the newly 
omputed messages in the produ
t overM(r; s) of the message-update rule. Empiri
ally, this helps 
onvergen
e.Claim 2: Let fmrs(xs)g be a set of 
anoni
al GBP messages and let fbr(xr)g bethe beliefs 
al
ulated from those messages. Then the beliefs are �xed-points ofthe 
anoni
al GBP algorithm if and only if they are zero gradient points of the
onstrained Kiku
hi free energy FK .We prove this 
laim by adding Lagrange multipliers: 
r to enfor
e the normal-ization of br and �rs(xs) to enfor
e the 
onsisten
y of ea
h region r with all ofits dire
t sub-regions s. This set of 
onsisten
y 
onstraints is a
tually more thansuÆ
ient, but there is no harm in adding extra 
onstraints. We then rotate toanother set of Lagrange multipliers �rs(xs) of equal dimensionality whi
h enfor
e alinear 
ombination of the original 
onstraints: �rs(xs) enfor
es all those 
onstraintsinvolving marginalizations by all dire
t super-regions r0 of s into s ex
ept that ofregion r itself. The rotation matrix is in a blo
k form whi
h 
an be guaranteedto be full rank. We 
an then show that the �rs(xs) 
onstraints 
an be writtenin the form �rs(xs)Pr02R(�rs) 
r0Pxr0 b(x0r) where R(�rs) is the set of all regionswhi
h re
eive the message �rs in the belief update rule of the 
anoni
al algorithm.We then re-arrange the sum over all �'s into a sum over all regions, whi
h hasthe form Pr2R 
rPxr br(xr)P�rs2 ~M(r) �rs(xs). ( ~M(r) is a set of �r0s0 in one-to-one 
orresponden
e with the mr0s0 in M(r).) Finally, we di�erentiate the Kiku
hifree energy with respe
t to br(r), and identify �rs(xs) = lnmrs(xs) to obtain the
anoni
al GBP belief update rules, Eq. 37. Using the belief update rules in themarginalization 
onstraints, we obtain the 
anoni
al GBP message update rules,Eq. 36.Equation 36 may appear to be 
ompli
ated, but it 
an be simply derived bymarginalizing equation 37, whi
h is really the key generalized belief propagationequation. Intuitively, equation 37 simply says that the belief in a region dependson the produ
t of all the 
ompatibility matri
es and eviden
e that are internal tothe region and all the messages that originate outside of the region and end insideit.It is 
lear from this proof outline that other GBP message passing algorithms whi
hare equivalent to the Kiku
hi approximation exist. If one writes any set of 
on-straints whi
h are suÆ
ient to insure the 
onsisten
y of all Kiku
hi regions, one 
anasso
iate the exponentiated Lagrange multipliers of those 
onstraints with a set ofmessages.5 Clustered Belief PropagationIn the GBP algorithm, the messages take the form of probability distributions over
lusters of nodes, whereas in ordinary BP the messages take the form of probabilitydistributions over single nodes. A di�erent way of deriving a BP algorithm in whi
hmessages are distributions over 
luster of nodes is illustrated in �gure 4. We �rstgroup 
luster of nodes into \super-nodes" and then run ordinary BP on the 
lustered
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,d Three ways of 
lustering the graph. Runningordinary BP on the �rst two 
lusterings (b,
) is equivalent to a Kiku
hi approxima-tion, but not for the third 
lustering (d)graph. When the 
lusters are large enough so that the 
luster graph is a tree, thisis just Pearl's method of 
lustering for exa
t inferen
e in any graphi
al model [12℄(equivalent to the jun
tion tree algorithm). When the 
luster graph still has loopsin it, however, the beliefs are not exa
t. How are these beliefs related to the Kiku
hiapproximation?The simplest 
ase to analyze is when the 
lusters are non-overlapping as in �gure 4b.Corollary 2: Let G
 be a graph obtained by 
lustering nodes in a graph G. Assumethe potentials in G
 are set so that the joint distribution de�ned by G
 is equivalentto that de�ned by G. If the 
lusters are non-overlapping then the beliefs 
al
ulatedby running BP on G
 are the same as those 
al
ulated by a Kiku
hi approximationon G where the regions are all pairs of nodes in G
.This 
orollary follows dire
tly from 
laim 1.When the 
lusters are overlapping, the situation is more 
ompli
ated. When we runBP on the graph in �gure 4
 we �nd that the beliefs are indeed the same as those
al
ulated using the Kiku
hi approximation with these 
lusters as basi
 regions.When we run BP on the graph in �gure 4d, however, we obtain beliefs that arequite di�erent from the Kiku
hi beliefs.One di�eren
e between the 
lusters in �gure 4
 and these in �gure 4d has to dowith the over
ounting numbers 
r. In �gure 4
, the Kiku
hi entropy is of the form:H = H(x1245) +H(x2356) +H(x5689) +H(x478) (38)
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Figure 5: An illustration of the normalized 
lustered BP algorithm. It is identi
al toordinary BP but along some edges a \normalizer" module is added (denoted by anarrow and the letter 'N'). This algorithm is equivalent to the Kiku
hi approximation.�H(x25)�H(x56)�H(x8)�H(x4) (39)thus ex
ept for the basi
 
lusters, no other region has positive double 
ountingnumber. This property is not shared by the 
lusters in �gure 4d, however. Asequation 32 shows, the region 
orresponding to the single node x5 has positivedouble 
ounting number.Claim 3: Let R be a set of Kiku
hi regions (basi
 
lusters, interse
tions, interse
tionof interse
tions, et
.) with double 
ounting numbers 
r. If 
r > 0 only for the basi

lusters, then the beliefs 
al
ulated using the Kiku
hi approximation are identi
alto those that would be 
al
ulated using ordinary BP on a graph G
 whose nodesare the basi
 
lusters.Proof: To 
onstru
t the graphG
 we add edges between two regions r1; r2 dependingon the double 
ounting number of their interse
tion 
s for s = r1\r2. If 
s = �1 wesimply 
onne
t the 
orresponding two regions. If 
s < �1 (i.e. there are multiplepairs of regions that have s as their interse
tion) we 
hoose j
sj su
h pairs and
onne
t them. We 
hoose the edges so that all regions whose interse
tion is s forma 
onne
ted graph. The 
ompatability matri
es 	r1;r2(xr1 ; xr2) are Æ fun
tionsthat require xr1 and xr2 to agree on the value of xs. Be
ause of this form ofthe 	 fun
tions, the message from r1 to r2 depends only on the value of theirinterse
tion xs. We now add Lagrange multipliers. If r1; r2 are 
onne
ted in thegraph we add two lagrange multipliers �r1;r2(s); �r2;r1(xs). The multiplier �r1;r2(s)enfor
es the 
onstraint that b(xr2) marginalize down to b(xs). If we now de�ne,�r2;r1(xs) = lnmr2;r1(xs) we �nd that the stationarity 
onditions on the free energyand the �xed point equations for the messages are equivalent. 2A simple 
onsequen
e of 
laim 3 is that when a set of Kiku
hi regions satis�es the
ondition of 
laim 3 and the graph G
 is a tree, then the Kiku
hi beliefs are exa
t.5.1 Normalized Clustered Belief PropagationIn �gure 4d, all 
lusters 
ontain the node 5. Sin
e the 
lusters are 
onne
ted in aloop, and the potentials between 
lusters are Æ fun
tions, running BP on �gure 4dwill lead to \in�nite double 
ounting": any eviden
e a node has about x5 will 
omeba
k to it as the messages go around the loop. So if any of the nodes has eviden
eabout x5 the only �xed-points of BP are these where b(x5) has all its mass 
entered



on one value of x5. This suggests that running BP on su
h graphs is a bad idea.Normalized 
lustered BP is an algorithm that �xes this type of \in�nite double
ounting" and turns out to give the same answer as the Kiku
hi approximation.Figure 5 illustrates the algorithm. It is equivalent to ordinary BP ex
ept that someedges have a \normalizer" module atta
hed to them. As in ordinary 
lustered BP,messages along ea
h edge 
orrespond to probability distributions over a set of nodes.The idea of the normalizer module is to 
orre
t for the double 
ounting of a subsetof these nodes. In �gure 5a there is just one normalizer module and it 
orre
ts forxt = x5.Nodes 
al
ulate their outgoing messages based on in
oming messages as in normalBP. We 
all these messages m0ij(xj). In the setting of 
lustered BP, these messagesare fun
tions of the interse
tion between ri and rj so we denote them m0ij(s) wheres is the interse
tion.For edges that do not have normalizer modules, these outgoing messages simplybe
ome the ingoing messages mij = m0ij . For edges that have normalizer modules,the messages mij and mji are both multiplied by a 
orre
tion fa
tor that is afun
tion of xt mij(xs) = nij(xt)m0ij(xs) (40)mji(xs) = nij(xt)m0ji(xs) (41)(42)with: nij(xt) = 1qPxsnxt m0ij(xs)m0ji(xs) (43)Claim 4: Let R be a set of Kiku
hi regions (basi
 
lusters, interse
tions, interse
tionof interse
tions) with double 
ounting numbers 
r. If 
r > 0 only for the basi
 
lus-ters or for interse
tions of interse
tions of basi
 
lusters, then the beliefs 
al
ulatedusing the Kiku
hi approximation are identi
al to those that would be 
al
ulatedusing normalized BP on a graph G
 whose nodes are the basi
 
lusters.Proof: We 
onstru
t the graph in the same way as in 
laim 3. For every interse
tionof interse
tion t that has a a positive 
t we add 
t normalizer module on edges whoseinterse
tion 
ontains 
t. We use the same Lagrangian as in 
laim 3 but 
orrespond-ing to ea
h normalizer module we add a Lagrange multiplier 
ri;rj (xt) that enfor
esthe 
onstraint that b(xs) (with xs the interse
tion of xri ; xrj ) marginalize down tob(xt). We now de�ne 
ri;rj (xt) = lnnij(xt) with n(xt) from equation 43 and �ij asin the proof of 
laim 3. We �nd that the stationarity 
onditions on the free energyand the �xed point equations for the messages are equivalent. 26 Appli
ation to Spe
i�
 Latti
esWe illustrate the 
anoni
al GBP algorithm for the Kiku
hi approximation of over-lapping 4-node 
lusters on a square latti
e of nodes. Figure 6 (a), (b), (
) illustratesthe beliefs at a node, pair of nodes, and at a 
luster of 4 nodes, in terms of messages



propagated in the network. Ve
tors are the single index messages also used in ordi-nary BP. Ve
tors with line segments indi
ate the double-indexed messages arisingfrom the Kiku
hi approximation used here. These 
an be thought of as 
orre
tionterms a

ounting for 
orrelations between messages that ordinary BP treats as in-dependent. (For 
omparison, Fig. 6 (d), (e), (f) shows the 
orresponding marginal
omputations for the triangular latti
e with all triangles 
hosen as the basi
 Kiku
hi
lusters).We �nd the message update rules by equating marginalizations of Fig. 6 (b) and(
) with the beliefs in Fig. 6 (a) and (b), respe
tively. Figure 7 (a) and (b) show(graphi
ally) the resulting �xed point equations. The update rule (a) is like that forordinary BP, with the addition of two double-indexed messages. The update rulefor the double-indexed messages involves division by the newly-
omputed single-indexed messages. Fixed points of these message update equations give beliefs thatare stationary points (empiri
ally minima) of the 
orresponding Kiku
hi approxi-mation to the free energy.
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l (f)Figure 6: Marginal probabilities in terms of the node links and GBP mes-sages. For (a) node, (b) line, (
) square 
luster, using a Kiku
hi ap-proximation with 4-node 
lusters on a square latti
e. E.g., (b) depi
ts(a spe
ial 
ase of Eq. 37, written here using node labels): bab(xa; xb) =� ab(xa; xb) a(xa) b(xb)M
aMdaMeaMefabMfbMgbMhbM
hab , where super and sub-s
ripts indi
ate whi
h nodes message M goes from and to. (d), (e), (f): Marginalprobabilities for triangular latti
e with 3-node Kiku
hi 
lusters.
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l(b)Figure 7: Graphi
al depi
tion of message update equations (Eq. 36; marginal-ize over nodes shown un�lled) for GBP using overlapping 4-node Kiku
hi
lusters. (a) Update equation for the single-index messages: M ba(xa) =�Pxb  b(xb) ab(xa; xb)MefabMfbMgbMhbM
hab . (b) Update equation for double-indexed messages (involves a division by the single-index messages on the left handside).7 Experimental ResultsOrdinary BP is expe
ted to perform relatively poorly for networks with many tightloops, 
on
i
ting intera
tions, and weak eviden
e. We 
onstru
ted su
h a network,



known in the physi
s literature as the square latti
e Ising spin glass in a randommagneti
 �eld. The nodes are on a square latti
e, with nearest neighbor nodes
onne
ted by a 
ompatibility matrix of the form  ij = � exp(Jij) exp(�Jij)exp(�Jij) exp(Jij) �and lo
al eviden
e ve
tors of the form  i = (exp(hi); exp(�hi)). To instantiate aparti
ular network, the Jij and hi parameters are 
hosen randomly and indepen-dently from zero-mean Gaussian probability distributions with standard deviationsJ and h respe
tively.The following results are for n by n latti
es with toroidal boundary 
onditions andwith J = 1, and h = 0:1. This model is designed to show o� the weaknessesof ordinary BP, whi
h performs well for many other networks. Ordinary BP is aspe
ial 
ase of 
anoni
al GBP, so we exploited this to use the same general-purposeGBP 
ode for both ordinary BP and 
anoni
al GBP using overlapping square four-node 
lusters, thus making 
omputational 
ost 
omparisons reasonable. We startedwith randomized messages and only stepped half-way towards the 
omputed valuesof the messages at ea
h iteration in order to help 
onvergen
e. We found that
anoni
al GBP took about twi
e as long as ordinary BP per iteration, but wouldtypi
ally rea
h a given level of 
onvergen
e in many fewer iterations. In fa
t, forthe majority of the dozens of samples that we looked at, BP did not 
onverge atall, while 
anoni
al GBP always 
onverged for this model and always to a

urateanswers. (We found that for the zero-�eld 3-dimensional spin glass with toroidalboundary 
onditions, whi
h is an even more diÆ
ult model, 
anoni
al GBP with2x2x2 
ubi
 
lusters would also fail to 
onverge).For n = 20 or larger, it was diÆ
ult to make 
omparisons with any other algorithm,be
ause ordinary BP did not 
onverge and Monte Carlo simulations su�ered fromextremely slow equilibration. However, generalized belief propagation 
onvergedreasonably rapidly to plausible-looking beliefs. For small n, we 
ould 
ompare withexa
t results, by using Pearl's 
lustering method on a 
hain of n by 1 super-nodes.To give a qualitative feel for the results, we 
ompare ordinary BP, 
anoni
al GBP,and the exa
t results for an n = 10 latti
e where ordinary BP did 
onverge. Listingthe values of the one-node marginal probabilities in one of the rows, we �nd thatordinary BP gives (.0043807, .74502, .32866, .62190, .37745, .41243, .57842, .74555,.85315, .99632), 
anoni
al GBP gives (.40255, .54115, .49184, .54232, .44812, .48014,.51501, .57693, .57710, .59757), and the exa
t results were (.40131, .54038, .48923,.54506, .44537, .47856, .51686, .58108, .57791, .59881).Referen
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