
VARIABLE TO FIXED LENGTH ADAPTIVE
SOURCE CODING - LEMPEL-ZIV CODING

6.441 Supplementary Notes 2a, 2/17/94

1) THE LEMPEL-ZIV ALGORITHM

An adaptive source coder, or a universal encoder, is designed to compress data from any
source. The Lempel-Ziv [LZ76, ZL77,ZL78] coding strategy is essentially a variable to
fixed length code containing a parsing dictionary of source strings (as with the Tunstall
codes), but this dictionary changes dynamically. The algorithm as described here and in
[ZL78] is primarily appropriate for asymptotic analysis; more practical versions are
discussed in [Sto88]. More recent Lempel Ziv encoders use the strategy of [ZL77],
which is a sliding window version as discussed in class.

Let u1, u2, ...,un be the source sequence to be encoded. Initially we view n as ∞, and later
we can view n either as the total number of letters to be encoded or as a parameter, where
the encoder encodes n characters and then starts over with the next n characters, etc. The
general idea is to build a Tunstall code adaptively, starting with a dictionary that contains
just the single letters of the K letter source alphabet. The dictionary is then enlarged as
the encoding proceeds. The rule for enlarging the dictionary is essentially an adaptive
version of the rule used to construct the Tunstall code. That is, in constructing a Tunstall
code, one successively takes the most probable word in the current dictionary and
replaces it with all K single letter extensions of that word. In the Lempel-Ziv code, each
time a word in the current dictionary is encoded, that word is replaced in the dictionary
with all of its single letter extensions1.

 EXAMPLE 1: Consider the sequence a a a a b ... from the alphabet {a,b,c}. Fig. 1
illustrates how this is parsed into a | a a | a b | ... and how the dictionary tree grows as
this parsing takes place. Each time the encoder parses another segment, it generates a

1In [ZL78], and in most of the literature on this topic, the dictionary is regarded as the set of intermediate
nodes above, and the encoding is viewed as sending a dictionary entry followed by a single character (i.e.,
in our terms sending the leaf node of the tree). The distinction does not affect the algorithm, which is
exactly the same in both cases, but allows us to bring out clearly the relationship between Tunstall codes
and Lempel-Ziv codes.

2.2
binary code word for that segment. We postpone the question of how the mapping from
dictionary entries to code words takes place until later.

a b c
a

b c

a b c a b c

a b c

a b c

Original dictionary
dictionary after
encoding a

dictionary after
encoding a a

a b c

a b c

a b
c

dictionary after
encoding a b

cba

Figure 1

EXAMPLE 2: Consider an unending sequence of 0's from the binary alphabet {0, 1}.
This gets parsed into 0 | 0 0 | 0 0 0 | 0 0 0 0 | 0 0 0 0 0 | The corresponding code tree
is shown in Figure 2. Note that the number of source letters involved in the first c parsed
strings is 1+2+3+...+c, or c(c+1)/2. Thus as the length n of the source sequence
increases, the number of parsed strings grows roughly as 2n (see Figure 2). It is not
difficult to imagine that this example yields the fastest possible increase in the size of the
individual parsed strings with n and the slowest possible growth in the total number of
parsed strings with n (see Exercise 1 at the end of these notes).

 0 1
0

0
0

0
0 1

1
1

1
1

Figure 2

EXAMPLE 3: Consider a sequence made up of the concatenation of all binary strings,
starting with strings of length 1, then strings of length 2, etc. Thus the sequence, using
spaces to make the structure more apparent visually, is 0 1 00 01 10 11 000 001 010
Note that the Lempel-Ziv algorithm parses this sequence according to the spaces above
(i.e., into the binary strings being concatenated in the construction). The dictionary tree,
after encoding the part of the sequence shown above, is illustrated in Figure 3. Note that
the size of the parsed strings grows as log2 n where n is the length of the input sequence

2.3
already encoded, and thus the total number of parsed strings is on the order of n/ log2 n.
It is not difficult to imagine that this example yields the slowest possible increase in the
size of the individual parsed strings with n and the fastest possible growth in the total
number of parsed strings with n (see Lemma 1 in section 3).

0

0

0

0 0 0 0
0

0

0 0
0 1

1

0
1

0
11

1

Figure 3

Now consider the encoding of dictionary entries into binary strings. In practice, Lempel-
Ziv encoding is usually done with a maximum dictionary size, with some rule to replace
old dictionary entries with new entries. To understand the asymptotic operation of the
algorithm, however, we want to view the dictionary as simply growing with time. After
c-1 parses, the size of the dictionary is K+(c-1)(K-1), where K is the source alphabet size.
Thus Èlog2[K+(c-1)(K-1)]˘ bits are required for a fixed length encoding of the cth parsed
string. This means that all code words at a given time have the same length, but the code
word length gradually increases with time (i.e., with successive parses). The particular
mapping of dictionary entries into binary code words is simply a matter of
implementation convenience, but must of course follow some given algorithm.

Note that when the decoder attempts to decode the encoded message stream, it can
duplicate the actions of the encoder. That is, for example 3 above, the encoder might
map the initial string 0 into the code word 0 (since the size of the initial dictionary is 2).
The next string, 1, must be mapped into a code word of length two since the size of the
dictionary is now 3. The decoder, on seeing the initial 0 in the encoded sequence,
decodes the source letter 0 and also knows that the dictionary now contains {00, 01, 1}.
The decoder also knows the algorithm for mapping dictionary entries into code words,
and knows that the next code word will have length 2. Thus the decoder can decode the
second and third encoded binary digits into the source string 1 and again enlarge the
dictionary. In this way, the decoder always knows what the current dictionary and what
the current code word length is at the beginning of trying to decode a new code word.

2.4

∞

∞

In general, we can view the dictionary at any time as a tree. The terminal nodes are
strings that have never been used up to the given time and each intermediate node has
occurred at least once in the parsing of the currently entered input sequence. In fact the
number of times that an intermediate node has been used as a prefix of one of the parsed
segments of the input is precisely equal to the number of intermediate nodes that stem
from the given intermediate node (including the node itself).

Thus if one visualizes the Lempel-Ziv technique as attempting to choose equi-probable
dictionary entries (i.e., doing the same thing as the Tunstall code, except without prior
knowledge of the probabilities), one sees that there is very little statistical evidence for
the equi-probability of the leaves. On the other hand, for an intermediate node not too far
from the root, the size of the tree emanating from that node, relative to the size of the
entire tree, should be very close to the probability of the corresponding string. Thus, one
gets the intuition that the tree generated by the Lempel-Ziv algorithm is internally similar
to the tree generated by a Tunstall code with known probabilities; the difference is in the
"uneven growth" of the Lempel-Ziv tree close to the leaves.

We now turn to analyzing the algorithm and making the above intuitive notions more

precise. Let u denote the input string u1, u2, ...,un,... and suppose that the Lempel-Ziv

algorithm parses u into the strings u

1

1 1
m1,

um1+1
m2 ,...,

umk-1+1
mk

 With this notation, we
can state the algorithm precisely.

LEMPEL-ZIV ENCODING ALGORITHM:

 The intial set of strings in the dictionary is the set of all single letter strings of the
 alphabet; initially, m=1.

 1) Find n such that um
n

 is a string in the dictionary; generate the code word for
that entry.

 2) Remove um
n

 from the dictionary and add the concatenation (um
n

ai) to the
 dictionary for each letter ai in the source alphabet. Set m = n+1 and goto step 1.

In the algorithm as stated, the input sequence is infinite, whereas with a finite input
sequence u , there is a problem with the last string. That is, after parsing the next to last
string, say the c-1st, the encoder reads in the final source letters umc-1+1,...,un. This might

1
n

2.5

n

n n

n

n

be just a prefix in the dictionary, leading to the need for a special rule for encoding the
last segment generated by the parsing rule. One possibility is to use any dictionary entry
for which umc-1+1,...,un is a prefix. The decoder, if it knows that only n letters are being

encoded, simply strips off the final letters. Another possibility is to provide code words
for all the intermediate nodes in the dictionary tree as well as for the leaves (i.e., the real
dictionary entries according to the algorithm above).

We have already observed that Èlog2[K+(c-1)(K-1)]˘ bits are required to represent a
dictionary entry after c-1 parses have occurred. If code words are also provided for all
intermediate nodes, the size of the dictionary plus intermediate nodes is cK, so that
Èlog2[Kc]˘ bits are required. Since the latter expression is simpler, we use it for an upper
bound on the length of the code words which is valid whether or not code words are
provided for intermediate nodes. Since at most this many binary letters are used for each
segment in the encoding, we see that at most c Èlog2[Kc]˘ bits are required by the

Lempel-Ziv code to represent u . Upper bounding the ceiling function above by adding
1, we have proven the following theorem:

1

THEOREM 1: Let cLZ(u) be the number of strings into which the Lempel-Ziv

algorithm parses a given sequence u . The length LLZ(u) of the encoded output then

satisfies

1
n

1 1

 LLZ(u) ≤ cLZ(u) log{2KcLZ(u)} (1) 1
n

1
n

1
n

The upper bound here seems very loose since the dictionary starts out small, and short
code words could be used to encode the first few strings. Since the number of bits
required to encode a segment is a logarithmic function of the dictionary size, however,
this saving is rather unimportant.

Theorem 1 relates the length of the encoded sequence (and thus the efficiency of the
code) to the number of strings that the parser generates, but it gives us very little insight
into the relation between the input sequence and the number of strings. Example 2 above
illustrated a particular input (all 0's) in which cLZ(u) grows as the square root of n, and

thus LLZ(u)/n goes to 0 with increasing n. It is not surprising that very few code letters

are required per source letter for this source sequence, and we see that successive inputs
are being compressed more and more as the encoder "learns" just how boring the input is.

1

1

2.6
n

n

n

n

un n

n

�

n

Example 3 illustrated an input where cLZ(u) grows with n as n/log n, and in this case no

compression at all occurs.

1

We now go on to show that the compression achieved with the Lempel-Ziv encoder is
asymptotically as good as can be achieved with any finite state encoder that knows the
source statistics (or even knows the exact source sequence). Because of this result, we
see that cLZ(u) must be in some sense a fundamental characterization of the

"complexity" of u , and that this characterization is independent of any assumed
stochastic model from which u might have arisen. Note that we can only hope for such
a result asymptotically as nÆ∞. For example, if we knew that the source would produce

 with probability 1, then we could build an encoder that would represent u with just
one binary digit (or even no binary digits), and the decoder would simply remember u .
The problem here is that such an encoder/decoder could be constructed for any particular
value of n, but the decoder could not be constructed to generate a continuing binary

encoded output that would produce u in the limit. The mathematical artifice that Ziv
and Lempel use to approach these limiting questions is that of looking at the best possible
finite state encoders for encoding u .

1

1

1

1 1

1

1

1

2) FINITE STATE ENCODERS

The class of finite state encoders is a generalization of both the fixed length to variable
length and the variable to fixed length encoders we have considered up to now (although
we restrict ourselves to binary encoded sequences, the generalization to arbitrary code
alphabets should be obvious). As each successive letter from the source sequence enters
the encoder, the encoder responds to the incoming source letter and its current state by
going into a new state and by emitting a string (perhaps empty) of binary output letters.
To put this more mathematically, a finite state encoder with S≥1 states is defined by two
functions, g(u,s) and h(u,s); g(u,s) maps an input letter u and a state s, 1≤s≤S into a new
state s', 1≤s'≤S, and h(u,s) maps an input letter u and a state s, 1≤s≤S into a binary output
string (perhaps the empty string). Thus, letting u1, u2, ... be the input sequence and
letting s0, s1, s2,... denote the state sequence for the encoder, the state sequence is
determined (for a given an initial state s0), by si = g(ui, si-1), i≥1. Similarly, the ith output
string, yi, is given by yi = h(ui, si-1) for i≥1. The encoded output is the concatenation of

1, y2, ...,yi,... . In what follows, we extend these functions to denote the concatenated y

2.7

output ym
n

 from a string of letters um
n

 by ym
n

 = h(um
n

,sm-1) and we denote the final state by

sn = g(um
n

,sm-1).

Since these output strings can be null, such a finite state encoder (with enough states) can
be used to implement an arbitrary variable length to variable length encoder. Viewing a
variable length to variable length encoder as a parsing dictionary followed by a mapping
from dictionary entries to encoded strings, the states can be used to represent the
intermediate nodes in the dictionary tree (with the root node used as the starting state). If
the intermediate node extended by the current input letter is another intermediate node,
the new state corresponds to the new intermediate node and the output is the null string.
If the intermediate node extended by the current input is a leaf node, then the new state is
the root node and the output is the code word corresponding to the given leaf node (this
assumes that the dictionary satisfies the prefix condition; implementing a non-prefix
condition dictionary by a finite state encoder is left as an exercise). The Lempel-Ziv
encoder, however, is not a finite state encoder since the dictionary grows without bound.
We return to this distinction later.

By unique decodability for a finite state encoder, we mean that for any two distinct input

strings, say um
n

 and um
n

, and any starting state sm-1, either the two input strings lead to

different final states, g(um
n

,sm-1) ≠ g(um
n

,sm-1), or lead to different output strings,

h(um
n

,sm-1) ≠ h(um
n

,sm-1). Note that it is doesn't necessarily cause a problem for distinct
input strings to lead to the same output if they lead to different states; for example, in a
variable to variable length encoder, all strings corresponding to intermediate nodes in the
parsing dictionary would lead to null outputs. If distinct inputs lead to both the same
state and the same output, however, it would be impossible for a decoder to ever
distinguish those inputs, no matter what the subsequent input and output. Another way to

express the condition of unique decodability is to insist that a decoder, given sm-1, ym
n

,

and sn, must be able to uniquely reconstruct um
n

.

In what follows, we implicitly include unique decodability as part of the definition of a
finite state encoder. The class of "uniquely decodable finite state encoders" as defined
here is a little larger than desirable. In particular, the definition guarantees that a
decoder, given s0, y , and sn, could uniquely decode u , but it does not necessarily mean 1

n n
1

2.8
n

n

n

n n

n

n

n

n n

n n

that u can be decoded for any n in the absence of sn, which is not normally known to the
decoder. This does not matter for us since the properties established for this class are
also valid for the included class of encoders for which these "end effects" can be
resolved.

1

3) DISTINCT PARSING STRINGS

Define c(u) as the maximum number of distinct strings that u can be parsed into,
counting the null string. In what follows, we develop bounds, in terms of c(u), on the
compression achieved both by Lempel-Ziv encoding and by arbitrary finite state
encoders. We will show, following [ZL78], that c(u) provides a fundamental measure
of the compressibility of u . We shall not be concerned with calculating c(u), but only
with bounds and asymptotic results. First note that the Lempel-Ziv algorithm parses u
into cLZ(u) strings, all of which are distinct except perhaps the last. By combining the

last two strings, we obtain cLZ(u) - 1 distinct strings, and by adding the null string,

which is not included in cLZ(u), we get cLZ(u) distinct strings. Thus

1
n

1
n

1

1

1 1

1

1

1

1 1

 cLZ(u) ≤ c(u) (2) 1
n

1
n

Combining this with (1),

 LLZ(u) ≤ c(u) log {2Kc(u)} (3) 1
n

1
n

1
n

We next find a lower bound on the length of code word for u that applies for any finite
state encoder with S states.

1
n

THEOREM 2: For any uniquely decodable finite state encoder of at most S states, and
for any initial state, the length LS(u) of the encoding of u satisfies 1 1

LS(u1

n �) c(u1
n)log

c(u1
n)

4S2
(4)

Before proving this, we first discuss what the theorem means and then present a lemma
needed in the proof. The finite state encoder in the theorem is arbitrary (subject to the
constraint of S states), and thus could be designed under the assumption that u will 1

n

2.9

n

n

n

n

occur. On the other hand, because of the unique decodability requirement, the encoder
must also provide for the remote possibility of all possible sequences from the source.
What this means is that if the encoder attempts to encode u into a single binary letter,
then the encoder must at least recognize u in the input; this requires at least n states.
Thus, for fixed S and sufficiently large n, one cannot encode u into a single binary
digit.

1

1

1

Note that the theorem only asserts that LS(u) is positive when c(u) > 4S2, and the
above example helps to explain why such a theorem can only be meaningful when n is
large, and therefore when c(u) is large.One should also note that the number of states in
an encoder is typically very large. The theorem is not intended as a practical bound for
small values of n, but rather to see what happens asymptotically as n Æ∞.

1
n

1
n

1

LEMMA 1: Let n(c) be the minimum possible length of the concatenation of c distinct
strings from an alphabet of K≥2 symbols. Then

 �n(c) log K c log c
4

(5)

Proof of lemma 1: We claim that the length of the concatenation is minimized if the set
of strings contains all strings of length less than some integer j and no strings of length
greater than j. To see this, suppose the contrary; then there must be some string not in the
set of c that is shorter than some string in the set; removing the longer string and
replacing by the shorter string reduces the length of the concatenation, exhibiting a
contradiction. Letting r be the number of strings of length j in the set, we then have

c = r + Ki�

i=0

j-1

 ; 0 ≤ r ≤ 2j

(6)

n(c) = jr + iKi�

i=0

j-1

(7)

Consider the special case in which r = 0. We can sum (6) and (7) to get

c = K

j-1
K-1

(8)

2.10

n(c) = (jK-K-j)Kj+K

K-1 2

(9)

Solving (8) for Kj and for j, we get

 Kj = c(K-1)+1 ; j = log c(K-1)+1

log K

Substituting this into (9) and simplifying, we get

n(c) = c(K-1)+1

(K-1) log K
 log[c(K-1)+1] - Kc

K-1

Multiplying both sides by log K and recognizing that x log x is increasing in x, we can
lower bound this as

�n(c) log K c log[c(K-1)] - Kc log K

K-1
 = c log c + c log(K-1) - K log K

K-1

The final term in brackets above is equal to -2 for K=2 and is increasing in K for K≥2.
Thus,

 �n(c) log K c log(c) - 2c = c log(c/4)

Thus (5) is satisfied in the special case r=0. We also have equality for the special case r
= 2j, since this case is identical to choosing j one larger and choosing r=0. Finally, from
(6) and (7), we see that n(c) is linear in c for fixed j and 0≤r≤2j. Since the right hand side
of (5) is convex » in c, it follows that (5) is satisfied for all r.

Proof of Theorem 2: Let u be an arbitrary input string with a parsing into c(u) distinct
substrings. Denote the states as {1, 2,...,S} and let cij be the number of substrings in the

above parsing for which the original state is i and the final state is j. Thus ∑ij cij = c(u).
The binary output from each of these strings for a given i,j must be distinct (because of
the unique decodability), and thus, using (5) with K=2, the aggregate length Lij of the
output strings for a given starting state i and final state j satisfies

1
n

1
n

1
n

 Lij ≥ cij log(cij/4) (10)

The total length LS(u) of encoded output is ∑ij Lij, so 1
n

2.11

LS u1

n � cij log
cij
4�

i=1, j=1

S,S

(11)

The right hand side of (11) is minimized over the choice of {cij}, subject to ∑ij cij =

c(u), if each cij is equal to

c(u)/S2. Substituting this in (11) yields (4). 1

n n

n

n

n n n

1

Note that the lower bound on LS(u) given in the theorem is zero at the point where c(u)

= 4S2. For c(u) very large, however, the term S2 becomes less significant. We note,
similarly, that the term 2K in the bound on LLZ(u) appears to be insignificant for large

c(u) This suggests defining the compressibility l(u) of the sequence u as

1
n

1
n

1

1

1 1 1

 λ u1
n =

c(u1
n) log c(u1

n)
n

(12)

THEOREM 3:

LLZ(u1
n)

n - - λ u1
n Š (log K)(log 2K)

log c(u1
n)/4

(13)

 λ u1

n -
LS(u1

n)
n Š (log K)(log4S2)

log c(u1
n)/4

(14)

The first part of the theorem says that the number of code letters per source letter with the
Lempel-Ziv algorithm is arbitrarily little more than l(u) and that this excess goes to 0
with increasing c(u). The rate of approach in (13) is only logarithmic in c(u), but it

depends on u only through c(u). The second part of the theorem says that the
minimum number of code letters per source letter achievable by a uniquely decodable
finite state encoder, even one selected for the particular sequence u , is arbitrarily little
less than l(u). The rate of approach is again logarithmic in c(u), but is highly
dependent on S (as we have already seen that it must be).

1
n

n n

∞ n

n

n n

1 1

1 1

1

1 1

Proof of Theorem 3: From (3) and (12), we see that

LLZ(u1

n)
n - - λ u1

n Š
c(u1

n)
n log(2K) (15)

Similarly, from (4) and (12), we have

2.12

 λ u1
n -

LS(u1
n)

n Š
c(u1

n)
n log 4S2

 (16)

To obtain a bound on c(u), we rewrite (5) with c equal to c(u), 1
n

1
n

� n log K c(u1

n) log
c(u1

n)
4

 ;
c(u1

n)
n Š log K

log c(u1
n)/4

(17)

Substituting this in (15) and (16) completes the proof.

From Exercise 1 at the end of this note, c(u1
n �) n. Applying this inequality to (13) and

(14), we have the following corollary:

COROLLARY 3.1:

LLZ(u1

n)
n - - λ u1

n Š 2(log K)(log 2K)
log n/16

 (18)

 λ u1

n -
LS(u1

n)
n Š 2(log K)(log4S2)

log n/16

(19)

This shows that the compressibility achievable with the Lempel-Ziv algorithm, i.e.,
LLZ(u)/n, is almost as small as l(u), with the upper bound on the difference going to 0

with n. Similarly l(u) is almost as small as LS(u)/n. It is very surprising that the right

hand side of (18) and (19) depends on u only through n. One should note

1
n n

n n

n

1

1 1

1 2 that these
quantities approach 0 very slowly with increasing n . One can combine (18) and (19) to
obtain

LLZ(u1

n)
n - -

LS(u1
n)

n Š 2(log K)(log8KS2)
log n/16

(20)

2The term log[n/16] in the denominator of (18) and (19) can be replaced with 2 log[n/4] (1-e(n)] where e(n)
Æ0 as nÆ∞. To see this, use the result in Exercise 4 in place of (17) in the proof of theorem 3.

2.13

∞
This says that given any finite state encoder of S states (perhaps designed with

knowledge of u), the compressibility achieved by the Lempel-Ziv algorithm on u is
arbitrarily little more than that achieved by the finite state encoder, with the difference
approaching 0 as n approaches infinity.

1 1
n

The compressibility of an infinite length sequence u1
∞

 can now be defined by

(21)

λ(u1
∞) = λ(u1

n)lim sup
n→∞

This yields the following corollary to theorem 3:

COROLLARY 3.2:

LLZ(u1

n)
nlim sup

n→∞
 Š λ(u

1
∞)

(22)

LS(u1

n)
nlim sup

n→∞
� λ(u1

∞) for every finite S

(23)

One should not read more into this corollary than it says. In particular, l(u) need not

approach a limit with n, and one can construct sequences u
1
n

1
∞

 for which l(u) oscillates

forever. Whether u is meaningful in these situations is questionable, but because of
corollary 3.1, the oscillations in LLZ(u)/n and LS(u)/n are bounded by those of l(u).
This corollary precisely defines the sense in which the number of encoded bits per source
letter achieved with the Lempel-Ziv algorithm is, asymptotically, at least as small as that
with any finite state encoder. We also note that the Lempel-Ziv algorithm (for operation
on u for any fixed n) can be implemented by a finite state encoder.

1
n

∞

n n n

n

∞

1

1 1 1

1

The interpretation of this is as follows: (23) says that for any given S, no matter how

large, any sequence u , and any e≥0, there is a large enough n so that the best finite state

uniquely decodable encoder (for u) requires at least l(u
1

1
n

1
∞

) - e bits per source letter for
encoding. From (20), the Lempel-Ziv encoder, requiring some finite number S' states,

will require at most l(u) + e bits per source letter to encode u . The rub is that S' might
be very much larger than S. In other words, the price paid for the universally good

1
∞ n

1

2.14
performance of the Lempel-Ziv encoder is that it requires many more states than the best
finite state encoder designed for the particular source sequence.

There is now a subtlety that we must deal with: the Lempel-Ziv encoder requires a finite
number of states for each finite n, but the number of states becomes unbounded as n Æ∞.
Ziv and Lempel's way of dealing with this issue is to use the Lempel-Ziv strategy for n
input letters, for some large block length n, and then to start all over again for each
successive set of n input letters. From a practical standpoint, it would clearly be
preferable to build the dictionary out to some fixed size, and then to develop some
algorithm for replacing dictionary entries that are no longer useful with entries that occur
more often; from the standpoint of establishing theoretical properties, however, starting
over with each block of n has great advantages. To analyze what happens when an input
sequence of say mn letters is encoded n letters at a time, we use theorem 3 on successive
n-tuples. Applying Eq. (20) to the ith n-tuple of inputs,

LLZ uin+1

in+n

n - -
LS uin+1

in+n

n Š 2(log K)(log 8KS2)
log n/16

(24)

Now if we consider any particular finite state encoder of S states, we see that

LS u1

mn = LS uin+1
in+n�

i=1

m

(25)

Note that each of the terms on the right of (25) correspond to some particular starting
state, which we have heretofore suppressed. Since Theorem 3 applies to any starting
state, we can continue to suppress it. Summing (24) over i, and using (25), we have

LLZ uin+1
in+n�

i=1

m

mn -
LS u1

mn

mn Š 2(log K)(log 8KS2)
log n/16

(26)

The first term is the compressibility of a Lempel-Ziv encoder, operating on m blocks of n
source letters at a time, and thus requiring only a finite number of states (which depends
on n but not m). The second term is the compressibility of an arbitrary uniquely
decodable finite state encoder operating on the same sequence of mn letters. The final

term depends neither on m nor on u1
∞

. For any S and any e>0, we can choose n large
enough to make the right side of (25) less than e, and therefore, for any S, the

2.15

∞

n

mi mi

compressibility achieved by the Lempel-Ziv encoding algorithm, using blocks of
sufficiently large length n, is at most e more than the compressibility of the best finite
state encoder of S states. What is remarkable is that the required value of n is

independent of u . 1

In a sense, the lower bound LS(u)/n on bits per letter for a finite state encoder is very

artificial - there is no point to building an encoder for a particular sequence u . What we
have really shown there is that the Lempel-Ziv algorithm asymptotically does as well, in
the absence of knowledge of source or source statistics, as the best finite state encoder.
The price that is paid for the lack of knowledge, however, is a larger number of states.

1
n

1

4) STATIONARY SOURCES

Next consider the performance of a Lempel-Ziv encoder on an arbitrary (stochastic)
stationary source of entropy H∞(U). From Eq. 3.5.12 in theorem 3.5.2 of the text, we
know that for any d>0 we can choose an m large enough so that the expected number of
encoded binary digits per source letter in a Huffman code on super letters of length m is
at most H∞(U)+d. Now consider encoding i successive m-tuples of inputs. Let

LHuff(u) be the length of the encoder output for the input u . As we have just seen, 1 1

E LHuff u1

mi

mi
 Š H∞(U) + δ

(27)

The Huffman encoder on super letters of length m can be implemented as a finite state
encoder with S = (Km-1)/(K-1) states (see Exercise 5). For an arbitrary input sequence

, let n = im+j, where 0≤j<m. The Huffman encoder, with input u , will generate i code
words with expected length satisfying (27) and save the final j inputs waiting for
additional input letters to make up the next super letter input. The length, LHuff(u), of
output from the Huffman encoder is at least as large as that for the best finite state
encoder for u with S states. Thus, using (19), we have

un n

n

n

1 1

1

1

LHuff u1

n

n �
LS u1

n

n |S=(Km-1)/(K-1) � λ u1
n - 4(log K) log[2(Km-1)/(K-1)]

log(n/16)

The final term above approaches 0 with n, so that for large enough n,

LHuff u1

n

n � λ u1
n - δ (28)

2.16

With n = mi+j, 0≤j<m, we have LHuff(u) = LHuff(u). Thus from (27), 1
n

1
mi

E LHuff u1

n

n =
E LHuff u1

mi

n Š
E LHuff u1

mi

mi
 Š H∞(U) + δ

 (29)

Taking expected values of both sides of (28) and combining with (29), we have

 E λ u1
n Š H∞(U) + 2δ for all sufficiently large n (30)

Next consider a Lempel-Ziv encoder working on blocks of n inputs at a time. Since this
can be viewed as a block to variable length encoder, we have

 H∞(U) Š
E LLZ u1

n

n
(31)

Taking the expected value of (18) and substituting into (31), we have

H∞(U) Š

E LLZ u1
n

n Š E λ u1
n + 2(log K)(log 2K)

log(n/16)
 Š λ u1

n + δ

(32)

where the final inequality holds for large enough n. Since (30) and (32) hold for arbitrary
d>0, we have proved the following theorem:

THEOREM 4: For any stationary stochastic source,

H∞(U) =

E LLZ u1
n

nlim
n→∞

 = λ u1
nlim

n→∞

(33)

There is one practical problem with Lempel-Ziv encoders that is slightly concealed by
this result: if one implements a Lempel-Ziv encoder with a particular value of n (or,
more practically, with a given dictionary size and given replacement rule), then one can
always construct a stationary source with too long a memory for the given encoder size.
For example, the source could simply repeat with a repetition cycle of length n+1, and
the Lempel-Ziv encoder limited to a particular value of n would be totally stymied. In
other words, the rate of convergence in (33) depends on the particular stationary source.
Another problem is that if the source is not ergodic, then individual sequences will not
behave as the expected value. None-the-less, Theorem 4 is an amazing result. It shows
that this very simple algorithm can adapt, eventually, to any stationary source, no matter
how complex or long term the memory, and compress it to the entropy rate.

2.17

n

5) KOLMOGOROFF-CHAITIN COMPLEXITY

There is another well known measure of how much a source sequence can be compressed
known as the Kolmogoroff-Chaitin complexity measure. The question asked here is the
same as the question in Lempel-Ziv coding - how many code letters per source letter are
needed, in the limit nÆ∞, to represent a source sequence u . The crucial difference is in
the type of encoder and decoder allowed. The Lempel-Ziv algorithm focuses on the
encoder, whereas Kolmogoroff-Chaitin complexity focuses on decoding and allows an
arbitrary universal Turing machine to be used as the decoder

1

3 . The input to the universal

Turing machine is the encoded version of u1
∞

 and the output is u1
∞

 itself. Thus we can
view the input as a program plus data, where the program tells the Turing machine how
to process the data in generating the output.

More abstractly, we view the Turing machine input as a sequence of binary digits which
the machine interprets according to its rules. There are many Turing machine input

sequences that could give rise to the required source sequence u1
∞

. For example, the
Turing machine input could be a program for a given Huffman decoder followed by the

Huffman encoding of u . Similarly the Turing machine input could be a program for

Lempel-Ziv decoding, followed by the the Lempel-Ziv encoding of u
1
∞

1
∞

. For the given
Turing machine T, we can define L(u , T) as the minimum length input sequence
required to generate the output u . We can then define the Kolmogoroff-Chaitin

complexity of u , relative to T, as

1
n

n

∞
1

1

λKC u1
∞, T =

L u1
n, T
nlim sup

n→∞
(34)

3 For the reader unfamiliar with Turing machine theory, it is sufficient to view a Turing machine as a
conventional computer with an unlimited memory, viewed as an infinite tape. A universal Turing machine
is one that can be programmed to simulate any other Turing machine. Essentially any general purpose
computer with unlimited memory (i.e., where memory is added as needed) can be viewed as universal in
this sense.

2.18
Since the input to the Turing machine could be a program for a Lempel-Ziv decoder

followed by the Lempel-Ziv encoding of u1
∞

, we see that l(u1
∞

) ≥ lKC(u1
∞

, T).

We next observe that lKC(u , T) is independent of the universal Turing machine T. The
reason is that any universal Turing machine T can simulate any other Turing machine T'.
More specifically, there is some input Z(T,T') that instructs T to act like T' in the sense
that if input y to T' produces output u , then input Z concatenated with y will produce
output u from T. Since the fixed input Z is finite and independent of y, the limit in (34)
is the same for any T and T', and therefore we drop the T in what follows (note however
that before going to the limit, L(u , T) is very much a function of T; one can always find
a universal Turing machine T that produces u after looking at just one bit of the input.

1
∞

1
n

n

n

n

∞

∞ ∞

∞

n

un

n

1

1

1

Example 3, (first given in [LZ78]) clarifies the difference between lKC(u) and l(u).

Recall that u is a listing first of all binary strings of length 1, then of length 2, etc., all
ordered within their length, i.e., (0)(1)(00)(01)(10)(11)(000)(001)(010)... A Turing
machine can be programmed with a finite program to generate this infinite output stream,

so that lKC(u) = 0. On the other hand, the parsing above shows that l(u) = 1.

1
∞

1
∞

1

1 1

From an intuitive viewpoint, it is reasonable to view the above sequence as having zero
complexity or zero compressibility - after knowing how it is generated, there is simply no
additional information in watching the entire boring sequence unfold. There are
infinitely many variations on this theme; for example, one could invert the ith digit in
each string of length greater than i, which is one variation for each integer i. There are
clearly many other types of examples; in fact any finite input to a Turing machine that
gives rise to an infinite output is such an example. Unfortunately, there is a famous
theorem in Turing machine theory that states that there is no algorithm that will
determine which inputs give rise to an infinite output sequence.

A more troubling aspect of Kolmogoroff-Chaitin complexity is the lack of any approach

to encoding a given sequence u . One must in principle see the entire sequence before
determining the minimum length program to generate it, for whenever one looks at a
finite sequence u , it is important to know which universal Turing machine is to generate

. Even if one is willing to adopt some given Turing machine, there is no way to find
the minimum length program to generate u .

1

1

1

1

2.19
Kolmogoroff-Chaitin complexity is usually viewed as a fundamental topic for theoretical
computer science, but it seems less appropriate (since it ignores encoding) to the study of
data compression. This is a personal viewpoint, however, that is not universally shared
by all information theorists.

References:

Chaitin, G.J., Information-Theoretic Computational Complexity, IEEE Trans. IT, Jan.
1974.

Kolmogoroff, A.N., Logical Basis for Information Theory and Probability Theory, IEEE
Trans. IT, Sept. 1968, pp. 662-664.

Lempel, Abraham & Jacob Ziv, "On the Complexity of Finite Sequences," IEEE Trans.
IT, Jan. 1976, pp. 75-81.

Miller, V. S. & M.N. Wegman, "Variations on a theme by Ziv and Lempel," in
Combinatorial Algorithms on Words, Springer Verlag, (Apostolico and Galil, ed.), 1985,
pp 131-140.

Storer, James A., Data Compression, methods and theory, Computer Science Press 1988.

Ziv, Jacob & Abraham Lempel, "A Universal Algorithm for sequential data
compression," IEEE Trans. IT, May 1977, pp. 337-343.

Ziv, Jacob & Abraham Lempel, "Compression of Individual Sequences via Variable-Rate
Coding," IEEE Trans. IT, Sept. 1978, PP. 530-536.

2.20

n n

n n

n

n n n n

EXERCISES:

1) The object of this problem is to show that cLZ(u) might be considerably smaller than

c(u) for particular choices of u . This indicates that Lempel-Ziv coding might compress
some sequences considerably more than the bound in theorem 3 indicates.

1
n

1 1

a) Use the Lempel-Ziv algorithm to parse the binary sequence of length 55 below (i.e.,
parse from left to right, always selecting the shortest string that has not appeared earlier).

 0010110110011010110100110100011010010110100110110100111

Show that cLZ(u) = 10 for n = 55. 1
n

b) Now take 00 as the leftmost string in a parsing of the sequence above and then parse
the rest of the sequence from left to right by always selecting the shortest string that has
not appeared before (including 00 as a string that has appeared before). How many
strings does u parse into by this procedure? Explain why this is an lower bound to c(u). 1 1

c) Show that your answer in (b) is equal to c(u) for n=55. 1
n

d) EXTRA CREDIT (I don't know how to solve this either) Extend u to arbitrarily
large n of the form n=k(k+1)/2, k integer, in such a way that cLZ(u) = k. Either show

that cLZ(u)/c(u) Æ 1 as n Æ∞ or show that lim supn cLZ(u)/c(u) < 1.

1
n

1

1 1 1 1

2) Show that
c(u1

n �) -1 + 1+8(n+1)
2

� n
.

Solution: Note that any string can be parsed into unique strings by starting with the null
string, then a string of length 1, then of length 2, and so forth. After selecting the ith
string (which has length i-1), if the remaining string has length less than 2i+1, it is
possible that choosing another string of length i will cause the remainder to be one of the
selected strings (recall Example 2), and thus this final string is not parsed. We see that if
this process gives us c strings, the ith, i≤c-1 will have length i-1, and the cth will have
some length between c-1 and 2c-2. Adding up these lengths, we have n ≤ (c-1)(c+2) /2,
thus yielding

c(u1

n �) -1 + 1+8(n+1)
2

� n
 (35)

2.21
3) Verify Eq. (9).

4) Show that Eq. (5) implies that for c≥8

c Š n(c) log K

log(n(c)log(K)/4) - log log(n(c)log(K)/4)
 = n(c) log K

n(c)[1-ε(n)]

(36)

where e(n) Æ 0 as nÆ∞.

Hint: Let x = c log(c/4) and show that for c≥8

c = x

log(x/4) - log log(c/4)
 Š x

log(x/4) - log log(x/4)
(37)

Show that the right hand side of (32) is increasing in x and then use Eq. (5).

5) Consider a stationary source with an alphabet of size K; let Hm = [H(U1,
U2,...,Um)]/m be the mth order entropy per letter and let H∞ = limmÆ∞Hm. Assume that
for some given m, the Huffman code for encoding m-tuples of source letters has an
expected number of binary code digits per source letter equal to H∞+0.01.

a) Show that a finite state encoder with S = [Km-1]/(K-1) states can be used to
implement the Huffman encoder.

b) Show that for S = [Km-1]/(K-1) and for any n that is a multiple of m, the minimum
expected number of binary code digits per source letter required by a uniquely decodable
finite state encoder of S states to encode the first n source letters satisfies

E LS u1

n

n Š H∞+0.01

c) Show that the expected number of binary code digits per source letter required by a
Ziv Lempel encoder operating on n source letters satisfies

E LZL u1
n

n Š H∞+0.01+ (log K)(log 8KS2)
log n/4

d) For K=2 and m=5, how large does n have to be to ensure that the final term above is
less than 0.01? Note: The point of this part of the problem is not to show that the Ziv-
Lempel algorithm is impractical; rather it is to show that the bounds we are using are

2.22
very weak. The point of the bound is to demonstrate the asymptotic behavior rather than
the actual performance.

