
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 5, SEPTEMBER 1987 711 

IV. CONCLUSION 

The capacity region of the class of discrete interference chan- 
nels with strong interference has been established. This class 
includes two classes of interference channels for which capacity 
regions were separately obtained. They are 

a) channels with statistically equivalent outputs [2], [4], [5]; 
b) the class of channels with very strong interference, i.e., 

those for which Z(X,; Yi]X,) 5 Z(X,; Ys) and Z(X,; Y,]X,) 
I Z( X,; Y,) for all product probability distributions on the 
inputs [6], [7]. 
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APPENDIX 
PROOF OF THE LEMMA 

First we note that the hypothesis implies Z(X,; Y,]X,, U) I 
Z(X,;Y,IX,,U), where U-+(X,,X,)-,(Y,,Y,) and X,-U+ 
X, form Markov chains. Define Yn-l = (Y,, Y,; . -, T-i). Then 
we have 

Z(X1; Y,l&) - Z(X,; Y,IXd 
= z( Xl) y;-11x*) +.z( x1; Y,,lX, ) Y;-1) 

- Z(X1; r,,lX,)- +I; y;-llx,,y,,) 

=z(x,,r,,;y;I-‘Ix,)+z(x,;y,,Ix,,Y~-’) 

-Z(X,,Y;-‘;y,nlX~)-Z(X~;Y;-lIX~,y,,). (Al) 
This follows from the fact that Yl, + (Xl, X,) + YT-’ forms a 

Markov chain. Using the chain rule, we find 

Z(X1; Y,lX,) - z(x1; Y,IXd 
= z( Y,,; Y;-‘IX,) + z( x;-1; Y;-l(xz, Y,,) 

+~(x,“;~;l-11~,,y,~,~;-1)+~(~,;yz,l~*,~2”-1) 
+ z( x7-1; Yzn(X2, y;-1, x1,) - z( Y;-1; Y,,IX*) 

-z(x,,,;r,,lX*,Y~-l)-z(X;-‘;Y,,IX,,Y,”-l,Xl,) 
-z(x;l-l;Y;-lIX,,Y,,)-z(Xl,;Y;-lIX*,Yl,,X;-l) 

(A3 
The 3rd, 5th, 8th, and 10th terms of the right-hand side above 

are null, due to the memorylessness of the channel. Therefore, 

~(X,~Y,lX*)-~(X,~Y,IX*) 
=~(x,,,;r,,,lx*,Y;‘-‘)-~(Xl,,;Y,,~IX,,Y;’-’) 

+ z( xi’-‘; y;‘-‘IX*, Y,,,) - z( XT-‘; y;‘-‘IX*, Y,,). 

(A31 

Now, since 

form Markov chains, it follows by induction that 

VI 

PI 

[31 

[41 

[51 

161 

[71 

H. Sam, “The capacity of the Gaussian interference channel under strong 
interference,” IEEE Trms. Inform. Theory, vol. IT-27, pp. 786-788. Nov. 
19x1. 
R. Ahlswede, “The capacity region of a channel with two senders and 
two receivers,” Ann. Prolmh., vol. 2, pp. 805-814, Oct. 1974. 
J. Khmer and K. Marton, “Comparison of two noisy channels” (Propo- 
sition l), in Topics in Information Theory, I. Csiszlr and P. Elias, Eds. 
Amsterdam, The Netherlands: North Holland, 1977, Colloquia Mathe- 
matica Societatis JBnos Bolyai, no. 16, pp. 411-423. 
A. B. Carleial, “On the capacity of multiple-terminal communication 
networks,” Information Systems Lab., Stanford Univ., Stanford, CA, 
Tech. Rep. 6603-1, Aug. 1975. 
H. &to, “Two-user communication channels,” IEEE Truns. Injorm. 
Theqv, vol. IT-23, pp. 295-304, May 1977. 

“On the capacity region of a discrete two-user channel for strong 
interference,” IEEE Trcms. Inform. Theory, vol. IT-24, pp. 377-379, May 
1978. 
H. Sam and M. Tanabe, “A discrete two-user channel with strong 
interference.” Trans. Inst. Electron. Commun. Eng. Japm, vol. 61, pp. 
8X0-884, Nov. 1978. 

Feedback Can at Most Double Gaussian Multiple 
Access Channel Capacity 

JOYATHOMAS 

Abstract-The converse for the discrete memoryless multiple access 
channel is generalized and is used to derive strong hounds on the total 
capacity (sum of the rates of all the senders) of an m-user Gaussian 
multiple access channel in terms of the input covariance matrix. These 
hounds are used to show that the total capacity of the channel with 
feedback is less than twice the total capacity without feedback. The 
converse for the general multiple access channel is also used to show that 
for any m-user multiple access channel, feedback cannot increase the total 
capacity by more than a factor of m  . 

I. INTRODUCTION 

The simplest communication situation is when we have a single 
sender trying to send information to a single receiver. In many 
practical situations, however, we have two-way links-the re- 
ceiver can also send back information to the sender (for example, 
telephone links). Although feedback is very common in practical 
channels, it is still only imperfectly understood and a large 
number of problems remain open on the capacity of channels 
with feedback. In this report, we establish bounds relating this 
capacity to the capacity without feedback for a class of multiple 
access channels. Our objective is to show that feedback cannot 
help very much in increasing the capacity of many practical 
channels. 

The most important and rather surprising result in this area is 
due to Shannon [l], who established that feedback cannot in- 
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crease the capacity of single-user discrete memoryless channels. 
This was later extended to continuous channels by Kadota, 
Zakai, and Ziv [2]. Dobrushin [3] gave examples of channels 
where feedback does indeed increase channel capacity. Various 
people have proposed schemes to use feedback to devise better 
codes for memoryless channels; an important example is the 
Kailath-Schalkwijk [4] scheme for the additive white Gaussian 
channel which achieves a doubly exponential decay of error 
probability with blocklength. The capacity of Gaussian colored 
noise channels with feedback is not known; however, Ebert [5] 
and Pombra and Cover [6] have derived bounds on the capacity 
increase with feedback. In particular, they have shown that for 
any Gaussian colored noise channel, feedback does not increase 
the capacity by more than a factor of two. 

In situations like satellite communication, we have many 
senders trying to communicate to a single receiver-a multiple 
access channel. Unlike the case of the simple discrete memoryless 
channel, feedback in the multiple access channel can increase 
total capacity even when the channel is memoryless. This is 
because feedback would enable the senders to cooperate with 
each other to a greater extent than is possible without feedback. 
This was first demonstrated by Gaarder and Wolf [7]. Cover and 
Leung [8] proved an achievable rate region for the multiple access 
channel with feedback. Later, Willems [9] proved that the 
Cover-Leung region is indeed that capacity region for a certain 
class of channels including the binary adder channel. Ozarow [lo] 
has found the capacity region for the two-user Gaussian multiple 
access channel, using a modification of the Kailath-Schalkwijk 
scheme for simple Gaussian channels. However, his method does 
not generalize easily to three or more users. The problem of 
determining the capacity region for a multiple access channel 
with feedback still remains open. 

In this correspondence, we shall prove bounds on the capacity 
increase with feedback for multiple access channels. As we shall 
show in Section II, feedback does not increase the maximum rate 
of any individual sender; it only helps the senders to cooperate 
and keep out of each other’s way. Hence the only increase will be 
in the sum of the rates. Throughout this correspondence, we will 
use the total capacity of the multiple access channel to mean the 
maximum achievable sum of rates of all the senders. 

II. GENERAL CONVERSE FOR MULTIPLE ACCESS 
CHANNELS 

In this section we will extend the converse due to Ozarow [lo] 
and Gaarder and Wolf [7] to the m-user case and use it to show 
that total capacity cannot be increased by a factor of more than 
m by feedback. 

The general multiple access channel is characterized by an 
input alphabet (%i x 5& x . . . x ?&,), a probability transition 
matrix p(y]x,, x2,.. ., x,), and an output alphabet (g). (See 
Fig. 1.) 

Fig. 1. Multiple access channel. 

To simplify notation, let S denote any arbitrary subset of 
{1,2,. . ., m} and let S denote its complement. Let X, denote the 
set {X,: j E S} (for example, if S= {1,3}, then X, = {Xi, X,}). 
Let W,, W,; . ., W,, denote the input messages, each I%$ uniformly 
distributed in (1,2”R~) and independent of the other messages. 
Let II$y denote the set { I$: j E S}. Since we have feedback, the 
input symbol X,i of sender j at time i is a function of the 
message at that sender y and the past values of the output, 
K,Y2,...,Kl. 

Consider any {2”Rl,2”R2,. . .,2nRm, n, Pi”)} code for the 
multiple access channel with feedback. Then by using Fano’s 
inequality, we find 

c nRj=H(Ws) 
jES 

(a) 
5 Z( JVy; Y”) + nc,, 

=H(W,)-H(W,IY”)+nr,, 

‘~H(w,Iw~)-H(w,(Y”,w~)+~~,, 

= Z( W,; Y’IWg) + nc, 

2 Cz( w,; ly-l, WC) + nc, 

(~~z(ws,xs,;~,Y’-l,w~,x~j)+nr, 

(e) 
5 CZ( Xsj; XIX?,) + nc,,. 

(1) 

(4 
(3) 
(4) 
(5) 
(6) 

(7) 

(8) 

(a) follows from Fano’s inequality (c, --) 0 as P,‘“) + 0). (b) is 
true because W, and Ws are independent. (c) is the chain 
rule and we get (d) from the fact that Xsi = f( W,, Yi-l) and 
XL? = g( Ws, Y-l). Finally, since the channel is memoryless, 
(Y’-‘, W,,kQ) + (X,,,Xc,) -Y forms a Markov chain and 
hence we get inequality (e). 

All the mutual informations in (8) are concave functions of the 
per-letter joint probability distribution p (xi, x2,. . . , xm). Hence 
by Jensen’s inequality, the average of these mutual informations 
over time 1 to n is less than the mutual information evaluated at 
the average of the probability distributions. Hence after dividing 
by n and letting n + cc, we have the desired converse 

forsomejointdistributionp(x,,x,,...,x,,)p(ylx,,x2,...,x,), 
for all subsets S. A similar converse can be derived for an 
arbitrary network of nodes connected by memoryless channels. 
Since we have not placed any restrictions on the joint distribu- 
tion, the converse is not tight in general. The basic problem in 
determining multiple access channel capacity with feedback is to 
find the class of joint distributions achievable using feedback. 

The capacity of a discrete memoryless multiple access channel 
without feedback was first determined by Ahlswede [ll] and Liao 
[12]. It corresponds to the convex closure of regions bounded by 
(9) for arbitrary input product distributions p (x,)p ( x2) . . . 

P(%,)P(Ybl, X2,‘. .? x,,). A related result was derived by Han 
[13] for a general multiple access network with correlated sources. 

We will derive a few simple consequences of this converse. We 
will first show that feedback cannot increase the maximum 
individual rates of any of the senders. We will illustrate it for the 
case m  = 2. Let R,3f,m be the maximum achievable rate with 
feedback from sender 1 to the receiver. Let R,,nf,m be the 
corresponding rate without feedback. From the converse for the 
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channel with feedback, we get 

=p(~~*)CPtX2=XZ)ztXI~Yl~2=X*) (11) 
’ x2 

5 max maxZ(X,;Y]X,=x,) (12) 
P(Xl>%) x2 

= ma Z(4;Ylh) g RI,,,,,, P(Xl)P(XZ) (13) 

since the maximum is achieved by a degenerate product distribu- 
tion obtained by setting X2 to the value that best opens up the 
channel between Xi and Y. Hence the maximum rate from Xi to 
Y is not increased by feedback. This can be easily justified by the 
fact that since X2 does not get any better look at X1 than does Y, 
he cannot help any better than by keeping quiet. We  can simi- 
larly define R,. ,lf, n, as the maximum rate of transmission from 
x, to Y. 

We  will now use a simple geometric argument to show that 
feedback cannot increase the total capacity of any m-user multi- 
ple access channel by more than a factor of m. The capacity 
regions for the case m = 2 are illustrated in Fig. 2. Ahlswede’s 
results imply that the rate pairs ( RI,~,,~,O) and (0, R,,xf,m) 
(points A and B in Fig. 2) are achievable without feedback. By 
time-sharing, one can achieve all points on the line joining A 
to B. 

Ca 
P 

acity without Feedback 

R - 2,n/.m 
Capacity with Fecdback 

C 

Fig. i. Capacity region for two user multiple access channel.  

W ith feedback, the converse implies that the individual rates 
are less than RI,,,~,~ and R2,nl,m, respectively. Therefore the 
capacity region with feedback lies within the rectangle defined by 
the points A, B, and 0. The maximum sum of rates within this 
rectangle is at C, which is less than twice the sum of the rates at 
D, the midpoint of the main diagonal. Since D is achievable 
without feedback, the maximum achievable sum of rates with 
feedback is less than twice the maximum achievable sum of rates 
without feedback. 

One can easily generalize this argument to m-users to obtain a 
factor of m as the bound on the increase in total capacity using 
feedback. 

III. GAUSSIAN MULTIPLE ACCESS CHANNELS 

There are m senders Xi, X,; . . , X, all sending to the single 
receiver Y. The received signal at the time i is 

m  
q= c xii+z, (14 

j=l 

where the Z, are a sequence of independent identically dis- 

Fig. 3. Gaussian multiple access channel.  

tributed, zero-mean Gaussian noise variables with variance N 
(see Fig. 3). We  will initially assume that there is the same power 
constraint P on all the senders; that is, for all senders and 
messages, we must have 

(15) 

We will later generalize to the case of unequal powers. 
The capacity of the Gaussian multiple access channel without 

feedback was first found by Cover [14] and Wyner [15]. For the 
m-user case with equal powers, the maximum achievable sum of 
rates T is 

(16) 

where 

c(x) +og(l+x). (17) 

Note that the total capacity with complete cooperation is 
C(m2P/N), which could be much larger than C(mP/N). The 
main objective of this report is to show that even with feedback, 
the Gaussian multiple access channel cannot attain the cooper- 
ative bound in general. 

Ozarow has determined the feedback capacity region for the 
two-user case, using a very interesting modification of the 
Kailath-Schalkwijk scheme. His expression for the capacity re- 
gion in the case of equal powers is 

TsC(Z(l+&) 

for all 0  5 p I 1. It is interesting to note that Ozarow’s scheme 
achieves the same capacity region as. would be obtained by 
allowing all possible joint distributions in (9)-the converse is 
tight in this case. 

IV. FACTOR OF Two BOUND 

We will first extend the converse of Section II to the Gaussian 
case. We  will use a simple lemma. 

Lemma I: Let X,, X2,.. *, X, be an arbitrary set of zero-mean 
random variables with covariance matrix K. Let S be any subset 
of {1,2;. .) k } and S be its complement. Then 

h( x,1x,) I h( x,*1x,*) (20) 

where (XT, Xf; . . , X,*) - N(0, K). 

Proof: We use the nonnegativity of the conditional Kull- 
back-Liebler distance 

P(XlY) 
~tP(-4Y)llqtxlY)) psP(X,Yh qo  . 

i i 
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- fX~,X~~~,~~~~~~~(fx,‘,X~~~Sl~S~) s (23) 

= - h( X,lXs) + h( X,*(Xs*) (24 

where (a) is true because log(&,xr(xslx~)) is a quadratic form 
in K. The proof of the lemma is cdmplete. 

Starting from the general converse and using the fact that for a 
power-limited Gaussian channel, all the differential entropies are 
finite, we get 

c R,, 5 I( Xs; YK,) (25) 
jCS 

=h(YIX$)-h(YIX,.Xg) (26) 
=h(YIXg)-h(Z) (27) 

= h( YlXg) - ; log((2se)N) (28) 

rh(Y*lX;)-klog((2ne)N) (bylemma) (29) 

where X;, X$ are Gaussian random variables with the same 
covariance matnx as X,, Xg. Since this covariance matrix is the 
average of covariance matrices for each time instant, its diagonal 
elements should be less than or equal to P to satisfy the power 
constraint (15). 

Hence, dropping the asterisk for simplicity, we get 
1 

c R, I h( YlXs) - 1 log((2?re)N) 
jES 

(30) 

=~log((21ie)var(YIx~))-;Iog((2m)N) (31) 

(32) 
Now let X=(X,, X,; + ., X,)’ be the vector of inputs. Let K 

be the covariance matrix of X. We shall first show that one of the 
possible values of K that maximizes the total capacity is the 
highly symmetric form 

’ P pP pP .*. pP’ 
PP P pP ... pP 

K= ,oP ,oP P .*- @  (33) . . . . . . . . . . 
pP pP pP ... P, 

where p is the correlation coefficient and - l/( m  - 1) I p I 1. 
This is because of the symmetry of the channel. Let us assume 

that there is some other form of K that maximizes that sum of 
the rates. By appropriately re-labeling the rows and columns of 
K, we have a new covariance matrix which has the same total 
capacity. By time-sharing between the two forms of K, we can 
obtain a more symmetric form. Proceeding in this way, by 
time-sharing between all possible re-labelings of the rows and 

columns of K (corresponding to all possible re-labelings of the 
senders), we can obtain the symmetric form above. Hence, we 
can restrict our attention to this form of K, and we will obtain 
our bounds using it. 

Let e=(l,l,l;.., 1). _Divide the matrix K into submatrices 
corresponding to S and S: 

s 3 

(34) 

where-A includes the rows and columns corresponding to S and 
c to s. 

The variance of Y, given Xs, is 

mr(YIXs> =var(Z)+var(~sqx~). (35) 

Let I/ = Cj E sX, and let P be the least mean square (lms) 
estimate of V, given X,. Then 

Var(VIX~) =Exp3r(YIx~=x~) (36) 

I Ex,Exs,,,( v - 8)” (37) 

= Ims error in estimating I/ from X3 (38) 
= R vv - RVX~R&RX,V 

(see for example [16, p. 111) (39) 

= e( A - BC-‘B’) e. (40) 

Using this bound for the symmetric form of K and all possible 
subsets S, after some algebra we obtain the following bounds on 
the total capacity T = mR: 

TIC m(l+(m--l)p)i 
i 

TI ~C((l-p)(m-l)(l+(m-l)p)~) 

TI 
l+(m-1)p P 

It-p N 

In general, when S has m - I elements, 

TI 

(41) 

(42) 

(43) 

(44) 

(45) 

These bounds have various interesting properties: 

the bounds reduce to Ozarow’s capacity region for m = 2; 
since the first bound is less than C(yP/N) for negative p, 
we can restrict our attention to positive p; 
the first bound is monotonically increasing with p, the last 
one monotonically decreasing with p, and all the others 
first rise to a maximum, then decrease with p falling to 0 
when p =l. 

Since each of these functions is a concave function of p, the 
pointwise minimum is also a concave function and has a unique 
maximum value. 

To prove the factor of two bound for T, we need to use only 
one of the bounds corresponding to I = m/2. We will first 
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illustrate it in the case of even m. that S(., .,. . ., .) is a concave function. Hence by the properties 

l+(m-1)p P 
of symmetric concave functions [17, p. 1041, we have 

(l-~)(m-l) l+(l-l>p F 
S(P,,P*,..., 

On differentiating and setting to 0, we find that the value of p 
that maximizes T,(p) is 1 

+-s(p,,p,,..~,p,,,p,) 
I(m-l)(m-1) -(m-l) m 

PC = (m-l)(l-1) (47) 1 + . . . +-qp,,,p,,~~~,p,-,) (59) 
Substituting this value of p, and using m = 21, we get 

5s (60) 
T_<2C (48) 

=S(P,P;..,P) (61) 
But since 

(result for equal powers) (62) 

=2s,,,(4,~2,-9,). (63) 

we find 

Hence, even with different powers at the different transmitters, 
(50) the total capacity with feedback is less than twice the total 

capacity without feedback. 
(51) 

VI. CONCLUSION 

T<2C(21$) =2C(mi) =2qr. 
We have shown that the total capacity of any multiple access 

(52) channel with white Gaussian noise can at most be doubled using 
feedback. Though we have not said anything about achievability, 

We proceed in the same manner for odd m. In this case we use one would suspect that there exists a generalization of Ozarow’s 
m = 21+ 1. Substituting pc and m = 21+ 1, we get method or some other method that would show that the bounds 

derived in this renort are achievable. 

Now 

We have also shown that feedback does not help by more than 
(53) a factor of m for any m-user multiple access channel. This result 

is weak, and we conjecture that feedback does not help by more 
than a factor of two even for the general multiple access channel. 

(54) 
if 

213-312+1>0. (55) 
But (55) is true for all positive 1 because the minimum of the left 
side for positive 1 is 0 occurring at I= 1. Hence 

T<GC(2l+IG) <2C(mi) =2T,,. (56) 

We have thus proved that the total capacity can at most be 
doubled using feedback for both odd and even m. 

V. CASEOFUNEQUALPOWERS 
So far we have been dealing only with the case when all the 

transmitters have the same power constraints. Now let us assume 
that the powers are Pi, P2; . . , P,,,. 

1) Without feedback: The dominating constraint on the sum of 
the rates is 

T<C 
PI + Pz + . . . + P,, 

N  1. 
Defining P = (l/m)C Pj, then 

TIC rns . 
i 1 

(58) 

2) With feedback: Let S(P,, P2; . ., P,,,) be the total capacity 
with feedback. By the symmetry of the problem, S is a symmetric 
function of its arguments. By time-sharing, we can easily show 
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Reliable Transmission of Two Correlated Sources 
over an Asymmetric Multiple-Access Channel 

KRISTIEN DE BRUYN, VYACHESLAV V. PRELOV, AND 
EDWARD C. VAN DER MEULEN, SENIOR MEMBER, IEEE 

Ahsfract -Necessary and sufficient conditions are derived for the trans- 
mission of two arbitrarily correlated sources over a discrete memoryless 
asymmetric multiple-access channel. It is shown that in this situation the 
classical separation principle of Shannon (the factorization of the joint 
source-channel transmission problem into separate source and channel 
coding problems) applies. Tbis asymmetric case is the first non-trivial 
situation of a multiple-access channel with arbitrarily correlated sources in 
which the sufficient conditions found for the reliable transmission of the 
sources over the channel turn out to be necessary as well. Furthermore, it 
is demonstrated that these necessary and sufficient conditions continue to 
hold if feedback is available to one or both of the encoders. 

I. INTRODUCTION 

The discrete memoryless (dm) asymmetric multiple-access 
channel (AMAC) with two encoders is a “two-sender one- 
receiver” multiple-access communication situation whereby the 
messages of one source are encoded by both encoders, whereas 
the messages of another source are encoded by only one of the 
encoders. The dm AMAC with independent sources (shown in 
Fig. 1) was first explicitly considered by Haroutunian [l], who 
gave an expression for its capacity region and formulated an 
exponential lower bound on the error probability, which he 
proved to coincide with the exponential upper bound derived 
from [2] for rate pairs in a critical domain within the capacity 
region. Bassalygo et al. [3] showed that for a deterministic dm 
AMAC with independent sources, the ordinary (average-error) 
and the zero-error capacity region coincide. 

Subsequently, Prelov [4]-[6] proved for a dm AMAC with 
independent sources that 1) feedback cannot increase the capacity 
region and 2) in the deterministic case feedback does not increase 
the zero-error capacity region either. The former result was 
established independently by De Bruyn and van der Meulen [7]. 
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Fig. 1. Asymmetric multiple-access channel with independent sources. 

All these results relate to the dm AMAC with independent 
sources. However, in this correspondence we consider arbitrarily 
correlated sources transmitted over a dm AMAC, as shown in 
Fig. 2. Recall in this regard that Cover et al. [8] considered the 
problem of sending two arbitrarily correlated sources over a dm 
multiple-access channel (MAC) such that each encoder observes 
just one source output. They [8] provided sufficient conditions 
for reliable transmission in this case and demonstrated that, in 
general, the procedure consisting of factorizing the source-chan- 
nel transmission problem into separate source and channel cod- 
ing problems (called the separation principle in [9]) is not opti- 
mal. 

Fig. 2. Asymmetric multiple-access channel with arbitrarily correlated 
sources. 

By giving a counterexample, Dueck [lo] showed that, in general, 
the Cover-El Gamal-Salehi conditions are not necessary. In fact, 
until now these conditions are known to be optimal only in such 
special cases as when the channel is lossless (Slepian and Wolf 
source coding theorem [ll, case OOll]) or when the sources are 
independent. Ahlswede and Han [9] presented a simpler derivation 
of the coding theorem in [8] by first considering a joint system of 
three correlated sources and a MAC with cross observation at its 
two encoders and establishing a coding theorem for this situation, 
and then specializing to the case of [8]. 

The result we derive here shows that in the situation of an 
arbitrarily correlated source to be transmitted over a dm AMAC, 
necessary and sufficient conditions for reliable transmission do 
exist and, moreover, that these conditions can be established by 
applying the classical separation principle of Shannon. Massey 
[12] pointed out that for the case of a single-output source and a 
single-input channel the separation theorem of information the- 
ory has significant practical implications. 

The separation idea is here carried out by first using a special 
case of the Slepian and Wolf source coding theorem ([ll, case 
01111) and then applying the capacity region result for the dm 
AMAC with independent sources established in [3]. By modifying 
the proof of the converse it is shown that the necessary and 
sufficient conditions for reliable transmission derived here also 
hold when feedback is allowed. 

II. NECESSARY AND SUFFICIENT CONDITIONS FOR 
RELIABLE TRANSMISSION OF TWO ARBITRARILY 

CORRELATED SOURCES OVER A DISCRETE 
MBMORYLESS AMAC 

The capacity region of a dm AMAC, defined by (.!Y x 
9, w(z]x, y),Z) and sources A0 (observed by both encoders) 
and ~.&‘i (seen by the dencoder only) that produce their mes- 
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