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Random Coding Theorem  for Broadcast 
Channels W ith Degraded Components 

PATRICK P 

Absfroct-This paper generalizes Cover’s results on broadcast chan- 
nels with two binary symmetr ic channels (BSC) to the class of degraded 
channels with N components. A random code, and its associated decoding 
scheme, is shown to have expected probability of error going to zero for 
all components simultaneously as the codeword length goes to infinity, 
if the point representing the rates to the various receivers falls in the set 
of achievable rates described by this paper. A procedure to expurgate a 
good random broadcast code is given, leading to a bound on the max imum 
probability of error. 

Binary symmetr ic broadcast channels always fall in the class of de- 
graded broadcast channels. The results of the paper are applied to this 
class of channels of potential practical importance. 

I. INTRODUCTION 

I 

N a recent paper [I], Cover introduced the notion of a  
broadcast cham~el, through which one source sends 

information to two or more receivers. One of the results of 
Cover’s paper is that in some situations there exists a 
coding scheme allowing the transmission of information to 
the different users at better rates than the so-called time- 
sharing rates. The present paper generalizes those results, 
and gives a rigorous proof of the coding theorem for 
degraded broadcast channels. 

The notion of a  degraded broadcast channel is introduced 
in Section II, together with the definitions of the various 
quantities used in the paper. In Section III, we exhibit a  
random coding scheme, describe the associated decoding 
rule, and find a set of sufficient conditions to guarantee that 
the expected probability of error goes to zero for all channels 
simultaneously when the length of the code goes to co. The 
rigorous proof of this statement is given in Appendix A. 
In Appendix B, we show that uniformly good broadcast 
codes exist, and that we can upperbound the maximum 
probability of error for all channels simultaneously. Some 
of the results of Section III were conjectured by Cover [l]. 
In Section IV, we introduce simple upper bounds to the 
capacity region, and discuss a generalized definition of 
broadcast rates. Finally, the case of the binary symmetric 
broadcast channel (BSBC) is treated in Section V. 

II. DEFINITIONS AND PRELIMINARIES 

A. Broadcast Channels 
The most general representation of a  discrete memoryless 

broadcast channel is given in Fig. I. The input alphabet is 
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Fig. 1. Broadcast channel.  

d, and the output alphabet of thejth terminal is gj. The 
transition probability of the broadcast channel is 
P(YILh? - * * ?YN I 4. 

We  impose a “no-collaboration” restriction between the 
receivers connected to the different terminals of the broad- 
cast channel. W ithout this restriction, there is no real 
broadcast situation. The no-collaboration restriction allows 
us to factor the broadcast channel into its N component 
channels, since possible dependence between the Yj con- 
ditioned on X is irrelevant. Hence, we need consider only 
the marginal transition probabilities p(y, 1  x), p(y, ( x); * * 
of the component channels A,,A,; * .,A, (Fig. 2), and all 
broadcast channels with same marginals will be equivalent 
in this context. 

Cj, the capacity of the jth component channel, is defined in 
the usual way as the maximum mutual information between 
the random variables X and Yj. W ithout loss of generality, 
we shall assume that 

c, > c, > . ‘. > c,. (1) 

There are no equalities in (I), but we shall show later that 
this is not a  restriction. 

We  now wish to use this broadcast channel with N 
components to transmit the output of N independent sources 
s,,s,,. -. ,S, to N users, connected to the outputs of the 
component channels, on a one-to-one basis. By this, we 
mean that the output of the jth source is intended to be 
received by the jth receiver (Fig. 3). Subsequent arguments 
in Section IV will remove this restriction in interpretation. 

B. Broadcast Codes 
Let Zj be the set of possible outcomes of source Sj and 

let all the elements of Zj have same probability. This is not a  
loss of generality in a channel coding theorem, and, in 
fact, represents the worst case. The length of the code is n. 

The size of Zj is Mj, and the rate of source Sj is given by 

Rj = ! log, Mj (2) n 
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Fig. 2. Considering components only. 
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Fig. 3. Broadcast communication system. 

For notational convenience, we define 

i = (il,i,; 3 .,iN) 

z = I, x I, x **. x I, 

R = (R,,R,,. * *,RN) 

A-z = w&f,,. * .,MN) 

A4 = 111 = I”i. Mj. 
j=l 

A broadcast code consists of an encoding function 

x:z+JzP 

and N decoding functions 

gj: kzaj” -+ zj. 

(3) 

(4) 

(5) 
When the source output is i = (il,i2; * a,&), the jth 

receiver is in error if gj(yj) # ij. The probability of this 
event will be denoted 

A;(i) = Pr [gj(yj) # ij 1 x(i) has been sent]. (6) 

We introduce the following notation for the maximum 
and average probability of error 

Ai = max Ai (7) iEI 
and 

(8) 

Again, for notational convenience, let 

3, = (fw,; * *A> 
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Using Wolfowitz’ notation, we define a (M&)-code as a 
code of length n, size M, and maximum probability of 
error II. R is an achievable rate if there exists a sequence of 
(M,n,rZ@‘)-codes, with Mj = Lexp, (nRj)J, such that 1’“’ + 0 
when IZ -+ co. The set of achievable rates, or capacity 
region of the broadcast channel, will be denoted %?. 

C. Time Sharing 
Let {zj} be a set of numbers such that 

zj 2 0 and (10) 

Clearly, the rate point 

R = (z,C,,z,C,,* * *,WN) (11)* 
is an achievable rate, by simple time sharing. Every point 
dominated by such an R is, of course, also achievable. 
Hence, 

gm = {(R,,. * * ,RN) t Rj < ZjCj Vj, for some {zj}} (12) 

is the set of rates achievable by time sharing (Fig. 4). The 
boundary of gTs is a hyperplane intersecting the Rj axis 
at Cj. 

D. Degraded Channels 
We shall say that a channel A, is a degraded version of a 

channel A, if there exists a third channel D, such that A, 
can be represented as the cascade of A, and D,. Specifically, 
let A, be a channel with input alphabet d, output alphabet 
59r, and transition probability pi(y, 1 x), and let A2 be 
another channel with same input alphabet d, output 
alphabet 9ZJZ, and transition probability p2(y, 1 x). The 
degradation is expressed by (Fig. 5) 

P2(Y, I x> = ,l;Bl PdY2 I Yl)P,(Yl I XI> (13) 

where p3(y, 1 vl) is the transition probability of the de- 
grading channel D,, with input alphabet 9?i and output 
alphabet W,. 

This can be considered as “post-degradation”. It is a 
special case of channel inclusion described by Shannon in 
[2], where “predegradation” is also allowed. Shannon 
shows that C, 2 Cr, where Ci is the capacity of Ai. 

By definition, if every component channel Aj of a broad- 
cast channel is a degraded version of Aj- 1 (j = 2, * * * ,N), 
the broadcast channel will be called cascade degraded, or, 
in this paper, simply degraded (although we can imagine 
other lattices of degraded channels). 

Applying the no-collaboration restriction again, we can 
represent a degraded broadcast channel as a cascade 
formed by the best channel A,, followed by successive 
degrading channels D,,D,, . . . ,D, (Fig. 6). 

In the remainder of this paper, we shall consider only 
degraded broadcast channels. It will not be necessary that 
the structure of the channel be actually degraded, as long 
as there is an equivalent degraded broadcast channel (i.e., a 
broadcast channel with the same marginal transition prob- 
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Fig. 4. Set of rates achievable by  time-sharing. 
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Fig. 6. Degraded broadcast  channel.  

abilities). Many practical broadcast channels are degraded 
(an example is given in Section V), and the results obtained 
in the next section are widely applicable. 

III. CODINGTHEOREMFORDEGRADEDBROADCASTCHANNELS 

A. Broadcast Channel  W ith Two Components 
The essence of the coding scheme for degraded broadcast 

channels can be most easily understood when applied to a 
broadcast situation with two sources. 

We  shall not use the definitions of Section II in their 
full generality, to avoid needlessly complicated notation. 
Instead, let k be the index emitted by source S,, and i be  the 
index emitted by source Sz. We  have 

1 I k I M, and 1 I i < MZ . (14) 

Codeword xki will be used to transmit this joint message 
over the degraded channel represented in Pig. 7. User 1 
should decode k correctly, while user 2 should decode i 
correctly. 

The “cloud” of codewords xki in d” with same index i 
will be represented by a vector ui in d”, henceforth called 
the cloud center (Fig. 8). The meaning of this cloud center 
will be made clear later. The different xki in a given cloud 
will be called the satellite codewords of ui. Since user 2 
should decode correctly the index i of S,, it is sufficient for 
him to determine the cloud to which the transmitted code- 
word xki belongs, or, in other words, its representative ui. 

X 

Fig. 7. Degraded broadcast  channel  with two components.  

‘1 \ l xMqi / \ . / 

Fig. 8. Clouds and  cloud centers of a  broadcast  code.  

In every cloud, the satellites are indexed by the index k 
of S,. Hence, user 1 should only recover the index k of the 
satellite. To achieve this, we shail show that we can use Ui, 
because it is also available to user 1. However, knowledge 
of the index i of source Sz does not give user 1 any informa- 
tion about source S,. Hence, the rate R, as defined in (2) 
should depend only on M ,. 

We now exhibit a  random coding scheme for which the 
expected value of the average probability of error goes to 
zero for both channels simultaneously, as the block length n 
is allowed to increase without bound. 

We  shall need to consider the mutual information between 
some of the random variables U, X, Y, and 2, as illustrated 
in Fig. 9. q2(u) and ql(x 1 u), defined for u,x E &‘, are 
parameters that will be used in the random coding scheme. 
ql(x 1 u) can be thought of as the transition probability 
of an artificial channel E. pl(y 1 X) and pz(z 1  x) are the 
channel transition probabilities of channels A, and A,. 
The various mutual informations are functions of the 
parameters q1 and q2. 

Choose at random M , = 2nR2 cloud centers in d”, with 
letters independently drawn according to q2(u). To each 
cloud center, we append M , = 2”R1 satellites in d”, 
independently drawn according to ql(x 1 u), conditioned on 
the cloud center IC. The effect is that of “passing” each 
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Fig. 9. Introduction of the artificial channel E. 

cloud center vector M, times through the artificial channel 
E with transition probability ql(x 1 u). 

In the following, we shall use an overbar to denote the 
expectation over the ensemble of codes generated according 
to preceding procedure. 

The decoding sets are determined as follows. Let 

P(Z I u) 
Z,,,,@; z) LA ‘, log, ~ ) 

P(Z) 
(15) 

P(Z I 4 = ,F&” PAZ I x)q,(x I 4 

and 

P(Z) = c P(Z I 4q2w USat” 
Then, by definition [3] 

Let 

W,,& z>l A ~,,,,wJ ;-a. (16) 

S(z) = u E d”: z4142(u;z) > Rz + z41- 
1 2 1 

(17) 

be the decoding set for z, and define 

(18) 

When xki has been sent, and z has been received, we shail 
say that the cloud center detector makes an error if either 
ui is not in S(z) (error of the first type, occurring with 
probability P,(‘)(k,i)) or if ‘cj is in S(z) for j # i (error of 
the second type, occurring with probability P,“‘(k,i)). 

Hence 

A,(k,i) I P,“)(k,i) + P,“)(k,i) (19) 

with 

and 

(20) 

P,“‘(k,i) = C Pz(Z I Xd zi (1 - d(ujJ)>* (21) ZSO” 
j=l 

With a uniform distribution in the independent indices 
k and i, we define 

PL3’(k,i) = yL PI(Y I xd d(xki, Y I UJ (29) n 

and 

p (ml = 1 MI MI 
e M,M, ,gl i;, p,‘“‘(kA m = 1,2. (22) P,‘4’(k,i) = C PI(Y I X.d 2 (1 - d(x,i, Y I UJ). (30) 

I  L 

l#k 
I=1 . 
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Consequently, we have 

and 
- - 

E I P,(l) + P&p). (23) 

Quite obviously, the better receiver can detect the cloud 
center with a probability of error no greater than the 
probability of error for the more degraded channel receiver. 

A trivial way to achieve an equal probability of error is to 
append an additional degrading channel to obtain the 
input-output statistics of the degraded channel and to use 
the decoding rule for receiver 2. In addition, user 1 will 
now attempt to recover the satellite codeword itself. Let 

&J-v Y I 4 = A log, 
P(Y I -% 4 

n P(Y I 4 

= 1 log, PI(Y I 4 (24) n p(Y’ 
where 

P(Y I u> = ,Fdn PI(Y I -%1(x I 4. 

Then, in analogy with the first part of the decoding pro- 
cedure, we have 

Let 

T(Y I u) A x E d”: ~q,q*(x; y I u) 

> RI + z,,,,(x; y 1 u> 
2 

(26) 

be the conditional satellite decoding set for y, and define 

x # T(Y I u> 
otherwise. (27) 

The satellite wiil now be detected as follows. The receiver 
first detects the cloud center ui making errors of the first 
or the second type (see above). Even if the cloud center has 
been decoded correctly, it is still possible that xki is not in 
T(j [ ui) (error of the third type, with probability P,(3)(k,i)), 
or that there is some Xii in T(y ) ui), for 1 # k (error of the 
fourth type, with probability P,‘4’(k,i)). 

We have 

A,(k,i) I A,(k,i) + P,‘3’(k,i) + Pi4’(k,i) (28) 

with 
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Again, with a uniform distribution on k and i, we have 

p Cm) = e & k‘l sg P,‘“W), m  = 3,4 (31) 
2 

and 
p1 I & + PL3) + PJ4) 

- ~ 
jq 2  z + Pe(3) + P,(4). (32) 

In Appendix A, we prove rigorously that, if 

R, = I,,,,(U;Z) - 2~ 
Rz = 14&-; Y 1  U) - 2~ (33) 

z and T;; go to zero simultaneously as n + co. 
The proof is similar to Shannon’s original random coding 

proof [4]. The main difference, of course, is the introduction 
of the artificial “satellizing” channel E. 

If we consider the transmission of the “cloud message” to 
receiver 2 (through the worst channel), it is clear that a  
message is not transmitted by a single codeword, but by a 
codeword chosen at random (at transmission time) in the 
cloud. This can only be done at the expense of the maximum 
rate at which reliable transmission can be achieved. The 
purpose of the introduction of the satellizing channel E is 
to make it possible to consider this extra randomization as 
being part of the channel, and, by doing so, to find the 
maximum rate just described as the capacity of the cascade 
of E and A,. The first part of Appendix A is the verification 
that this can be done, and that channel E asymptotically 
represents the perturbation introduced by the super- 
position of the output of source S,. 

The second part of Appendix A is concerned with the 
information that can be sent to receiver 1, under the con- 
straint that the codeword to be used must lie in a cloud 
determined by the message to receiver 2. The decoding 
method involves the notion of a  conditional decoding set. 
The conditional independence of the satellite codewords is 
essential to the second part of the proof. 

B. Broadcast Situation W ith N Sources 
An obvious generalization of the previous argument 

yields a random-coding scheme for a degraded broadcast 
channel with N components. 

First, choose MN = 2nRN cloud centers in d” according 
to qN(xN). Then, select MN- I = 2nRN-1 satellites per cloud 
center, according to qNmI(xNml 1  xN), MNd2 = 2nRN-2 
subsatellites per satellite in each cloud, according to 
qN-2(~IV-2 1 xN- r), and so forth, until 

ltf=fib!lj 
j=l 

codewords have been selected. At each level, the satellization 
process can be represented as the result of “passing” the 
n-vectors generated so far (not yet codewords) Mi times 
through an artificial channel with transition probability 
qi(xi 1 xi+r). This is illustrated in Fig. IO. The artificial 
satellizing channels are cascaded, and the broadcast channel 
is of the degraded type. 

“SATELLIZING” CtiANNELs BROADCAST CHANNEL 

Fig. 10. Introduction of N - 1 artificial channels. 

If, for some ql,qz,. . . ,qN, we have 

R, < &. . .,,w.v; Yd - 6  

RN-, < &...&N-I; YN-I I x,> - E 
. . . . . . . . . . 

R, < I,, . . .,,v,; y2  I x3> - E  

R, < I,, . . .q‘Jx1; Yl I X2) - E 

Fgoestozeroasn -+ co. 

(34) 

So far, we have proved that with certain conditions on R, 
there exists a random coding scheme for which the expected 
average probability of error F  goes to zero as n -+ co. In 
Appendix B, we prove that, with identical conditions on R, 
there exists a sequence of codes for which the maximum 
probability of error il goes to zero as IZ --t co. Hence, the 
set 9  of all R described parametrically by ql, * * * ,qN in (34) 
is completely contained in the capacity region. Special 
conditions on ql, * * * ,qN will yield points on the boundary 
of 9. In particular, if Ek is a  useless channel (qk(xk I xk- 1) is 
only a function qk(xk) of x&, and if E,, * * * ,Ek- I are perfect 
channels, we have 

R, I I(&; Yk I X,, 1) = I(&; Y,) = Z(X,; Y,). (35) 

Letting qk(xk) be the probability mass function maximizing 
the information between the input of the channel and the 
kth terminal, we can achieve the rate point R = (0,. . *,O, 
c,,o, * - * ,O). 

If 9? is the convex hull of 9, we can also achieve any rate 
point in 9 by time sharing between some points in .Y 
(Fig. 11). Consequently, W ,, is completely contained in .%!. 

In view of the results of all examples (some of them are 
presented in Section V), we have been led to believe that %?  
might very well coincide with 9 in all cases. In other words, 
we do not need “explicit” time sharing to achieve all the 
points in %!. 

Finally, at the time of first writing of this paper, we had 
conjectured that the set 9  described by (34) is the capacity 
region %?, i.e., that no rate point outside 9 can be achieved 
with arbitrarily small probability of error. Wolfowitz has 
stated that he has a proof of this fact [S]. 

IV. BOUNDS ON 9; GENERALIZED DEFINITION OF 
BROADCAST RATES 

A. Bounds on  9  
An obvious bound on the set 9  described in (34) is the set 

9u = {(w-l ; Yl), . * . AX, ; Yd: P(Xl> 2 0, 

&GA = 1). (36) 
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Fig. 11. Set of achievable rates. 

Indeed, we have 

Icxk; r, 1 xk+l> = H(yk 1 xk+l) - H(r, 1 xk> 

5 H(yk> - H(yk 1 xk) 

= I(&; Yk) 5 Z(X,; Y,). (37) 

Consequently, the convex hull .% of 9 is contained in the 
convex hull .@,, of 4,. W, is the generalization to several 
receivers of the upper bound introduced by Cover in [l]. 
Considering the inequalities in (37), it should be clear that 
for a degraded broadcast channel, the.only possible common 
points of the boundaries of W  and L%J,, are rate points of the 
form R = (0, * * * ,O,C,,O, * * + ,O). A trivial consequence of 
(37) is R, I C,. 

Because the users are not allowed to collaborate in the 
decoding process, we may represent the broadcast channel 
by a cascade of successive degradation, as mentioned before 
(Fig. 12). The total throughput rate of the channel is 
RI + R, + * ’ - + R,. Since information is transmitted 
reliably, this total rate should not exceed the capacity of the 
channel in its cascade representation. An upper bound to 
this capacity is the capacity C, of channel A,. Hence 

iil Ri 5 Cl. (38) 

Another way to show this is to note that 

Cl 2 zq I”. ,,(X,;Y1) = zq ,“. ,,(X,,X,-,,~..,x,;Y,) 
= Z  41"'4N W,;Y,) + zq1...4N(xN-1; Yl IX,) + *.- 

+ Zq,...*JXli Yl I ~N,~N-l,~N-2,***,~2) 

= I**. .,,(X,; Yl> + I,, . . .,,(X,- 1; Y, I X,) + * * * 

+ z,,. . .qJXli Yl I X2) 
2 zq I... *‘JXN;YN) + zq ,.‘. 4N(xN--1; Y,-, 1 X,) + *** 

+ I,,.. .qJX1; Yl I X2) 
2 R, + RN-, + *. * + R,. (39) 

Equation (38) proves that, for a broadcast channel com- 
posed of identical components with capacity C, the coding 
scheme for degraded broadcast channels, though still 
applicable, does not dominate time-sharing coding. It &es, 
however, achieve time-sharing rates provided the prob- 

IRN 
, 

1% 

Fig. 12. Total information flow in a degraded broadcast channel. 

ability mass function of X, maximizes the mutual informa- 
tion between X, and any of the Yj. Indeed 

2 Ri = ‘i’ Z(Xi; x 1 Xi+,) + Z(XN; YN) 
i=l i=l 

N-l 

= Z(X,,X,; * *,x,; Yj) = c. (40) 
If not all components of the broadcast channel are equal, 

the preceding fact can easily be generalized. For example, 
let 

Cl = cz < c, < c, = cg. (41) 
Fig. 10 can be simplified to group components with same 
transition probability. In this case, we have (Fig. 13): 

RI + R, < Zq,qv#l; Y, I x,1 
R3 < z4143a (X3; y3 I x4 

R, + 4 < ZqmqJ&; YJ (42) 
with R, 2 0. 

Again, time sharing among equal channels can be 
achieved by the coding scheme for degraded broadcast 
channels or by explicit time sharing. 

B. Generalized DeJinition of Broadcast Rates 
In the previous sections, we have considered a broadcast 

situation where different and independent information was 
sent to the different users. The model for this case was 
introduced in Section II (Fig. 3). In his original paper, 
Cover considers a broadcast situation where there is some 
common information intended for two or more users 
[l , p. 51. The N index sets Z1,Z,, . * .,Z, of the one-to-one 
case are replaced by 2N - 1 index sets Ze such that 

6 = (81,82,“’ ,6,) E 0 p {O,l}N - 0. (43) 

In analogy with Fig. 3, we can represent this case as the 
simultaneous transmission of the random output of 2N - 1 
sources to N users, over a broadcast channel with N 
components. 

The output i,, of source S, is intended to be received by all 
users Uj such that Bj = 1. The rate R, of source S, is 
defined by 

R, = 1 log, M ,, (44) n 
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VI 5 y4 
Fig. 13. Simplifying the original broadcast  channel.  

where MB is the size of the output alphabet Ze of S,. The 
total information rate to userj is the sum of the rates of the 
sources S, such that Bj = 1. Hence 

Rj = c B,R, (45) 
BE0 

The one-to-one case we have considered until now (one 
source index to a single user) is characterized by the fact that 
R, > 0 if and only if 8  has weight one (i.e., 8  has only one 
ej = 1). 

We  now show how the results of the previous sections can 
be extended to the more general situation described pre- 
viously for the class of degraded broadcast channels. Given 
the set 92 of achievable rates in the one-to-one case, it is 
easy to determine whether a particular rate R = (R,. . .O1, 
RI. ..lO ,” ‘J,. . . I i) E RtN- ’ is achievable. Let 

RN’ = c &&, 
BE0 

R;-, = c &-16NR@ 
BE0 

Rhe2 = c eN-20N-18NRe 
BE0 

. . . . . . . . . . . 
R,’ = c 8,8, . . . gN-lgNRB. 

BE0 
(46) 

We claim that R E RtN-’ is achievable if the rate point 
(Rl’,R2’, . . . ,RN’) E W . The sufficient condition just de- 
scribed is also necessary if W  is the capacity region % ’ for 
the one-to-one case, as we have conjectured. 

A simple proof of this fact can be found in [6] and can be 
summarized as follows. 

User N has to receive the information of all sources 
such that 0, = 1. Because of the degraded structure of the 
channel, the additional information to be sent to user 
j is the output of the sources intended for user j 
(ej = l), and which have not yet been encoded for a user 
with a channel of lower capacity (0, = 0, k > ,i). This leads 
to the expression 

Rj’ = C ejQj+lQj+z.. . BNRB. (47) 
BE0 

A superposition code is then used to encode the informa- 
tion just described, with rates RN’,Rj,,-l,* * *,R1’, on the 
successive levels of satellization. The proof of the converse 
(assuming that W  = % ‘) is by contradiction. It is shown that 
if it is possible to achieve some rate point R E R2N-1 such 
that the rate point defined in (46) does not lie in %, it is also 
possible to achieve this rate point in a one-to-one com- 
munication problem, which is impossible. 

P3 = PlPZ + PlP2 P Pl * P2. (48) 

The results of Sections III and IV are now applicable. 
For the case shown in Fig. 14, we have 

Z(B; C 1  A) = ZZ(C 1  A) - H(C 1  B, A) 

= %(a * P> - mP>, (49) 

where T?(P) has the usual definition 

Z(P) = -P l%, P - FJ log, P. (50) 

Referring to the BSBC of Fig. 15, the set of achievable 
rates has a boundary surface given by 

RN = 1 - =%(ql * q2 *“‘* qN-1 *PN) 

RN-, = x7(& * qz *“‘* qN-1 *PN-I) 

- s(q1 * q2 * - ” * qN-2 “PN-1) 
. . . . . . . . . . . . 

R2 = z(ql * 92  * PZ) - x(q, * ~2) 

RI = =Wzl *PI) - I, (51) 

where ql,q2; * ‘&N-l are parameters allowed to vary 
between 0 and 3. 

In addition to the one-to-one case, ,there is another 
particular case of special interest: R, > 0 if and only if 8  is 

An alternate notation for the Rj is given by 

Rj = x(rj * pj) - &‘(rj- I * pj), 

of the form (l,l,. . .,l,O,O, * * .,O). This means that we have 
only N sources of rate greater than 0, and that the informa- 
tion intended for a given user is also intended for all users 
with better channels. We  shall have a situation like this 
when we wish to transmit the same information with differ- 
ent degrees of refinement to different users through a 
degraded broadcast channel. One could conceivably 
factor the source into subsources representing the different 
degrees of refinement, with the Nth source representing the 
coarsest information. User k would then receive arbitrarily 
well the output of sources S1l...lo...o,~~~,S1ll...ll 
(all sources with 8, = 1). 

In his treatment of the binary symmetric broadcast 
channel with two components, Cover originally established 
the set of rates for this interpretation. 

V. BINARY SYMMETRIC BROADCAST CHANNELS (BSBC) 

A. Many Components-General  Case 
There exists a linear ordering on the set of binary sym- 

metric channels (BSC), in the sense that of two BSC’s, one 
channel can always be represented as a degraded version 
of the other one. Moreover, from symmetry considerations, 
it should be clear that the artificial channels have also to be 
symmetric to generate points on the boundary of the set 
of achievable rates, and that the initial qN(xN) should be 
(a,+). This leaves us with N - 1  scalar parameters to 
describe the boundary surface in R,N. 

The BSC resulting from the cascade of two BSC’s with 
parameters pl and p2 has a parameter 

- - 

(52) 
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Fig. 14. Cascade of two BSC’s. 

-A,-1 
-A.,- 

AN  I 

Ak : ,ok = P, l d2*d3* dk 

Fig. 15. Binary symmetric broadcast channel with the artificial 
channels for random coding. 

where 

0 = r. 5 rl < r2 5 ’ ’ ’ < rN- 1 < rN = 3. (53) 

The two notations are clearly equivalent for corresponding 
values of the qj and rj, i.e., for rj+r = rj * qj+r. 

The point Ri = (O,O,. * * ,O,Ci,O,. * * ,O) (transmission at 
capacity Ci to user i) is achieved for qi = 3 and qj = 0 
for all j < i; qj, for j > i is of no importance. In the case 
where users with better channels also use the information 
intended for users with worse channels, the same q yield 
R = (C,,C,, . * .,Ci,O,O; . *,O). This is a “maximin” rate 
point for the i best channels. 

B. BSBC With Two Components 
In the case of two BSC’s, we find 

R, = 1 - x(41 *~2) 

RI = *(ql *PI) - I. (54) 

This is Cover’s result when p1 = 0, except for the fact that, 
in the original paper, R, is augmented with R, as discussed 
in Section IV. 

Some quick calculations show that 

dR,i 
4 I (o,cz) = 

(P2 - P2> log2 (P2/P2> 

(Pl - Pl) lotit2 (&lPl) 
(55) 

dR, = _ @J.. - P212 

dR (Pl - Pa2 
(56) 

1 (Cl,O) 
The slope in (55) will be zero iffp, is zero, as shown in [l]. 

It is possible to show that, for allp, andp,, the slopes in (55) 
and (56) are such that the boundary of the capacity region 
dominates the time-sharing line (Fig. 16). 

Finally, an accurate (R,,R,) curve is given in Fig. 17. The 
variable E is defined by 

(57) 

and is zero on the time-sharing line. The linear upper bound 
discussed in Section IV is also shown. 

c2 22. 
dR1 cot,, ‘- h$. 

+4@QG 
dRp 

dR1 (C,‘O) 

RI I 9 

Fig. 16. Slopes of the boundary of the set of achievable rates at the 
points (O,C,) and (C,,O). 

1.0 

0.6 

CHANNEL P, = 0.0000 
c, = 1.0000 

CHANNEL Pz= 0.0600 
cp= 0.5978 

0.6 

R2 

0.4 

0.2 r 

0.0 0.2 0.4 0.6 0.6 1.0 
RI 

Fig. 17. Set of achievable rates for p, = 0.00 and pz = 0.08. 

VI. CONCLUSIONS 

In this paper, we have described a (random) coding 
scheme and the associated decoding method for the class of 
degraded broadcast channels. Sufficient conditions for 
arbitrarily reliable simultaneous communication have been 
found, which, if proven necessary, will characterize the 
capacity region for this class of channels. 
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Theorem 1 
If 

then 

APPENDIX A 

R, = Zq&'; Z) - 2~ 

R, = Zq,&'; Y I Or) - 2.5 (Al) 

l im Pcm) = 0, e m  = 1,2,3,4 642) n-too 
and hence 

lim ji = 0. 
n-02 
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I) m  = I: Wehave 

F= e j&g k$l x1 PeTkJ) 

= .gn Pz(Z ( Xkl) d(“i,z) 

=  E[d(u,z)] =  Pr [d(u,z) = 11 

W ith Rz = Zqlq2(U; Z) - 2.5 (A3) becomes 

p,(1) = Pr [ZqIq2(u;z) 5  Zq,q2(U; Z) - E]. (A4) 

Since Z,,,,(u;z) is the sum of independent finite mean random 
variables, then, by the law of large numbers, we have 

lim PT= 0. e  n-m 
(A3 

2) m  = 2: 

pczr= 1 e M,M, k$l ig P,‘% i) 

= =l=,. j$ PZ(z I xki)(l - d&d). 

J=l 

W) 

Now, because the cloud centers have been generated indepen- 
dently, for i + j, the random variablep,(z 1 xki) is independent of 
the random variable (1 - d(u,,z)), and we can write 

p,T”i = c 2 P2(Z 1 Xkj) (1 - d(rc,,z)). 
zeW j#i 

j=l 
(A7) 

Now, in (A7) we have 

Pz(Z I xki) = .gdn ITdn q2(U)q,(X I U)P,(Z I XI 

= P(Z). (‘48) 

Hence, (A6) becomes 

p,(2)= Z” ,g P(Z) IId” Zd” q2Wq1(x I M l - 4u,z)) 
j=l 

= CM2 - 1) c c q2(4P(z). 
Zci9” *es(z) 

W ’) 

In the last step, we have summed over the x and restricted the 
sum over the u to S(z), since 1 - d(u,z) is 0, iff u  $ S(z). But, 
whenever u E S(z) 

zq,q2(u.z) = 1 log , 2 
&lu) > R2 + zqld”;z) 

n  P(Z) 2 

or 

p(z) < p(z 1 u)2-n(R2+14142(U;Z)/2). (AlO) 

Consequently, 

p  < (M, - 1) 2  c q2(u)p(z ( U)2-n(RZ+I,‘q,(“;z)‘2) 
z El” “ES(Z) 

< M22-n(R2+r,1,2(U;Z)/2) 
&” “I& h(U)P(Z I u) 

< 2-nCB2-(R2-I,,,,(U;Z)/2)~ 
E” Ed” q2b)Pk I u) 

Hence, for all positive E, 

lim P- = 0. I? n-Pa, 

3) m = 3: 

(All) 

6412) 

pJ= e  & k$ i$ p:3’(kJ.) 

= yLnPl(y 1 xki) d(xki> Y 1 %) 

= .L” Z” y&” q,(u)q,(x I U)Pl(Y I xl 4x, Y I u) 

= E[d(x,y(u)] = Pr [d(x,ylu) = 11 

RI + Zq,q2(X; Y I W  
2 I* 

(A13) 

W ith R, = Zq,q3(X; Y ) U) - 28, we can again apply the law of 
large numbers and conclude that 

lim PT = 0. 
n+m 

W4)  

4) m = 4: 

Ml 
= y;Bn l;k Plb 1 -% (1 - db,,, y 1 ub). (Al% 

I#1 

Now, conditioned on ul, the random variables p(y 1 xki) and 
(1 - d(x,,, y I Us)) are independent for k # 1. We  now use the fact 
that, if A and B are two random variables conditionally inde- 
pendent given a third random variable C, we can write 

E[AB] = E[E[AB ) C]] =  E[E[A ] C]E[B ) C]]. 
Hence, in (A15) 

Pl(Y I Xkl)(l - 4% Y I 4)) 

=z .,c,” q2w [.g” q1(x I U)Pl(Y I x)-J 

* [,& 91(x 1 u)(l - d(x, y I u))l . (A16) 
. L- -  --- J  
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Now, in (A16), we can write 

.Fd” 91(x I dPl(Y I x) = P(Y Id 

no matter how small the q-vector is. We use the shorthand 
notation 

(Al7) 
a < b cf u j  < hj, IljlN. 

Substitution of (A17) in (A16), and of (A16) in (A15) yields Then, there exists a code of length n, to which positive prob- 

p7 = (Ml - 1) c c q2(ulP(Y I4 J, “)YI(T I 4 
ability is assigned by the random coding procedure, and such 
that y&l” UE&P 

B < w. (B3) 
= (Ml - 1) c c c cl,(UlP(Y I rc)q,(x 14. ysew uE&u”XET(y 1 u) This is a well-known fact and it can easily be proved. Indeed, 

(A18) let 

In (A18), we have restricted the summation over x to T(y I u), 
since (1 - d(x, y I u)) is zero outside this set. But, whenever 
x E T(y 1 u), we have 

Qj p Pr [{codes}: ,u~ 2 NV]. 

Then, from (B2) and (B4), 

II > pj 2 Qj*Nq 

(B4) 

p(u 1 u) < pl(y 1 x)2-n(R1+I,,,,(X;YI”)/2). 

Thus (A18) becomes 

P- < iL4,2- ,&RI+L&X;YIU)/~) 
e 

or 

Consequently 

1 Qj<-. 
N (B5) 

‘,.c,. “EC,” ,,I& q2(+1(x 1 U)Pl(Y 1 x) Pr [{codes}: p < NV] 2 1 - 2 Pr [{codes): pj 2 NV] 
j=1 

And 

I 2-n(l,,,,(X;YIU)-R1/2) 

= l- $Qj>O Gw 
‘,E “L” =Z” qzWq1(x I 4PlCY I 4 j=1 

and there exists at least one code such that (B3) is satisfied. 
= 2--ne. (A19) Since q can be made arbitrarily small (if there is not bound on n), 

we have proved the lemma. 

lim PT = 0. 
n-rm 

We finally prove the following theorem. 
6420) Theorem 2: If there exists a sequence of random codes such 

that 
5) Conclusion: Collecting (23), (32), and (A2) we conclude that - 

lim p 00 = 0 
II’03 

lim J = 0. 
n-+400 then there exists a sequence of codes of identical rates such that 

APPENDIX B a@) + 0, asn-+ co. 

In this appendix, we complete the proof of the coding theorem 
by showing that there exists a sequence of broadcast codes such 
that the maximum probability of error goes to the zero vector 
as n -+ co. The proof is not restricted to degraded broadcast 
channels, since no assumption is made about the channel itself. 
We shall need the following lemma, in which we assume that 
there exists a random coding scheme such that the expected 
arithmetic average probability of error goes to zero when the 
block length of the code is allowed to increase without bound. 
The existence of such a sequence of codes is proved in 
Appendix A. 

Lemma: If there exists a sequence of random codes such that 

Proof: The notation used in this proof was introduced in 
Section II. We consider a code such that (B3) is satisfied. The 
existence of such a code is guaranteed by the lemma. 

For that code, consider 

ScN) A {i. A(i) < 2NN2q} - . (B7) 
with 

S(N) A IS’N’I. 

We claim that 

S(N) > j&$. 038) 

lim Pm = 0 Let 9 *+co Tj p {i: A,(i) 2 2NN2q} W) 
then there exists a sequence of codes of identical rates, such that with ti 4 IT, I. We have, from (B3) and (B9) 

Proof: If 

I((“) + 0, asn-t co. 

lim p = 0, 
n-m 

W) NT,I > $ ,CI A,(i) 2 & tj2NN2q 
E 

or 
M 

tj < -. 
N*2N 

@lo) 

there exists an n for which 

p < 1 = (%a,* * *A 

Since 

032) 1 = ScN’ u Tl v T2 u . - . U TN (Bll) 
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and 

we have 
ScN’ n  Tj =  Qj 

indices like this, we shall end up with the set ScN) described 
(B12) previously, and defined in (B7). Consequently, we have separated 

a subset ScN) of I, such that the code words with indices i E ScN) all 
satisfy 

dN) z M - f tj >  M - N $  
j=l Let 

A(i) <  2NN2q.  6318) 

or 

S(N) > M  ‘$ . 
z* = zl* x z2* x . . . x IN*, (BW 

(B13) where 
L 

We now consider “shortened” i-vectors. Let zj* c  zj and lzj*l = s. 
L 

ick) A (il,i2,. . * ,ik), zzz k = l,...,N - 1. (B14) From the above considerations, it should be clear that there 
We  define S(k-l) recursively as follows. Let S(k-‘) be the set is a  one-to-one mapping 4 from Z* into StN) 

of ickml) having the property that, for each ick-‘) in Sk-‘), there 
are at least (M,/2) choices of ik yielding an ick) in Sk). The set 

4: z* + S(N). W I) 

ScN) has been defined previously. The size of Sk) will be denoted 
Let 

sck). We  shall show that 
{x(i): i E I} W2) 

#O > y * fjl Mj. 

be a code satisfying (B3). We  have shown that such a code 

(Bl5) exists. Then, the code 

{x( d(i)) : i E Z* } W3) 
The proof is by induction. We  have already shown that (B15) 

holds for k = N. Assume now that the size sck) of Sk) satisfies is a code satisfying (B18). The rate point R* of this code is 

(B15). By definition, if ick-” E S(k-l), there are between given by 

(Mk/2) and Mk choices of ik which we can append to i(‘-‘) to 
yield an ick’ in Sk) The number of those ickel) . is s(~-‘). On the 
other hand ifi”‘-‘) $ S(k-‘), there are less than (M,/2) choices of 
ik with the game property. The number of ick-‘) not in Sk-‘) is 
clearly 

k-l 

pl Mj - s(~-‘). @16) 

Hence, we find 

sck-l)Mk + [x Mj - s(‘+] $  >  sck) >  yfi M, 

or 

Rk* = ! log, 9  =  R, - 1, k =  I,... J’ VW 
n  n  

and can be made arbitrarily close to R when n  -+ co. 
In conclusion, we have proved the existence of a  code such 

that the maximum probability of error is bounded by an arbi- 
trarily small number 2NN2g for all component channels simul- 
taneously. Letting n  --t cc, we can make q arbitrarily small, and 
bound 1 down to 0. 

The condition for existence of a  sequence of codes with 
maximum probability of error going to zero when n  -+ co is the 
same as the condition for existence of a  sequence of random codes 
with expected arithmetic average probability of error going to 
zero, by (B24). 

or 

As mentioned before, the proof of the theorem does not rely 
on the fact that the broadcast channel is degraded. Hence, it 
may be said that, for any broadcast channel, sufficient condi- 

s(k-l) > ‘s x Mj. 
tions on the rates for the existence of a  random coding theorem 

(B17) are also sufficient conditions to guarantee the achievability of 
these rates, in the sense of maximum probability of error. 

This recursive property, together with (B13) proves (B15) in REFERENCES 
general. In particular, [l] T. M. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory,  

p > 21-1. 
21 

Ml=?. 
vol. IT-18, pp. 2-14, Jan. 1972. 

[2] C. E. Shannon, “A note on a partial ordering for communication 
channels,” Inform. Contr., vol. 1, pp. 390-397, 1958. 

[3] R. G. Gallager, Information Theory and  Reliable Communicat ion. 
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