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1) THE LEMPEL-ZIV ALGORITHM   

An adaptive source coder, or a universal encoder, is designed to compress data from any 
source.  The Lempel-Ziv [LZ76, ZL77,ZL78] coding strategy is essentially a variable to 
fixed length code containing a parsing dictionary of source strings (as with the Tunstall 
codes), but  this dictionary changes dynamically.  The algorithm as described here and in 
[ZL78] is primarily appropriate for asymptotic analysis; more practical versions are 
discussed in [Sto88].  More recent Lempel Ziv encoders use the strategy of [ZL77], 
which is a sliding window version as discussed in class. 

Let u1, u2, ...,un be the source sequence to be encoded.  Initially we view n as ∞, and later 
we can view n either as the total number of letters to be encoded or as a parameter, where 
the encoder encodes n characters and then starts over with the next n characters, etc.  The 
general idea is to build a Tunstall code adaptively, starting with a dictionary that contains 
just the single letters of the K letter source alphabet.  The dictionary is then enlarged as 
the encoding proceeds.  The rule for enlarging the dictionary is essentially an adaptive 
version of the rule used to construct the Tunstall code.  That is, in  constructing a Tunstall 
code, one successively takes the most probable word in the current dictionary and 
replaces it with all K single letter extensions of that word.  In the Lempel-Ziv code, each 
time a word in the current dictionary is encoded, that word is replaced in the dictionary 
with all of its single letter extensions1. 

 EXAMPLE 1:  Consider the sequence a a a a b ... from the alphabet {a,b,c}.  Fig. 1 
illustrates how this is parsed into  a | a a | a b | ... and how the dictionary tree grows as 
this parsing takes place.  Each time the encoder parses another segment, it generates a 

                                                 
1In [ZL78], and in most of the literature on this topic, the dictionary is regarded as the set of intermediate 
nodes above, and the encoding is viewed as sending a dictionary entry followed by a single character (i.e., 
in our terms sending the leaf node of the tree).  The distinction does not affect the algorithm, which is 
exactly the same in both cases, but allows us to bring out clearly the relationship between Tunstall codes 
and Lempel-Ziv codes. 
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binary code word for that segment.  We postpone the question of how the mapping from 
dictionary entries to code words takes place until later. 
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EXAMPLE 2:  Consider an unending sequence of 0's from the binary alphabet {0, 1}.  
This gets parsed into 0 | 0 0 | 0 0 0 | 0 0 0 0 | 0 0 0 0 0 | ... .  The corresponding code tree 
is shown in Figure 2.  Note that the number of source letters involved in the first c parsed 
strings is 1+2+3+...+c, or c(c+1)/2.  Thus as the length n of the source sequence 
increases, the number of parsed strings grows roughly as 2n  (see Figure 2).  It is not 
difficult to imagine that this example yields the fastest possible increase in the size of the 
individual parsed strings with n and the slowest possible growth in the total number of 
parsed strings with n (see Exercise 1 at the end of these notes). 
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EXAMPLE 3:  Consider a sequence made up of the concatenation of all binary strings, 
starting with strings of length 1, then strings of length 2, etc. Thus the sequence, using 
spaces to make the structure more apparent visually, is 0 1 00 01 10 11 000 001 010 ... . 
Note that the Lempel-Ziv algorithm parses this sequence according to the spaces above 
(i.e., into the binary strings being concatenated in the construction).  The dictionary tree, 
after encoding the part of the sequence shown above, is illustrated in Figure 3.  Note that 
the size of the parsed strings grows as log2 n where n is the length of the input sequence 
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already encoded, and thus the total number of parsed strings is on the order of n/ log2 n.  
It is not difficult to imagine that this example yields the slowest possible increase in the 
size of the individual parsed strings with n and the fastest possible growth in the total 
number of parsed strings with n (see Lemma 1 in section 3). 
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Now consider the encoding of dictionary entries into binary strings.  In practice, Lempel-
Ziv encoding is usually done with a maximum dictionary size, with some rule to replace 
old dictionary entries with new entries.  To understand the asymptotic operation of the 
algorithm, however, we want to view the dictionary as simply growing with time.  After 
c-1 parses, the size of the dictionary is K+(c-1)(K-1), where K is the source alphabet size.  
Thus  Èlog2[K+(c-1)(K-1)]˘ bits are required for a fixed length encoding of the cth parsed 
string.  This means that all code words at a given time have the same length, but the code 
word length gradually increases with time (i.e., with successive parses).  The particular 
mapping of dictionary entries into binary code words is simply a matter of 
implementation convenience, but must of course follow some given algorithm. 

Note that when the decoder attempts to decode the encoded message stream, it can 
duplicate the actions of the encoder.  That is, for example 3 above, the encoder might 
map the initial string 0 into the code word 0 (since the size of the initial dictionary is 2). 
The next string, 1, must be mapped into a code word of length two since the size of the 
dictionary is now 3.  The decoder, on seeing the initial 0 in the encoded sequence, 
decodes the source letter 0 and also knows that the dictionary now contains {00, 01, 1}.  
The decoder also knows the algorithm for mapping dictionary entries into code words, 
and knows that the next code word will have length 2.  Thus the decoder can decode the 
second and third encoded binary digits into the source string 1 and again enlarge the 
dictionary.  In this way, the decoder always knows what the current dictionary and what 
the current code word length is at the beginning of trying to decode a new code word. 
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∞

∞

In general, we can view the dictionary at any time as a tree.  The terminal nodes are 
strings that have never been used up to the given time and each intermediate node has 
occurred at least once in the parsing of the currently entered input sequence.  In  fact the 
number of times that an intermediate node has been used as a prefix of one of the parsed 
segments of the input is precisely equal to the number of intermediate nodes that stem 
from the given intermediate node (including the node itself).   

Thus if one visualizes the Lempel-Ziv technique as attempting to choose equi-probable 
dictionary entries (i.e., doing the same thing as the Tunstall code, except without prior 
knowledge of the probabilities), one sees that there is very little statistical evidence for 
the equi-probability of the leaves.  On the other hand, for an intermediate node not too far 
from the root, the size of the tree emanating from that node, relative to the size of the 
entire tree, should be very close to the probability of the corresponding string.  Thus, one 
gets the intuition that the tree generated by the Lempel-Ziv algorithm is internally similar 
to the tree generated by a Tunstall code with known probabilities; the difference is in the 
"uneven growth" of the Lempel-Ziv tree close to the leaves. 

We now turn to analyzing the algorithm and making the above intuitive notions more 

precise.  Let  u  denote the input string u1, u2, ...,un,... and suppose that the Lempel-Ziv 

algorithm parses  u  into the strings u

1

1 1
m1, 

um1+1
m2 ,...,

umk-1+1
mk

 ....  With this notation, we 
can state the algorithm precisely. 

LEMPEL-ZIV ENCODING ALGORITHM: 

 The intial set of strings in the dictionary is the set of all single letter strings of the 
 alphabet; initially, m=1.  

 1) Find n such that um
n

 is a string in the dictionary;  generate the code word for 
that  entry. 

 2) Remove um
n

 from the dictionary and add the concatenation (um
n

ai) to the 
 dictionary for each letter ai in the source alphabet.  Set m = n+1 and goto step 1. 

In the algorithm as stated, the input sequence is infinite, whereas with a finite input 
sequence u , there is a problem with the last string.  That is, after parsing the next to last 
string, say the c-1st, the encoder reads in the final source letters umc-1+1,...,un.  This might 

1
n
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n

n n

n

n

be just a prefix in the dictionary, leading to the need for a special rule for encoding the 
last segment generated by the parsing rule.  One possibility is to use any dictionary entry 
for which umc-1+1,...,un is a prefix.  The decoder, if it knows that only n letters are being 

encoded, simply strips off the final letters.  Another possibility is to provide code words 
for all the intermediate nodes in the dictionary tree as well as for the leaves (i.e., the real 
dictionary entries according to the algorithm above).   

We have already observed that  Èlog2[K+(c-1)(K-1)]˘ bits are required to represent a 
dictionary entry after c-1 parses have occurred.  If code words are also provided for all 
intermediate nodes, the size of the dictionary plus intermediate nodes is cK, so that 
Èlog2[Kc]˘ bits are required.  Since the latter expression is simpler, we use it for an upper 
bound on the length of the code words which is valid whether or not code words are 
provided for intermediate nodes.  Since at most this many binary letters are used for each 
segment in the encoding, we see that at most c Èlog2[Kc]˘ bits are required by the 

Lempel-Ziv code to represent  u .  Upper bounding the ceiling function above by adding 
1, we have proven the following theorem: 

1

THEOREM 1:  Let cLZ(u ) be the number of strings into which the Lempel-Ziv 

algorithm parses a given sequence u  .  The length LLZ(u ) of the encoded output then 

satisfies 

1
n

1 1

 LLZ(u )  ≤  cLZ(u ) log{2KcLZ(u )}     (1) 1
n

1
n

1
n

The upper bound here seems very loose since the dictionary starts out small, and short 
code words could be used to encode the first few strings.  Since the number of bits 
required to encode a segment is a logarithmic function of the dictionary size, however, 
this saving is rather unimportant.   

Theorem 1 relates the length of the encoded sequence (and thus the efficiency of the 
code) to the number of strings that the parser generates, but it gives us very little insight 
into the relation between the input sequence and the number of strings.  Example 2 above 
illustrated a particular input (all 0's) in which cLZ(u ) grows as the square root of n, and 

thus LLZ(u )/n goes to 0 with increasing n.  It is not surprising that very few code letters 

are required per source letter for this source sequence, and we see that successive inputs 
are being compressed more and more as the encoder "learns" just how boring the input is.  

1

1
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Example 3 illustrated an input where cLZ(u ) grows with n as n/log n, and in this case no 

compression at all occurs.   

1

We now go on to show that the compression achieved with the Lempel-Ziv encoder is 
asymptotically as good as can be achieved with any finite state encoder that knows the 
source statistics (or even knows the exact source sequence).   Because of this result, we 
see that  cLZ(u ) must be in some sense a fundamental characterization of the 

"complexity" of u , and that this characterization is independent of any assumed 
stochastic model from which u  might have arisen.  Note that we can only hope for such 
a result asymptotically as nÆ∞.  For example, if we knew that the source would produce 

 with probability 1, then we could build an encoder that would represent u  with just 
one binary digit (or even no binary digits), and the decoder would simply remember u .  
The problem here is that such an encoder/decoder could be constructed for any particular 
value of n, but the decoder could not be constructed to generate a continuing binary 

encoded output that would produce u  in the limit.  The mathematical artifice that Ziv 
and Lempel use to approach these limiting questions is that of looking at the best possible 
finite state encoders for encoding u .  

1

1

1

1 1

1

1

1

2) FINITE STATE ENCODERS  

The class of finite state encoders is a generalization of both the fixed length to variable 
length and the variable to fixed length encoders we have considered up to now (although 
we restrict ourselves to binary encoded sequences, the generalization to arbitrary code 
alphabets should be obvious).  As each successive letter from the source sequence enters 
the encoder, the encoder responds to the incoming source letter and its current state by 
going into a new state and by emitting a string (perhaps empty) of binary output letters.  
To put this more mathematically, a finite state encoder with S≥1 states is defined by two 
functions, g(u,s) and h(u,s); g(u,s) maps an input letter u and a state s, 1≤s≤S into a new 
state s', 1≤s'≤S, and h(u,s) maps an input letter u and a state s, 1≤s≤S into a binary output 
string (perhaps the empty string).  Thus, letting u1, u2, ... be the input sequence and 
letting s0, s1, s2,... denote the state sequence for the encoder, the state sequence is 
determined (for a given an initial state s0), by si = g(ui, si-1), i≥1.  Similarly, the ith output 
string, yi, is given by yi  = h(ui, si-1) for i≥1.  The encoded output is the concatenation of 

1, y2, ...,yi,... .  In what follows, we extend these functions to denote the concatenated y
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output ym
n

 from a string of letters um
n

 by ym
n

 =  h(um
n

,sm-1) and we denote the final state by 

sn = g(um
n

,sm-1). 

Since these output strings can be null, such a finite state encoder (with enough states) can 
be used to implement an arbitrary variable length to variable length encoder.  Viewing a 
variable length to variable length encoder as a parsing dictionary followed by a mapping 
from dictionary entries to encoded strings, the states can be used to represent the 
intermediate nodes in the dictionary tree (with the root node used as the starting state).  If 
the intermediate node extended by the current input letter is another intermediate node, 
the new state corresponds to the new intermediate node and the output is the null string.  
If the intermediate node extended by the current input is a leaf node, then the new state is 
the root node and the output is the code word corresponding to the given leaf node (this 
assumes that the dictionary satisfies the prefix condition; implementing a non-prefix 
condition dictionary by a finite state encoder is left as an exercise).  The Lempel-Ziv 
encoder, however, is not a finite state encoder since the dictionary grows without bound.  
We return to this distinction later. 

By unique decodability for a finite state encoder, we mean that for any two distinct input 

strings, say um
n

  and um
n

, and any starting state sm-1, either the two input strings lead to 

different final states,  g(um
n

,sm-1) ≠ g( um
n

,sm-1), or lead to different output strings, 

h(um
n

,sm-1) ≠ h( um
n

,sm-1).  Note that it is doesn't necessarily cause a problem for distinct 
input strings to lead to the same output if they lead to different states; for example, in a 
variable to variable length encoder, all strings corresponding to intermediate nodes in the 
parsing dictionary would lead to null outputs.  If distinct inputs lead to both the same 
state and the same output, however, it would be impossible for a decoder to ever 
distinguish those inputs, no matter what the subsequent input and output.  Another way to 

express the condition of unique decodability is to insist that a decoder, given sm-1, ym
n

, 

and sn, must be able to uniquely reconstruct  um
n

.   

In what follows, we implicitly include unique decodability as part of the definition of a 
finite state encoder.  The class of "uniquely decodable finite state encoders" as defined 
here is a little larger than desirable.  In particular, the definition guarantees that a 
decoder, given s0, y , and sn, could uniquely decode u , but it does not necessarily mean 1

n n
1
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that u  can be decoded for any n in the absence of sn, which is not normally known to the 
decoder.  This does not matter for us since the properties established for this class are 
also valid for the included class of encoders for which these "end effects" can be 
resolved. 

1

 

3) DISTINCT PARSING STRINGS  

Define c(u ) as the maximum number of distinct strings that u  can be parsed into, 
counting the null string.  In what follows, we develop bounds, in terms of c(u ), on the 
compression achieved both by Lempel-Ziv encoding and by arbitrary finite state 
encoders.  We will show, following [ZL78], that c(u ) provides a fundamental measure 
of the compressibility of u .  We shall not be concerned with calculating c(u ), but only 
with bounds and asymptotic results.  First note that the Lempel-Ziv algorithm parses u   
into cLZ(u ) strings, all of which are distinct except perhaps the last.  By combining the 

last two strings, we obtain  cLZ(u ) - 1 distinct strings, and by adding the null string, 

which is not included in cLZ(u ), we get cLZ(u ) distinct strings.  Thus 

1
n

1
n

1

1

1 1

1

1

1

1 1

 cLZ(u ) ≤ c(u )        (2) 1
n

1
n

Combining this with (1), 

 LLZ(u )  ≤  c(u ) log {2Kc(u )}      (3) 1
n

1
n

1
n

We next find a lower bound on the length of code word for u  that applies for any finite 
state encoder with S states. 

1
n

THEOREM 2:  For any uniquely decodable finite state encoder of at most S states, and 
for any initial state, the length LS(u ) of the encoding of u  satisfies 1 1

 
LS(u1

n �)    c( u1
n)log

c(u1
n)

4S2        
(4) 

Before proving this, we first discuss what the theorem means and then present a lemma 
needed in the proof.  The finite state encoder in the theorem is arbitrary (subject to the 
constraint of S states), and thus could be designed under the assumption that u  will 1

n
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n

n

n

n

occur.  On the other hand, because of the unique decodability requirement, the encoder 
must also provide for the remote possibility of all possible sequences from the source.  
What this means is that if the encoder attempts to encode u  into a single binary letter, 
then the encoder must at least recognize u  in the input; this requires at least n states.  
Thus, for fixed S and sufficiently large n, one cannot encode u   into a single binary 
digit.   

1

1

1

Note that the theorem only asserts that LS(u ) is positive when c(u ) > 4S2, and the 
above example helps to explain why such a theorem can only be meaningful when n is 
large, and therefore when c(u ) is large.One should also note that the number of states in 
an encoder is typically very large.  The theorem is not intended as a practical bound for 
small values of n, but rather to see what happens asymptotically as n Æ∞. 

1
n

1
n

1

LEMMA 1:  Let n(c) be the minimum possible length of the concatenation of c distinct 
strings from an alphabet of K≥2 symbols.  Then 

 �n(c) log K    c log c
4         

(5)
 

Proof of lemma 1:  We claim that the length of the concatenation is minimized if the set 
of strings contains all strings of length less than some integer j and no strings of length 
greater than j.  To see this, suppose the contrary; then there must be some string not in the 
set of c that is shorter than some string in the set; removing the longer string and 
replacing by the shorter string reduces the length of the concatenation, exhibiting a 
contradiction.  Letting r be the number of strings of length j in the set, we then have 

  
c = r + Ki�

i=0

j-1

 
 
 ;   0 ≤ r ≤ 2j

       
(6)

 

 
n(c) = jr + iKi�

i=0

j-1

 
        

(7)
 

Consider the special case in which r = 0.  We can sum (6) and (7) to get 

 
c = K

j-1
K-1

 
         

(8) 
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n(c) = (jK-K-j)Kj+K

K-1 2
   

       
(9) 

Solving (8) for Kj and for j, we get 

 
 Kj = c(K-1)+1  ;   j = log c(K-1)+1

log K
 
 

Substituting this into (9) and simplifying, we get 

 
n(c)  =    c(K-1)+1

(K-1) log K
 log[c(K-1)+1] - Kc 

K-1
  

 

Multiplying both sides by log K and recognizing that x log x is increasing in x, we can 
lower bound this as 

 
�n(c) log K     c log[c(K-1)] - Kc log K 

K-1
  = c log c + c log(K-1) - K log K

K-1  

The final term in brackets above is equal to -2 for K=2 and is increasing in K for K≥2.  
Thus, 

 �n(c) log K   c log(c) - 2c = c log(c/4)  

Thus (5) is satisfied in the special case r=0.  We also have equality for the special case r 
= 2j, since this case is identical to choosing j one larger and choosing r=0.  Finally, from 
(6) and (7), we see that n(c) is linear in c for fixed j and 0≤r≤2j.  Since the right hand side 
of (5) is convex » in c, it follows that (5) is satisfied for all r. 

Proof of Theorem 2:  Let  u  be an arbitrary input string with a parsing into c(u ) distinct 
substrings.  Denote the states as {1, 2,...,S} and let cij be the number of substrings in the 

above parsing for which the original state is i and the final state is j.  Thus ∑ij cij =  c(u ).  
The binary output from each of these strings for a given i,j must be distinct (because of 
the unique decodability), and thus, using (5) with K=2, the aggregate length Lij of the 
output strings for a given starting state i and final state j satisfies 

1
n

1
n

1
n

 Lij ≥ cij  log(cij/4)        (10)  

The total length LS(u ) of encoded output is ∑ij Lij, so 1
n
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LS u1

n �  cij  log 
cij
4�

i=1, j=1

S,S

  
       

(11) 

The right hand side of (11) is minimized over the choice of {cij}, subject to ∑ij cij =  

c(u ), if each cij is equal to 
 
c(u )/S2.  Substituting this in (11) yields (4).   1

n n

n

n

n n n

1

Note that the lower bound on LS(u ) given in the theorem is zero at the point where c(u ) 

= 4S2.  For c(u ) very large, however, the term S2 becomes less significant.  We note, 
similarly, that the term 2K in the bound on LLZ(u ) appears to be insignificant for large 

c(u )  This suggests defining the compressibility l(u ) of the sequence u   as 

1
n

1
n

1

1

1 1 1

 λ u1
n  =   

c(u1
n) log c(u1

n)
n        

(12) 

THEOREM 3: 

 

LLZ(u1
n)

n - -  λ u1
n  Š   (log K)( log 2K)

log c(u1
n)/4  

 
     

(13) 

 
 λ u1

n  - 
LS(u1

n)
n  Š   (log K)(log4S2)

log c(u1
n)/4  

 

      
(14) 

The first part of the theorem says that the number of code letters per source letter with the 
Lempel-Ziv algorithm is arbitrarily little more than l(u ) and that this excess goes to 0 
with increasing c(u ).  The rate of approach in (13) is only logarithmic in c(u ), but it 

depends on  u  only through c(u ).  The second part of the theorem says that the 
minimum number of code letters per source letter achievable by a uniquely decodable 
finite state encoder, even one selected for the particular sequence u , is arbitrarily little 
less than  l(u ).  The rate of approach is again logarithmic in c(u ), but is highly 
dependent on S (as we have already seen that it must be). 

1
n

n n

∞ n

n

n n

1 1

1 1

1

1 1

Proof of Theorem 3:  From (3) and (12), we see that 

 
LLZ(u1

n)
n - -  λ u1

n  Š  
c(u1

n)
n log(2K)      (15)  

Similarly, from (4) and (12),  we have 
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  λ u1
n  - 

LS(u1
n)

n Š  
c(u1

n)
n  log 4S2

      (16) 

To obtain a bound on c(u ), we rewrite (5) with c equal to c(u ),  1
n

1
n

   
�  n log K   c( u1

n) log
c(u1

n)
4

  ;      
c(u1

n)
n  Š log K

log c(u1
n)/4     

(17)
 

Substituting this in (15) and (16) completes the proof. 

From Exercise 1 at the end of this note, c(u1
n �) n.  Applying this inequality to (13) and 

(14), we have the following corollary: 

COROLLARY 3.1:   

 
LLZ(u1

n)
n - -  λ u1

n  Š   2(log K)( log 2K)
log n/16  

 
     (18) 

 
 λ u1

n  - 
LS(u1

n)
n  Š   2(log K)(log4S2)

log n/16  
 

      
(19) 

This shows that the compressibility achievable with the Lempel-Ziv algorithm, i.e., 
LLZ(u )/n, is almost as small as l(u ), with the upper bound on the difference going to 0 

with n.  Similarly l(u ) is almost as small as LS(u )/n.  It is very surprising that the right 

hand side of (18) and (19) depends on u   only through n.  One should note

1
n n

n n

n

1

1 1

1 2 that these 
quantities approach 0 very slowly with increasing n .  One can combine (18) and (19) to 
obtain 

 
 
LLZ(u1

n)
n -  -   

LS(u1
n)

n   Š   2(log K)(log8KS2)
log n/16  

 
    

(20) 

                                                 
2The term log[n/16] in the denominator of (18) and (19) can be replaced with 2 log[n/4] (1-e(n)] where e(n) 
Æ0 as nÆ∞.  To see this, use the result in Exercise 4 in place of (17) in the proof of theorem 3. 
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∞
This says that given any finite state encoder of S states (perhaps designed with 

knowledge of u ), the compressibility achieved by the Lempel-Ziv algorithm on u  is 
arbitrarily little more than that achieved by the finite state encoder, with the difference 
approaching 0 as n approaches infinity. 

1 1
n

The compressibility of an infinite length sequence u1
∞

 can now be defined by  

        
(21) 

λ(u1
∞) = λ(u1

n)lim sup
n→∞

This yields the following  corollary to theorem 3: 

COROLLARY 3.2: 

 

 
LLZ(u1

n)
nlim sup

n→∞
 Š λ( u

1
∞)         

      
(22)

 

 

 
LS(u1

n)
nlim sup

n→∞
�  λ( u1

∞)   for every finite S        

    
(23) 

One should not read more into this corollary than it says.  In particular, l(u ) need not 

approach a limit with n, and one can construct sequences  u
1
n

1
∞

 for which l(u ) oscillates 

forever.  Whether  u  is meaningful in these situations is questionable, but because of 
corollary 3.1, the oscillations in LLZ(u )/n and LS(u )/n are bounded by those of l(u ).    
This corollary precisely defines the sense in which the number of encoded bits per source 
letter achieved with the Lempel-Ziv algorithm is, asymptotically, at least as small as that 
with any finite state encoder.   We also note that the Lempel-Ziv algorithm (for operation 
on u  for any fixed n) can be implemented by a finite state encoder. 

1
n

∞

n n n

n

∞

1

1 1 1

1

The interpretation of this is as follows: (23) says that for any given S, no matter how 

large, any sequence u , and any e≥0, there is a large enough n so that the best finite state 

uniquely decodable encoder (for u ) requires at least l(u
1

1
n

1
∞

) - e bits per source letter for 
encoding.  From (20),  the Lempel-Ziv encoder, requiring some finite number S' states, 

will require at most  l(u ) + e bits per source letter to encode u .  The rub is that S' might 
be very much larger than S.  In other words, the price paid for the universally good 

1
∞ n

1
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performance of the Lempel-Ziv encoder is that it requires many more states than the best 
finite state encoder designed for the particular source sequence. 

There is now a subtlety that we must deal with:  the Lempel-Ziv encoder requires a finite 
number of states for each finite n, but the number of states becomes unbounded as n Æ∞.  
Ziv and Lempel's way of dealing with this issue is to use the Lempel-Ziv strategy for n 
input letters, for some large block length n, and then to start all over again for each 
successive set of n input letters.  From a practical standpoint, it would clearly be 
preferable to build the dictionary out to some fixed size, and then to develop some 
algorithm for replacing dictionary entries that are no longer useful with entries that occur 
more often; from the standpoint of establishing theoretical properties, however, starting 
over with each block of n has great advantages.  To analyze what happens when an input 
sequence of say mn letters is encoded n letters at a time, we use theorem 3 on successive 
n-tuples.  Applying Eq. (20) to the ith n-tuple of inputs, 

 
LLZ uin+1

in+n

n - -  
LS uin+1

in+n

n   Š    2(log K)( log 8KS2)
log n/16      

(24)
 

Now if we consider any particular finite state encoder of S states, we see that 

 
LS u1

mn   =  LS uin+1
in+n�

i=1

m
    

       
(25)

 

Note that each of the terms on the right of (25) correspond to some particular starting 
state, which we have heretofore suppressed.  Since Theorem 3 applies to any starting 
state, we can continue to suppress it.  Summing (24) over i, and using (25), we have 

 

LLZ uin+1
in+n�

i=1

m

mn   -  
LS u1

mn

mn   Š   2(log K)( log 8KS2)
log n/16  

      
   

(26)
 

The first term is the compressibility of a Lempel-Ziv encoder, operating on m blocks of n 
source letters at a time, and thus requiring only a finite number of states (which depends 
on n but not m).  The second term is the compressibility of an arbitrary uniquely 
decodable finite state encoder operating on the same sequence of mn letters.  The final 

term depends neither on m nor on u1
∞

.  For any S and any e>0, we can choose n large 
enough to make the right side of (25) less than e, and therefore, for any S, the 
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∞

n

mi mi

compressibility achieved by the Lempel-Ziv encoding algorithm, using blocks of 
sufficiently large length n, is at most e more than the compressibility of the best finite 
state encoder of S states.  What is remarkable is that the required value of n is 

independent of u .    1

In a sense, the lower bound LS(u )/n on bits per letter for a finite state encoder is very 

artificial - there is no point to building an encoder for a particular sequence u .  What we 
have really shown there is that the Lempel-Ziv algorithm asymptotically does as well, in 
the absence of knowledge of source or source statistics, as the best finite state encoder.  
The price that is paid for the lack of knowledge, however, is a larger number of states. 

1
n

1

4) STATIONARY SOURCES 

Next consider the performance of a Lempel-Ziv encoder on an arbitrary (stochastic) 
stationary source of entropy H∞(U).  From Eq. 3.5.12 in theorem 3.5.2 of the text, we 
know that for any d>0 we can choose an m large enough so that the expected number of 
encoded binary digits per source letter in a Huffman code on super letters of length m is 
at most H∞(U)+d.  Now consider encoding i successive m-tuples of inputs.  Let 

LHuff(u ) be the length of the encoder output for the input  u .  As we have just seen, 1 1

 
E LHuff u1

mi

mi
  Š  H∞(U) + δ

       
(27) 

The Huffman encoder on super letters of length m can be implemented as a finite state 
encoder with S = (Km-1)/(K-1) states (see Exercise 5).  For an arbitrary input sequence 

, let n = im+j, where 0≤j<m.  The Huffman encoder, with input u , will generate i code 
words with expected length satisfying (27) and save the final j inputs waiting for 
additional input letters to make up the next super letter input.  The length, LHuff(u ), of 
output from the Huffman encoder is at least as large as that for the best finite state 
encoder for u  with S states.  Thus, using (19), we have 

un n

n

n

1 1

1

1

 
LHuff u1

n

n �  
LS u1

n

n |S=(Km-1)/(K-1) � λ u1
n  - 4(log K) log[2(Km-1)/(K-1)]

log(n/16)  

The final term above approaches 0 with n, so that for large enough n, 

 
LHuff u1

n

n �    λ u1
n  - δ        (28) 
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With n = mi+j, 0≤j<m, we have LHuff(u ) = LHuff(u ).  Thus from (27), 1
n

1
mi

 
E LHuff u1

n

n  = 
E LHuff u1

mi

n  Š 
E LHuff u1

mi

mi
  Š  H∞(U) + δ

   (29) 

Taking expected values of both sides of (28) and combining with (29), we have 

  E λ u1
n  Š H∞(U) + 2δ    for all sufficiently large n    (30) 

Next consider a Lempel-Ziv encoder working on blocks of n inputs at a time.  Since this 
can be viewed as a block to variable length encoder, we have 

 H∞(U) Š 
E LLZ u1

n

n            
(31) 

Taking the expected value of (18) and substituting into (31), we have 

 
H∞(U) Š 

E LLZ u1
n

n   Š  E λ u1
n  + 2(log K)(log 2K)

log(n/16)
   Š  λ u1

n  + δ  
 

(32) 

where the final inequality holds for large enough n.  Since (30) and (32) hold for arbitrary 
d>0, we have proved the following theorem: 

THEOREM 4:  For any stationary stochastic source, 

 
H∞(U) = 

E LLZ u1
n

nlim
n→∞

   =   λ u1
nlim

n→∞
    

    
(33) 

There is one practical problem with Lempel-Ziv encoders that is slightly concealed by 
this result:  if one implements a Lempel-Ziv encoder with a particular value of n (or, 
more practically, with a given dictionary size and given replacement rule), then one can 
always construct a stationary source with too long a memory for the given encoder size.  
For example, the source could simply repeat with a repetition cycle of length n+1, and 
the Lempel-Ziv encoder limited to a particular value of n would be totally stymied.   In 
other words, the rate of convergence in (33) depends on the particular stationary source.  
Another problem is that if the source is not ergodic, then individual sequences will not 
behave as the expected value.  None-the-less, Theorem 4 is an amazing result.  It  shows 
that this very simple algorithm can adapt, eventually, to any stationary source, no matter 
how complex or long term the memory, and compress it to the entropy rate. 
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n

 

5) KOLMOGOROFF-CHAITIN COMPLEXITY  

There is another well known measure of how much a source sequence can be compressed 
known as the Kolmogoroff-Chaitin complexity measure.  The question asked here is the 
same as the question in Lempel-Ziv coding - how many code letters per source letter are 
needed, in the limit nÆ∞, to represent a source sequence u .  The crucial difference is in 
the type of encoder and decoder allowed.  The Lempel-Ziv algorithm focuses on the 
encoder,  whereas Kolmogoroff-Chaitin complexity focuses on decoding and allows an 
arbitrary universal Turing machine to be used as the decoder

1

3 .  The input to the universal 

Turing machine is the encoded version of  u1
∞

 and the output is u1
∞

 itself.  Thus we can 
view the input as a program plus data, where the program tells the Turing machine how 
to process the data in generating the output.  

More abstractly, we view the Turing machine input as a sequence of binary digits which 
the machine interprets according to its rules.  There are many Turing machine input 

sequences that could give rise to the required source sequence u1
∞

.  For example, the 
Turing machine input could be a program for a given Huffman decoder followed by the 

Huffman encoding of u .  Similarly the Turing machine input could be a program for 

Lempel-Ziv decoding, followed by the the Lempel-Ziv encoding of u
1
∞

1
∞

.  For the given 
Turing machine T, we can define L(u , T) as the minimum length input sequence 
required to generate the output u .  We can then define the Kolmogoroff-Chaitin 

complexity of  u , relative to T, as 

1
n

n

∞
1

1

 

λKC u1
∞, T   =   

L u1
n, T
nlim sup

n→∞       
(34)

 

                                                 
3 For the reader unfamiliar with Turing machine theory, it is sufficient to view a Turing machine as a 
conventional computer with an unlimited memory, viewed as an infinite tape.  A universal Turing machine 
is one that can be programmed to simulate any other Turing machine.  Essentially any general purpose 
computer with unlimited memory (i.e., where memory is added as needed) can be viewed as universal in 
this sense.  
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Since the input to the Turing machine could be a program for a Lempel-Ziv decoder 

followed by the Lempel-Ziv encoding of u1
∞

, we see that l(u1
∞

) ≥ lKC(u1
∞

, T). 

We next observe that lKC(u , T) is independent of the universal Turing machine T.  The 
reason is that any universal Turing machine T can  simulate any other Turing machine T'.  
More specifically, there is some input Z(T,T')  that instructs T to act like T' in the sense 
that if input y to T' produces output u , then input  Z concatenated with y will produce 
output u  from T.  Since the fixed input Z is finite and independent of y, the limit in (34) 
is the same for any T and T', and therefore we drop the T in what follows (note however 
that before going to the limit, L(u , T) is very much a function of T;  one can always find 
a universal Turing machine T that produces u  after looking at just one bit of the input. 

1
∞

1
n

n

n

n

∞

∞ ∞

∞

n

un

n

1

1

1

Example 3, (first given in [LZ78]) clarifies the difference between lKC(u ) and l(u ).  

Recall that u  is a listing first of all binary strings of length 1, then of length 2, etc., all 
ordered within their length, i.e., (0)(1)(00)(01)(10)(11)(000)(001)(010)...  A Turing 
machine can be programmed with a finite program to generate this infinite output stream, 

so that  lKC(u ) = 0.  On the other hand, the parsing above shows that l(u ) = 1. 

1
∞

1
∞

1

1 1

From an intuitive viewpoint, it is reasonable to view the above sequence as having zero 
complexity or zero compressibility - after knowing how it is generated, there is simply no 
additional information in watching the entire boring sequence unfold.  There are 
infinitely many variations on this theme; for example, one could invert the ith digit in 
each string of length greater than i, which is one variation for each integer i.  There are 
clearly many other types of examples; in fact any finite input to a Turing machine that 
gives rise to an infinite output is such an example.  Unfortunately, there is a famous 
theorem in Turing machine theory that states that there is no algorithm that will 
determine which inputs give rise to an infinite output sequence. 

A more troubling aspect of Kolmogoroff-Chaitin complexity is the lack of any approach 

to encoding a given sequence u .  One must in principle see the entire sequence before 
determining the minimum length program to generate it, for whenever one looks at a 
finite sequence u , it is important to know which universal Turing machine is to generate 

.  Even if one is willing to adopt some given Turing machine, there is no way to find 
the minimum length program to generate u . 

1

1

1

1
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Kolmogoroff-Chaitin complexity is usually viewed as a fundamental topic for theoretical 
computer science, but it seems less appropriate (since it ignores encoding) to the study of 
data compression.  This is a personal viewpoint, however, that is not universally shared 
by all information theorists. 

References: 

Chaitin, G.J., Information-Theoretic Computational Complexity, IEEE Trans. IT, Jan. 
1974. 

Kolmogoroff, A.N., Logical Basis for Information Theory and Probability Theory,  IEEE 
Trans. IT,  Sept. 1968, pp. 662-664. 

Lempel, Abraham & Jacob Ziv, "On the Complexity of Finite Sequences," IEEE Trans. 
IT, Jan. 1976, pp. 75-81. 

Miller, V. S. & M.N. Wegman, "Variations on a theme by Ziv and Lempel," in 
Combinatorial Algorithms on Words, Springer Verlag, (Apostolico and Galil, ed.), 1985, 
pp 131-140.  

Storer, James A., Data Compression, methods and theory, Computer Science Press 1988. 

Ziv, Jacob & Abraham Lempel, "A Universal Algorithm for  sequential data 
compression," IEEE Trans. IT, May 1977, pp. 337-343. 

Ziv, Jacob & Abraham Lempel, "Compression of Individual Sequences via Variable-Rate 
Coding," IEEE Trans. IT, Sept. 1978, PP. 530-536. 



2.20 

n n

n n

n

n n n n

EXERCISES:     

1) The object of this problem is to show that cLZ(u ) might be considerably smaller than 

c(u ) for particular choices of u .  This indicates that Lempel-Ziv coding might compress 
some sequences considerably more than the bound in theorem 3 indicates. 

1
n

1 1

a)  Use the Lempel-Ziv algorithm to parse the binary sequence of length 55 below (i.e., 
parse from left to right, always selecting the shortest string that has not appeared earlier). 

   0010110110011010110100110100011010010110100110110100111 

Show that  cLZ(u ) = 10 for n = 55. 1
n

b)  Now take 00 as the leftmost string in a parsing of the sequence above and then parse 
the rest of the sequence from left to right by always selecting the shortest string that has 
not appeared before (including 00 as a string that has appeared before).  How many 
strings does u  parse into by this procedure? Explain why this is an lower bound to c(u ). 1 1

c)  Show that your answer in (b) is equal to c(u ) for n=55. 1
n

d)  EXTRA CREDIT (I don't know how to solve this either)  Extend u  to arbitrarily 
large n of the form  n=k(k+1)/2, k integer, in such a way that cLZ(u ) = k.  Either show 

that cLZ(u )/c(u ) Æ 1 as n Æ∞ or show that lim supn cLZ(u )/c(u ) < 1. 

1
n

1

1 1 1 1

2)  Show that 
c(u1

n �)  -1 + 1+8(n+1)
2

�    n
.   

Solution:  Note that any string can be parsed into unique strings by starting with the null 
string, then a string of length 1, then of length 2, and so forth.  After selecting the ith 
string (which has length i-1), if the remaining string has length less than 2i+1, it is 
possible that choosing another string of length i will cause the remainder to be one of the 
selected strings (recall Example 2), and thus this final string is not parsed.  We see that if 
this process gives us c strings, the ith, i≤c-1 will have length i-1, and the cth will have 
some length between c-1 and 2c-2.  Adding up these lengths, we have n ≤ (c-1)(c+2) /2, 
thus yielding  

 
c(u1

n �)  -1 + 1+8(n+1)
2

�    n
     (35) 
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3) Verify Eq. (9). 

4)  Show that Eq. (5) implies that for c≥8  

 
c Š n(c) log K

log(n(c)log(K)/4) - log log(n(c)log(K)/4)
 = n(c) log K

n(c)[1-ε(n)]
  

(36)
 

where e(n) Æ 0 as nÆ∞. 

Hint:  Let x = c log(c/4) and show that for c≥8 

 
c = x

log(x/4) - log log(c/4)
  Š x

log(x/4) - log log(x/4)   
(37)

 

Show that the right hand side of (32) is increasing in x and then use Eq. (5). 

5)  Consider a stationary source with an alphabet of size K; let Hm = [H(U1, 
U2,...,Um)]/m be the mth order entropy per letter and let H∞ = limmÆ∞Hm.  Assume that 
for some given m, the Huffman code for encoding m-tuples of source letters has an 
expected number of binary code digits per source letter equal to H∞+0.01. 

a)  Show that a finite state encoder with S = [Km-1]/(K-1) states can be used to 
implement the Huffman encoder. 

b)  Show that for  S = [Km-1]/(K-1) and for any n that is a multiple of m, the minimum 
expected number of binary code digits per source letter required by a uniquely decodable 
finite state encoder of S states to encode the first n source letters satisfies 

 
E LS u1

n

n   Š  H∞+0.01  

c)  Show that the expected number of binary code digits per source letter required by a 
Ziv Lempel encoder operating on n source letters satisfies 

 

E LZL u1
n

n   Š  H∞+0.01+ (log K)(log 8KS2)
log n/4

 
 

d)  For K=2 and m=5, how large does n have to be to ensure that the final term above is 
less than 0.01?  Note: The point of this part of the problem is not to show that the Ziv-
Lempel algorithm is impractical; rather it is to show that the bounds we are using are 
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very weak.  The point of the bound is to demonstrate the asymptotic behavior rather than 
the actual performance.      

 


