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On the one hand, a number of researhers have empirially demonstrated goodperformane for BP algorithms applied to graphs with loops. One dramati ase isthe near Shannon-limit performane of \Turbo odes", whose deoding algorithm isequivalent to BP on a loopy graph [3, 9℄. Other suessful ases inlude omputervision problems and medial diagonsis [3, 2, 11℄ suggesting the suess of BP onloopy graphs is not limited to oding appliations. On the other hand, for othergraphs with loops, BP may give poor results or fail to onverge [11℄.For a general graph, little has been understood about what approximation BPrepresents, and how it might be improved. This paper's goal is to provide thatunderstanding and introdue a set of new algorithms resulting from that under-standing. We show that BP is the �rst in a progression of loal message-passingalgorithms, eah giving equivalent results to a orresponding approximation fromstatistial physis known as the \Kikuhi" approximation to the Gibbs free energy.These algorithms have the attrative property of being user-adjustable: by pay-ing some additional omputational ost, one an obtain onsiderable improvementin the auray of one's approximation, and an sometimes obtain a onvergentmessage-passing algorithm when ordinary BP does not onverge.2 Belief propagation �xed-points are zero gradient points ofthe Bethe free energyFor the purpose of analyzing and desribing BP we assume that we are given anundireted graphial model of N nodes with pairwise potentials (a pairwise MarkovRandom Field). Any graphial model an be onverted into this form before doinginferene through a suitable lustering of nodes into larger nodes [15℄. Through thistransformation, one an apply all the results in this paper to arbitrary graphialmodels inluding those with higher-order potentials. We will give expliit examplesof this in later setions.The state of eah unobserved node i is denoted by xi, and we assume eah unob-served node is onneted to an observed node yi. The joint probability distributionfuntion is given byP (x1; x2; :::; xN jy) = 1ZYij  ij(xi; xj)Yi  i(xi; yi) (1)where  i(xi; yi) is the loal \evidene" for node i,  ij(xi; xj) is the ompatibilitymatrix between nodes i and j, and Z is a normalization onstant. In what follows,we simplify notation and write  i(xi) as shorthand for  i(xi; yi).The standard BP update rules are:mij(xj)  kXxi  ij(xi; xj) i(xi) Yk2N(i)njmki(xi) (2)bi(xi)  k i(xi) Yk2N(i)mki(xi) (3)where k denotes a normalization onstant and N(i)nj means all nodes neighboringnode i, exept j. Here mij refers to the message that node i sends to node j andbi is the belief (approximate marginal posterior probability) at node i, obtained by



multiplying all inoming messages to that node by the loal evidene. Similarly, wean de�ne the belief bij(xi; xj) at the pair of nodes (xi; xj) as the produt of theloal potentials and all messages inoming to the pair of nodes:bij(xi; xj) = k�ij(xi; xj) Yk2N(i)njmki(xi) Yl2N(j)nimlj(xj) (4)where �ij(xi; xj) �  ij(xi; xj) i(xi) j(xj).For a tree, the BP iterations onverge to a unique �xed point and the beliefsare equal to the posterior marginals bi(xi) = P (xi) (e.g. [12℄). Similarly, onean show that for a tree the pairwise beliefs are equal to the posterior marginalsbij(xi; xj) = P (xi; xj). The following laim haraterizes bi and bij for an arbitrarygraph, showing that they are equivalent to the marginal probabilities obtained inthe Bethe approximation developed in statistial physis [1℄.Claim 1: Let fmijg be a set of BP messages and let fbij ; big be the beliefs alulatedfrom those messages. Then the beliefs are �xed-points of the BP algorithm if andonly if they are zero gradient points of the Bethe free energy, F� :F�(fbij ; big) = �Xij Xxi;xj bij(xi; xj) ln�ij(xi; xj) +Xi (qi � 1)Xxi bi(xi) ln i(xi)+Xij Xxi;xj bij(xi; xj) ln bij(xi; xj)�Xi (qi � 1)Xxi bi(xi) ln bi(xi)(5)subjet to the normalization and marginalization onstraints: Pxi bi(xi) = 1,Pxi bij(xi; xj) = bj(xj). (qi is the number of neighbors of node i.)Proof: We add Lagrange multipliers to form a Lagrangian L: �ij(xj) is the multi-plier orresponding to the onstraint that bij(xi; xj) marginalizes down to bj(xj),and ij ; i are multipliers orresponding to the normalization onstraints. The equa-tion �L�bij(xi;xj) = 0 gives: ln bij(xi; xj) = ln(�ij(xi; xj))+�ij(xj)+�ji(xi)+ ij � 1.The equation �L�bi(xi) = 0 gives: (qi�1)(ln bi(xi)+1) = ln i(xi)+Pj2N(i) �ji(xi)+i. Setting �ij(xj) = lnQk2N(j)nimkj(xj) and using the marginalization on-straints, we �nd that the stationary onditions on the Lagrangian are equivalentto the BP �xed-point onditions. To go in the opposite diretion, if we are givenbij ; bi; �ij(xj) that orrespond to a zero-gradient point, we setmij(xj) = bj(xj)exp(�ij(xj)) .Beause bij ; bi; �ij satisfy the stationarity onditions, mij de�ned in this way mustbe a �xed point of BP. Thus there is a one-to-one orrepsondene between �xed-points of BP and staionary points of the Bethe free energy. 2(Empirially, we �nd that stable BP �xed-points orrespond to loal minima of theBethe free energy, rather than maxima or saddle-points.)Using the marginalization onditions and the de�nition of �(xi; xj) the Bethe freeenergy an also be written:F�(fbij ; big) = �Xij Xxi;xj bij(xi; xj) ln ij(xi; xj)�Xi Xxi bi(xi) ln i(xi)+Xij Xxi;xj bij(xi; xj) ln bij(xi; xj)�Xi (qi � 1)Xxi bi(xi) ln bi(xi)(6)



Where does the Bethe free energy ome from? We will disuss the physis intuitionbehind it in setion 3 but to make the formula less mysterious we now show thatit is an exat free energy when the graph is a tree. In other words, minimizing theBethe free energy for a tree is equivalent to performing exat inferene.The exat free energy is simply the average energy minus the entropy:F (fb(x)g) =Xx b(x)E(x) +Xx b(x) log b(x) (7)where b(x) is the \belief" in a state x and E(x) the \energy" of x motivated byBoltzmann's law P (xjy) = 1Z e�E(x):E(x) = � logP (xjy)� logZ = �X<ij> log ij(xi; xj)�Xi log i(xi) (8)Note that F is (up to a onstant) the KL divergene between b(x) and P (xjy) sothat F is minimized when b(x) = P (xjy).By substituting equation 8 in the average energy we obtain:Xx b(x)E(x) = �Xij Xxi;xj bij(xi; xj) ln ij(xi; xj)�Xi Xxi bi(xi) ln i(xi) (9)so that the �rst two terms of the Bethe free energy (eq. 6) are exatly the averageenergy.If the graph is a tree, then we an restrit the minimization to the lass of b(x)that satisfy the onditional independenes implied by the graph. Suh b(x) an bewritten as a produt of beliefs over liques, divided by beliefs over separator sets(see e.g. [12℄). In our setting, the liques are pairs of nodes and the separator setsare single nodes so that: b(x) = Q<ij> bij(xi; xj)Qi bi(xi)qi�1 (10)If we substitute equation 10, into the expression for the negative entropyPx b(x) ln b(x) we obtain the last two terms of the Bethe free energy (eq. 6). Thusfor a tree graph, the Bethe free energy is exat and it will be minimized whenbij(xi; xj) = P (xi; xj jy) and bi(xi) = P (xijy).2.1 Speial ase: turbo odesWe follow the formulation of Turbo deoding presented in [10℄. An unknown binaryvetor u is enoded using two onstituent odes, eah of whih is easy to deode byitself and the results are transmitted over a noisy hannel giving two observationsy1; y2. The task of Turbo deoding is to infer the values of bits of u from the twoobservations y1; y2. The deoder knows the prior distribution over u (whih weassume here is uniform) and the two onditional probabilities pi(u) = p(yiju).The turbo deoding algorithm iterates the following iterations:�i(ui)  k Xw:wi=ui p1(w)Yj 6=i�j(wj) (11)�i(ui)  k Xw:wi=ui p2(w)Yj 6=i �j(wj) (12)
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message 2Figure 1: The Turbo ode struture. Running BP on this graph is equivalent tothe turbo deoding algorithm.and the marginal probability over ui is approximated by:b(ui) = k�i(ui)�i(ui) (13)after the iterations have onverged (or reahed a maximal number of iterations).Note that the Turbo deoding algorithm as formulated here requires summing overan exponentially large number of states in eah iteration. The reason this is possibleis that the likelihoods p1(w); p2(w) ome from an easy to deode ode. In otherwords, there is a fatorization struture on these likelihoods that orrespond to asingly-onneted graph: this enables turbo deoders to ompute the exponentialsum over states in linear time. Essentially, this is done by an algorithm equivalentto BP.As shown in [16, 8, 9℄, the Turbo deoding algorithm is equivalent to belief propaga-tion. In our undireted formalism, it is equivalent to iterating the BP equations onthe graph shown in �gure 1. The top and bottom nodes orrespond to odewordsw1; w2 and the nodes in the middle layer orrespond to unknown bits. The poten-tials between nodes are set to delta funtions:  (w1; ui) = 1 if the ith bit of w1,w1i is equal to ui and zero otherwise. Nodes w1 and w2 have observation potentialsp1(w); p2(w) orresponding to the likelihood of a odeword from one onstituentode.When BP is run on this graph, the messages reahing ui are exatly �i; �i usedin turbo deoding and equations 11{12 follow diretly from the standard BP up-dates [14℄. The BP formalism also allows us to ompute beliefs over w1; w2 givenby: b1(w) = kp1(w)Yi �i(wi) (14)



b2(w) = kp2(w)Yi �i(wi) (15)(16)Applying laim 1 to the graph shown in �gure 1 gives a Bethe free energy thatinludes joint beliefs of the form b(wi; uj), but beause the energy is in�nite for anysuh belief for whih wij 6= uj suh beliefs must be of the form b(wi)Æ(wij � uj) forthe Bethe free energy to be �nite. Using this fat, we an simplify the Bethe freeenergy. The simpli�ed free energy is now only a funtion of b1(w); b2(w) and bi(ui).Corollary 1: Let �i; �i be a set of Turbo deoding messages and let fbi(w); bi(ui)gbe the beliefs alulated from those messages. Then the beliefs are �xed-points ofthe Turbo deoding algorithm if and only if they are zero gradient points of theBethe free energy, F� :F� = �Xx b1(w) ln p1(w) +Xw b1(w) ln b1(w) (17)�Xx b2(w) ln p2(w) +Xw b2(w) ln b2(w) (18)�Xi Xui bi(ui) ln bi(ui) (19)subjet to the onstraints that b1(w) and b2(w) marginalize down to bi(ui) for all i.Proof: This follows from laim 1. Alternatively, one an prove it diretly by addingLagrange multipliers ��(ui) enfores the onstraint that b1(w) marginalize downto bi(ui) and ��(ui) enfores the onstraint that b2(w) marginalize down to bi(ui).Setting ��(ui) = ln�(ui); ��(ui) = ln�(ui) gives a set of Lagrange multipliers thatsatisfy the stationarity onditions if and only �; � are �xed points of the turbodeoding algorithm. 22.2 Speial ase: low density parity hek odesFigure 2 shows the pairwise MRF orresponding to a low density parity hek ode.We use Roman letters like i to denote the bits and Greek letters like � to denotethe parity heks. In this example, the bits i an be in one of two states denoted byxi, while the hek bits an be in one of eight states denoted by x�. If the ith bitis onneted to the �th hek node, then we use the notation x�(i) to denote thestate that the ith node should be in to orrespond with the �th hek node being inthe state x�. The pairwise potentials  (xi; x�) are set to one if x�(i) = xi and zerootherwise. The singleton potentials are set to  i(xi) = p(yijxi) for the bit nodeswhile  �(x�) is one if x� orresponds to an even parity state and zero otherwise.The BP update rules on this Markov graph give the Gallager deoding algorithm:m�i(xi)  Xx�:x�(i)=xi  �(x�) Yk2N(�)nimk�(x�) (20)mi�(x�)   i(x�(i)) Y�2N(i)n�m�i(x�(i)) (21)



Figure 2: The pairwise Markov graph for a rate 1=3, (3; 2) low density parity hekode. The nodes in the bottom layer represent unknown bits and the nodes in thetop layer represent triplets of bits. Eah triplet node has an observation onnetedto it that gives zero posterior probability if the triplet has odd parity. The nodesin the bottom layer have observation nodes that orrespond to noisy versions of theunknown bits. The potentials between the bit nodes and the triplet nodes are setto one or zero depending on whether the triplet agrees with the bit node.bi(xi)   i(xi) Y�2N(i)m�i(xi) (22)b�(x�)   (x�) Yi2N(�)mi�(x�) (23)Applying laim to �gure 2 will again give a Bethe free energy that depends onjoint beliefs of the form b(x�; xi) but beause of the in�nite energy assoiated withon�gurations for whih x�(i) 6= xi, b(x�; xi) must be of the form b(x�)Æ(x�(i)�xi).Thus we obtain a simpli�ed Bethe free energy that depends only on b(x�) and b(xi).Corollary 2: A set of messages and beliefs are �xed-points of the Gallager deodingalgorithm for LDPC odes if and only if they are stationary points of:F� = �Xi Xxi bi(xi) ln i(xi)�X� Xx� b�(x�) ln �(x�) (24)+X� Xx� b�(x�) ln b�(x�)�Xi (qi � 1)Xxi bi(xi) ln bi(xi) (25)subjet to the onstraint that b�(x�) marginalize down to bi(xi) for all i 2 N(�).Proof: This again follows from laim 1 or an be proven diretly by adding Lagrangemultipliers �i�(xi) that enfore the onstraint that b(x�) marginalize down to xi.If we de�ne ��i(xi) = lnm�i(xi) we �nd that the �xed-point equations for BP areequivalent to the stationarity onditions for F� . 22.3 ImpliationsThe fat that F�(fbij ; big) is bounded below implies that the BP equations alwayspossess a �xed-point (obtained at the global minimum of F�). To our knowledge,
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7 8 9(b)Figure 3: Two examples for the Kikuhi approximations. See text for details.this is the �rst proof of existene of �xed-points for a general graph with arbitrarypotentials (see [13℄ for a more proof for the speial ase of turbo odes).The free energy formulation lari�es the relationship to variational approahes whihalso minimize an approximate free energy [6℄. For example, the mean �eld approx-imation �nds a set of fbig that minimize:FMF (fbig) = �Xij Xxi;xj bi(xi)bj(xj) ln ij(xi; xj)+Xi Xxi bi(xi) [ln bi(xi)� ln i(xi)℄(26)subjet to the onstraint Pi bi(xi) = 1.The Bethe free energy inludes �rst-order terms bi(xi) as well as seond-order termsbij(xi; xj), while the mean �eld free energy uses only the �rst order ones. The BPfree energy is exat for trees while the mean �eld one is not. Furthermore theoptimization methods are di�erent: typially FMF is minimized diretly in theprimal variables fbig: it is easy to de�ne loal updates for bi(xi) that minimizeFMF at every iteration. In ontrast, the BP iterations work with the messageswhih are ombinations of the dual variables f�ij(xj)g. The BP iterations do notneessarily minimize F� at every iteration: in fat, for intermediate iterations thebij ; bi alulated using BP do not satisfy the marginalization onstrains.Kabashima and Saad [17℄ have previously pointed out the orrespondene betweenBP and the Bethe approximation (expressed using the TAP formalism) for somespei� graphial models with random disorder. Our proof answers in the aÆrma-tive their question about whether there is a \deep general link between the twomethods." [17℄3 Kikuhi Approximations to the Free EnergyThe Bethe approximation, for whih the energy and entropy are approximated byterms that involve at most pairs of nodes, is the simplest version of the Kikuhi\luster variational method." [7, 4, 5℄ In a general Kikuhi approximation, the en-ergy(or entropy) is approximated as a sum of the energies(or entropies) of basi lus-ters of nodes, minus the energies(or entropies) of over-ounted luster intersetions,minus the energies(or entropies) of the over-ounted intersetions of intersetions,and so on.



Figure 3a shows an example. To obtain the Bethe approximation, we use as basilusters the set of all pairs of nodes. The Bethe entropy is the sum of all entropiesin the basi lusters minus the entropies of over-ounted luster intersetions.H�(x) = H(x12) +H(x23) +H(x45) +H(x56) (27)+H(x14) +H(x25) +H(x36) (28)�H(x1)�H(x3)�H(x6)�H(x4) (29)�2H(x2)� 2H(x5) (30)where we denote by H(xi) the entropy of xi: H(xi) = �Pxi P (xi) lnP (xi). Notethat this is exatly the Bethe entropy used in laim 1. Intuitively, beause x1appears in two lusters, its entropy was over-ounted so it is subtrated one. Thenode, x2, on the other hand, appears in three lusters, so its entropy is subtratedtwie.A di�erent Kikuhi approximation for the same quantity an be obtained when weuse quartets of nodes as the basi lusters. The entropy in �gure 3a would then beapproximated as: HK4(x) = H(x1245) +H(x2356)�H(x25) (31)Here nodes x2 and x5 appear together in two lusters so we subtrat their entropy.Figure 3b shows a more generi situation. If we again use quartets of nodes as thebasi lusters we have:HK4 = H(x1245) +H(x2356) +H(x4578) +H(x5689)�H(x25)�H(x45)�H(x56)�H(x58)+H(x5) (32)Here the nodes x2 x5 appear together in two lusters so we subtrat their entropyone and similarly for 4; 5 5; 6 and 5; 8. But one we do that we see that node x5appears in four lusters and its entropy is subtrated four times (in four di�erentpairs of nodes) so we need to add the entropy of node x5 again.The Kikuhi average energy is based on a similar intuition. De�ne the energy of aregion by: Er(xr) � � lnYij  ij(xi; xj)� lnYi  i(xi) � � ln r(xr) (33)where the produts are over all nodes or pairs of nodes that are ontained in regionr. And denote by �E(xr; b) the average of the energy with respet to the belief�E(xr ; b) =Pxr br(xr)Er(xr). Then the average energy of �gure 3b using quartetsof nodes is: �EK4 = �E(x1245) + �E(x2356) + �E(x4578) + �E(x5689)� �E(x25)� �E(x45)� �E(x56)� �E(x58)+ �E(x5) (34)(where we have suppressed the dependene of �E on b)



For a general graph, let R be a set of regions that inlude some hosen basi lus-ters of nodes, their intersetions, the intersetions of the intersetions, and so on.The hoie of basi lusters determines the Kikuhi approximation{for the Betheapproximation, the basi lusters onsist of all linked pairs of nodes. Let xr be thestate of the nodes in region r and br(xr) be the \belief" in xr.The Kikuhi free energy isFK =Xr2R r Xxr br(xr)Er(xr) +Xxr br(xr) log br(xr)! (35)where r is the over-ounting number of region r, de�ned by: r = 1�Ps2super(r) swhere super(r) is the set of all super-regions of r. For the largest regions in R,r = 1. The belief br(�r) in region r has several onstraints: it must sum to oneand be onsistent with the beliefs in regions whih interset with r. In general,inreasing the size of the basi lusters improves the approximation one obtains byminimizing the Kikuhi free energy.4 Generalized belief propagation (GBP)Minimizing the Kikuhi free energy subjet to the onstraints on the beliefs isnot simple. Nearly all appliations of the Kikuhi approximation in the physisliterature exploit symmetries in the underlying physial system and the hoie oflusters to redue the number of equations that need to be solved from O(N) toO(1). But just as the Bethe free energy an be minimized by the BP algorithm, weintrodue a lass of analogous generalized belief propagation (GBP) algorithms thatminimize an arbitrary Kikuhi free energy. These algorithms represent an advanein physis, in that they open the way to the exploitation of Kikuhi approximationsfor inhomogeneous physial systems.There are in fat many possible GBP algorithms whih all orrespond to the sameKikuhi approximation. We present a \anonial" GBP algorithm whih has thenie property of reduing to ordinary BP at the Bethe level. We introdue messagesmrs(xs) between all regions r and their \diret sub-regions" s. (De�ne the setsubd(r) of diret sub-regions of r to be those regions that are sub-regions of rbut have no super-regions that are also sub-regions of r, and similarly for the setsuperd(r) of \diret super-regions.") It is helpful to think of this as a messagefrom those nodes in r but not in s (whih we denote by rns) to the nodes in s.Intuitively, we want messages to propagate information that lies outside of a regioninto it. Thus, for a given region r, we want the belief br(xr) to depend on exatlythose messages mr0s0 that start outside of the region r and go into the region r. Wede�ne this set of messages M(r) to be those messages mr0s0(xs0 ) suh that regionr0ns0 has no nodes in ommon with region r, and suh that region s0 is a sub-regionof r or the same as region r. We also de�ne the set M(r; s) of messages to be allthose messages that start in a sub-region of r and also belong to M(s), and wede�ne M(r)nM(s) to be those messages that are in M(r) but not in M(s).The anonial generalized belief propagation update rules are:mrs  �24Xxrns  rns(xrns) Ymr00s002M(r)nM(s)mr00s0035 = Ymr0s02M(r;s)mr0s0 (36)



br  � r(xr) Ymr0s02M(r)mr0s0 (37)where for brevity we have suppressed the funtional dependenes of the beliefs andmessages. The messages are updated starting with the messages into the smallestregions �rst. One an then use the newly omputed messages in the produt overM(r; s) of the message-update rule. Empirially, this helps onvergene.Claim 2: Let fmrs(xs)g be a set of anonial GBP messages and let fbr(xr)g bethe beliefs alulated from those messages. Then the beliefs are �xed-points ofthe anonial GBP algorithm if and only if they are zero gradient points of theonstrained Kikuhi free energy FK .We prove this laim by adding Lagrange multipliers: r to enfore the normal-ization of br and �rs(xs) to enfore the onsisteny of eah region r with all ofits diret sub-regions s. This set of onsisteny onstraints is atually more thansuÆient, but there is no harm in adding extra onstraints. We then rotate toanother set of Lagrange multipliers �rs(xs) of equal dimensionality whih enfore alinear ombination of the original onstraints: �rs(xs) enfores all those onstraintsinvolving marginalizations by all diret super-regions r0 of s into s exept that ofregion r itself. The rotation matrix is in a blok form whih an be guaranteedto be full rank. We an then show that the �rs(xs) onstraints an be writtenin the form �rs(xs)Pr02R(�rs) r0Pxr0 b(x0r) where R(�rs) is the set of all regionswhih reeive the message �rs in the belief update rule of the anonial algorithm.We then re-arrange the sum over all �'s into a sum over all regions, whih hasthe form Pr2R rPxr br(xr)P�rs2 ~M(r) �rs(xs). ( ~M(r) is a set of �r0s0 in one-to-one orrespondene with the mr0s0 in M(r).) Finally, we di�erentiate the Kikuhifree energy with respet to br(r), and identify �rs(xs) = lnmrs(xs) to obtain theanonial GBP belief update rules, Eq. 37. Using the belief update rules in themarginalization onstraints, we obtain the anonial GBP message update rules,Eq. 36.Equation 36 may appear to be ompliated, but it an be simply derived bymarginalizing equation 37, whih is really the key generalized belief propagationequation. Intuitively, equation 37 simply says that the belief in a region dependson the produt of all the ompatibility matries and evidene that are internal tothe region and all the messages that originate outside of the region and end insideit.It is lear from this proof outline that other GBP message passing algorithms whihare equivalent to the Kikuhi approximation exist. If one writes any set of on-straints whih are suÆient to insure the onsisteny of all Kikuhi regions, one anassoiate the exponentiated Lagrange multipliers of those onstraints with a set ofmessages.5 Clustered Belief PropagationIn the GBP algorithm, the messages take the form of probability distributions overlusters of nodes, whereas in ordinary BP the messages take the form of probabilitydistributions over single nodes. A di�erent way of deriving a BP algorithm in whihmessages are distributions over luster of nodes is illustrated in �gure 4. We �rstgroup luster of nodes into \super-nodes" and then run ordinary BP on the lustered
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78 (d)Figure 4: a. A simple graph. b,,d Three ways of lustering the graph. Runningordinary BP on the �rst two lusterings (b,) is equivalent to a Kikuhi approxima-tion, but not for the third lustering (d)graph. When the lusters are large enough so that the luster graph is a tree, thisis just Pearl's method of lustering for exat inferene in any graphial model [12℄(equivalent to the juntion tree algorithm). When the luster graph still has loopsin it, however, the beliefs are not exat. How are these beliefs related to the Kikuhiapproximation?The simplest ase to analyze is when the lusters are non-overlapping as in �gure 4b.Corollary 2: Let G be a graph obtained by lustering nodes in a graph G. Assumethe potentials in G are set so that the joint distribution de�ned by G is equivalentto that de�ned by G. If the lusters are non-overlapping then the beliefs alulatedby running BP on G are the same as those alulated by a Kikuhi approximationon G where the regions are all pairs of nodes in G.This orollary follows diretly from laim 1.When the lusters are overlapping, the situation is more ompliated. When we runBP on the graph in �gure 4 we �nd that the beliefs are indeed the same as thosealulated using the Kikuhi approximation with these lusters as basi regions.When we run BP on the graph in �gure 4d, however, we obtain beliefs that arequite di�erent from the Kikuhi beliefs.One di�erene between the lusters in �gure 4 and these in �gure 4d has to dowith the overounting numbers r. In �gure 4, the Kikuhi entropy is of the form:H = H(x1245) +H(x2356) +H(x5689) +H(x478) (38)



23
56

12
45

56
89

23
56

45
78

N

Figure 5: An illustration of the normalized lustered BP algorithm. It is idential toordinary BP but along some edges a \normalizer" module is added (denoted by anarrow and the letter 'N'). This algorithm is equivalent to the Kikuhi approximation.�H(x25)�H(x56)�H(x8)�H(x4) (39)thus exept for the basi lusters, no other region has positive double ountingnumber. This property is not shared by the lusters in �gure 4d, however. Asequation 32 shows, the region orresponding to the single node x5 has positivedouble ounting number.Claim 3: Let R be a set of Kikuhi regions (basi lusters, intersetions, intersetionof intersetions, et.) with double ounting numbers r. If r > 0 only for the basilusters, then the beliefs alulated using the Kikuhi approximation are identialto those that would be alulated using ordinary BP on a graph G whose nodesare the basi lusters.Proof: To onstrut the graphG we add edges between two regions r1; r2 dependingon the double ounting number of their intersetion s for s = r1\r2. If s = �1 wesimply onnet the orresponding two regions. If s < �1 (i.e. there are multiplepairs of regions that have s as their intersetion) we hoose jsj suh pairs andonnet them. We hoose the edges so that all regions whose intersetion is s forma onneted graph. The ompatability matries 	r1;r2(xr1 ; xr2) are Æ funtionsthat require xr1 and xr2 to agree on the value of xs. Beause of this form ofthe 	 funtions, the message from r1 to r2 depends only on the value of theirintersetion xs. We now add Lagrange multipliers. If r1; r2 are onneted in thegraph we add two lagrange multipliers �r1;r2(s); �r2;r1(xs). The multiplier �r1;r2(s)enfores the onstraint that b(xr2) marginalize down to b(xs). If we now de�ne,�r2;r1(xs) = lnmr2;r1(xs) we �nd that the stationarity onditions on the free energyand the �xed point equations for the messages are equivalent. 2A simple onsequene of laim 3 is that when a set of Kikuhi regions satis�es theondition of laim 3 and the graph G is a tree, then the Kikuhi beliefs are exat.5.1 Normalized Clustered Belief PropagationIn �gure 4d, all lusters ontain the node 5. Sine the lusters are onneted in aloop, and the potentials between lusters are Æ funtions, running BP on �gure 4dwill lead to \in�nite double ounting": any evidene a node has about x5 will omebak to it as the messages go around the loop. So if any of the nodes has evideneabout x5 the only �xed-points of BP are these where b(x5) has all its mass entered



on one value of x5. This suggests that running BP on suh graphs is a bad idea.Normalized lustered BP is an algorithm that �xes this type of \in�nite doubleounting" and turns out to give the same answer as the Kikuhi approximation.Figure 5 illustrates the algorithm. It is equivalent to ordinary BP exept that someedges have a \normalizer" module attahed to them. As in ordinary lustered BP,messages along eah edge orrespond to probability distributions over a set of nodes.The idea of the normalizer module is to orret for the double ounting of a subsetof these nodes. In �gure 5a there is just one normalizer module and it orrets forxt = x5.Nodes alulate their outgoing messages based on inoming messages as in normalBP. We all these messages m0ij(xj). In the setting of lustered BP, these messagesare funtions of the intersetion between ri and rj so we denote them m0ij(s) wheres is the intersetion.For edges that do not have normalizer modules, these outgoing messages simplybeome the ingoing messages mij = m0ij . For edges that have normalizer modules,the messages mij and mji are both multiplied by a orretion fator that is afuntion of xt mij(xs) = nij(xt)m0ij(xs) (40)mji(xs) = nij(xt)m0ji(xs) (41)(42)with: nij(xt) = 1qPxsnxt m0ij(xs)m0ji(xs) (43)Claim 4: Let R be a set of Kikuhi regions (basi lusters, intersetions, intersetionof intersetions) with double ounting numbers r. If r > 0 only for the basi lus-ters or for intersetions of intersetions of basi lusters, then the beliefs alulatedusing the Kikuhi approximation are idential to those that would be alulatedusing normalized BP on a graph G whose nodes are the basi lusters.Proof: We onstrut the graph in the same way as in laim 3. For every intersetionof intersetion t that has a a positive t we add t normalizer module on edges whoseintersetion ontains t. We use the same Lagrangian as in laim 3 but orrespond-ing to eah normalizer module we add a Lagrange multiplier ri;rj (xt) that enforesthe onstraint that b(xs) (with xs the intersetion of xri ; xrj ) marginalize down tob(xt). We now de�ne ri;rj (xt) = lnnij(xt) with n(xt) from equation 43 and �ij asin the proof of laim 3. We �nd that the stationarity onditions on the free energyand the �xed point equations for the messages are equivalent. 26 Appliation to Spei� LattiesWe illustrate the anonial GBP algorithm for the Kikuhi approximation of over-lapping 4-node lusters on a square lattie of nodes. Figure 6 (a), (b), () illustratesthe beliefs at a node, pair of nodes, and at a luster of 4 nodes, in terms of messages



propagated in the network. Vetors are the single index messages also used in ordi-nary BP. Vetors with line segments indiate the double-indexed messages arisingfrom the Kikuhi approximation used here. These an be thought of as orretionterms aounting for orrelations between messages that ordinary BP treats as in-dependent. (For omparison, Fig. 6 (d), (e), (f) shows the orresponding marginalomputations for the triangular lattie with all triangles hosen as the basi Kikuhilusters).We �nd the message update rules by equating marginalizations of Fig. 6 (b) and() with the beliefs in Fig. 6 (a) and (b), respetively. Figure 7 (a) and (b) show(graphially) the resulting �xed point equations. The update rule (a) is like that forordinary BP, with the addition of two double-indexed messages. The update rulefor the double-indexed messages involves division by the newly-omputed single-indexed messages. Fixed points of these message update equations give beliefs thatare stationary points (empirially minima) of the orresponding Kikuhi approxi-mation to the free energy.
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known in the physis literature as the square lattie Ising spin glass in a randommagneti �eld. The nodes are on a square lattie, with nearest neighbor nodesonneted by a ompatibility matrix of the form  ij = � exp(Jij) exp(�Jij)exp(�Jij) exp(Jij) �and loal evidene vetors of the form  i = (exp(hi); exp(�hi)). To instantiate apartiular network, the Jij and hi parameters are hosen randomly and indepen-dently from zero-mean Gaussian probability distributions with standard deviationsJ and h respetively.The following results are for n by n latties with toroidal boundary onditions andwith J = 1, and h = 0:1. This model is designed to show o� the weaknessesof ordinary BP, whih performs well for many other networks. Ordinary BP is aspeial ase of anonial GBP, so we exploited this to use the same general-purposeGBP ode for both ordinary BP and anonial GBP using overlapping square four-node lusters, thus making omputational ost omparisons reasonable. We startedwith randomized messages and only stepped half-way towards the omputed valuesof the messages at eah iteration in order to help onvergene. We found thatanonial GBP took about twie as long as ordinary BP per iteration, but wouldtypially reah a given level of onvergene in many fewer iterations. In fat, forthe majority of the dozens of samples that we looked at, BP did not onverge atall, while anonial GBP always onverged for this model and always to aurateanswers. (We found that for the zero-�eld 3-dimensional spin glass with toroidalboundary onditions, whih is an even more diÆult model, anonial GBP with2x2x2 ubi lusters would also fail to onverge).For n = 20 or larger, it was diÆult to make omparisons with any other algorithm,beause ordinary BP did not onverge and Monte Carlo simulations su�ered fromextremely slow equilibration. However, generalized belief propagation onvergedreasonably rapidly to plausible-looking beliefs. For small n, we ould ompare withexat results, by using Pearl's lustering method on a hain of n by 1 super-nodes.To give a qualitative feel for the results, we ompare ordinary BP, anonial GBP,and the exat results for an n = 10 lattie where ordinary BP did onverge. Listingthe values of the one-node marginal probabilities in one of the rows, we �nd thatordinary BP gives (.0043807, .74502, .32866, .62190, .37745, .41243, .57842, .74555,.85315, .99632), anonial GBP gives (.40255, .54115, .49184, .54232, .44812, .48014,.51501, .57693, .57710, .59757), and the exat results were (.40131, .54038, .48923,.54506, .44537, .47856, .51686, .58108, .57791, .59881).Referenes[1℄ H.A. Bethe. Pro. Roy So. London A, 150:552.[2℄ W.T. Freeman and E.C. Pasztor. Learning low level vision. In Pro. Intl. Conf.Computer Vision, pages 1182{1189. 1999.[3℄ Brendan J. Frey. Graphial Models for Pattern Classi�ation, Data Compres-sion and Channel Coding. MIT Press, 1998.[4℄ J. Hijmans and J. De Boer. An approximation method for order-disorderproblems. Physia, pages 471{484, 1955.[5℄ Speial issue on Kikuhi methods. Prog. Theor. Phys., 115, 1994.
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