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Ergodicity of Markov Channels 
ROBERT M. GRAY, FELLOW, IEEE, MAR1 0. DUNHAM, MEMBER, IEEE, AND R. I. GOBBI 

Abstract -A Markov channel is a discrete information channel that 
includes as special cases the finite state channels and finite state codes of 
information theory. Kieffer and Rahe proved that one-sided and two-sided 
Markov channels have the following property: If the input source to a 
Markov channel is asymptotically mean stationary (AMS), then so is the 
resulting input-output process and hence the ergodic theorem and the 
Shannon-McMillan-Breiman theorem hold for the input-output process. 
Kieffer and Rahe also provided a sufficient condition for any AMS ergodic 
source to yield an AMS ergodic input-output process. New conditions for 
a Markov channel to have this ergodicity property are presented and 
discussed here. Several relations are developed among various classes of 
channels, including weakly ergodic, indecomposable, and strongly mixing 
channels. Some connections between Markov channels and the theory of 
nonhomogeneous Markov chains are also discussed. 

G IVEN AN INFORMATION SOURCE (a discrete- 
time random process) and a noisy channel (essentially 

a regular conditional probability measure describing a 
probability measure on output sequences given an input 
sequence), information about the source can be communi- 
cated to a receiver by first encoding the source sequence 
into a channel input sequence and decoding the channel 
output sequence into a reproduction sequence observed by 
the receiver. Assume that we have some measure of the 
quality of the reproduction sequence, that is, how well it 
approximates the original source sequence. The coding 
theorems of information theory quantify the theoretically 
optimum performance that can be achieved using the given 
source and given channel with any encoder and decoder 
within some constrained class, where “optimum” means 
that the system has the minimum possible average distor- 
tion. The design algorithms of information theory are 
methods for actually designing codes that work well, ideally 
not too badly in comparison with the theoretical optimum. 
The proofs of coding theorems rest primarily 
on the ergodic theorem and on the Shannon-McMillan- 
Breiman theorem. They also generally require that the 
appropriate sample averages converge to constants and 
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hence that the underlying system be ergodic. (The proofs 
for nonergodic systems generally combine the ergodic proof 
with the ergodic decomposition). In addition, proofs of the 
convergence of some code design algorithms based on long 
training sequences of actual data also rest on the ergodic 
theorem. Hence it is of interest to know when communica- 
tion system models satisfy the conditions for an ergodic 
theorem and the Shannon-McMillan-Breiman theorem. 

Stationarity and block stationarity (stationarity of 
successive blocks of fixed size) have long been known to be 
a sufficient condition for these results, but the finite state 
channels and the finite state codes introduced by Shannon 
[14] do not generally meet these conditions. For example, 
if the process begins at time 0 in a particular state, then 
the channel or code may exhibit initial transients and 
hence not be stationary. Partially as a result, coding theo- 
rems for finite state channels have proved difficult, relying 
on the special properties of Markov chains, and the 
stationarity and ergodicity properties of finite state codes 
have been little developed. Gray and Kieffer [6] showed 
that a necessary and sufficient condition for a process to 
have an ergodic theorem is that it be asymptotically mean 
stationary (AMS) and that an AMS process satisfies the 
Shannon-McMillan-Breiman theorem. A channel is said 
to be AMS if connecting an AMS source or input process 
to the channel results in an AMS input-output process. 
Kieffer and Rahe [9] introduced a generalization of both 
finite state channels and finite state codes called a Markov 
channel and showed that such channels are AMS. An 
AMS channel is said to be ergodic if connecting any AMS 
ergodic source to the channel yields an AMS ergodic 
input-output process. Kieffer and Rahe showed that a 
sufficient condition for a Markov channel to be ergodic is 
that it be indecomposable in a sense similar to that of 
Blackwell, Breiman, and Thomasian [2]. Unfortunately, 
however, this condition is too strong for some applications. 
For example, in design studies of finite state codes many 
examples have been found that are not indecomposable, 
yet they appear to yield ergodic processes. 

In this paper we develop and compare several sufficient 
conditions for Markov channels to be ergodic. The prin- 
cipal result focuses on channels whose output forms a 
weakly ergodic nonhomogeneous Markov chain as in 
Hajnal [7]. A superficially similar result was recently ob- 
tained for a very different application-proving exponen- 
tial convergence of adaptive algorithms-by Shi and Kozin 
[15] using results of Furstenberg and Kesten [4] on prod- 
ucts of random sequences of matrices. Additional results 
focus on the relations among weakly ergodic channels and 
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various types of indecomposable channels. Most notably, 
we show that weakly ergodic Markov channels in the sense 
of Hajnal are equivalent to strongly m ixing channels in the 
sense of Adler [l]. 

The  results developed here are easy consequences of 
known results for products of stochastic matrices. This 
paper  provides, however, the first collection and compari- 
son of the numerous ergodicity conditions for Markov 
channels and  for products of stochastic matrices and it 
provides simple and direct proofs of the equivalence of 
many of the conditions. 

PRELIMINARIES 

For convenience we mostly follow the notation of Kieffer 
and  Rahe [9] for the basic definitions. Let (Q, P) be  a  
measurable space and T: Q  + Q  be  a  measurable but not 
necessarily invertible transformation. Following Gray and 
Kieffer [6], we say a  probability measure p  on  (Q, P) is 
asymptotically mean  stationary (AMS) with respect to T  if 
lim ,,,n -‘C;:;P(T-~F) exists for all F  E F. In the special 
case where p(T-‘F) = p(F); for all F  E F, the measure p  
is said to be  stationary with respect to T. p  is ergodic with 
respect to T  if p(F) is 0  or 1  for all invariant F  E F. W e  
will omit the mod ifying phrase “with respect to T  ” when 
the transformation is clear from the context. 

W e  say that a  dynamical system (Q, F, p, T) is AMS, 
stationary, or ergodic if the measure /J on  (Q, F) is. The  
most important properties of AMS measures and systems 
are summarized below for reference. Proofs may be  found 
in Gray and Kieffer [6]. 

Properties of AMS Measures 

F ix a  dynamical system (a, F, p, T). 

1) 

2) 

3) 

4) 

5) 

The  dynamical system is AMS if and  only if there 
exists a  probability measure p  on  (Q, F) that is 
stationary with respect to T  such that p(F) = p(F) 
for every invariant set F  E F. 
The  dynamical system is AMS if there exists a  
probability measure ,C on  (a, F) that is stationary 
with respect to T  such that if F  E F  is invariant and  
F(F) = 0, then also p(F) = 0. 
If T  is invertible (as is the two-sided shift, for 
example), the dynamical system is AMS if and  only 
if there exists a  probability measure ,ii on  (a, F), 
stationary with respect to T, such that p  is abso- 
lutely continuous with respect to F. 
W e  say that the dynamical system (!J, F, p, T) has 
an  (individual) ergodic theorem if for any bounded 
measurable function f: D + ( - co, cc), lim , ~ ,n-’ 
Cy:if T’ exists almost everywhere (a.e.) [p]. A 
dynamical system (!J, F, p, T) has an  ergodic 
theorem if and  only if it is AMS. 
The  Shannon-McMil lan-Breiman theorem holds 
for AMS systems. 

The  fourth and  fifth properties justify the importance of 
asymptotic mean  stationarity: it is a  necessary and suffi- 
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cient condition for the ergodic theorem to hold and  a  
sufficient condition for the Shannon-McMil lan-Breiman 
theorem. 

In information theory, the most important dynamical 
systems are sources and source-channel hookups. These 
systems and cascades of such systems mode l communica- 
tion systems consisting of information sources, coders, and  
noisy channels. Let (A, A) be  a  measurable space which 
can be  thought of as mode ling the output of a  random 
process at one  particular time. W e  wish to consider se- 
quences of such outputs, but we will need to consider both 
one-sided and two-sided sequences. W e  consider the one- 
sided case first. Let (AT, A?) be  the measurable space of 
one-sided sequences from A, that is, the set of all se- 
quences (xi, x2,. . . ) from A and AT is the usual product 
u-field of subsets of AT. Let T  denote the left shift on  AT, 
that is, the measurable map  T: AT + AT defined by 
T(x,, x2, * * * ) = (x,, xg * * * ). A dynamical system 
(AT, A?, p, T) of this form is called a  one-sided source or 
process and is abbreviated to [A, ~1. A is called the 
alphabet of the source. W e  also use the words source or 
process to refer to the discrete-time random process defined 
by the sequence of coordinate random variables on  the 
product space, e.g., { X,; n  = 1,2, . . . } defined by the maps 
X,: AT + A where X,(x) = x, if x = (xi, x2,. . . ). 

W e  define a  two-sided source in a  similar manner:  Let 
Am denote the set of all two-sided sequences drawn from 
A, that is, all sequences of the form-x = {xi}‘?  m , and  let 
A” denote the corresponding product u-field. Let T  again 
denote the shift, now defined by (Tx)~ = xi+i, all i. W e  use 
the same notation for the shift on  different spaces; context 
should make clear what the underlying space is. A one-sided 
or two-sided source [A, ~1 is AMS, stationary, or ergodic if 
the corresponding dynamical system (A?, A,M, /.L, T) (one- 
sided) or (A”, A”, p, T) (two-sided) is. 

Rather than continue separate development for the one- 
sided and two-sided cases, we introduce notation which 
allows us to treat the two simultaneously when convenient. 
G iven a  measurable space (A, A), let (Z,, Z,) denote the 
corresponding one-sided or two-sided sequence space, that 
is, either (AT, AT) or (A”, A”), as appropriate. Let 1  
denote the time  index set; I is {1,2,3, * . . } for the one- 
sided case and all integers for the two-sided case. 

A channel is a  triple [A, v, B] with input alphabet A and 
output alphabet B and a  family of probability measures 
{ vx; x E Z,} on  (Z,, Z,) such that for each F  E 2, the 
map  x + v,(F) is a  measurable map  from (Z,, Z,) into 
[O,l] and  its Bore1 field. A channel is called one-sided or 
two-sided if the sequence spaces are one-sided or two-sided, 
respectively. G iven a  source [A, ~1 and a  channel [A, v, B], 
then the source-channel hookup or input-output process 
pv is the process [A X B, /.Lv] where the measure pv is 
defined by 

P(F) = &#x) & b), FEXAXB, 

where F, = {y E B,“:(x, y) E F}. W e  also denote by T  
the shift on  Z, x Z,, that is, T(x, y) = (TX, Ty). Define 
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for all integers n E I the following coordinate random 
variables: 

then we also use the words input-output process to mean 
the random process {(X,, Y,); n = 1,2, * * . } in the one- 
sided case and {(X,,, Y,); n = . . . , - 1,0,1,2, . . . } in the 
two-sided case. As with any source, an input-output pro- 
cess is stationary, AMS, or ergodic if the corresponding 
dynamical system (2, XB, Z, XB, pv, T) is. 

A channel [A, v, B] is said to be stationary if 

The channel is said to be AMS if for every AMS source 
[A, 1-11, the input-output process is AMS. An AMS channel 
is said to be ergodic if pv is ergodic whenever p is AMS 
and ergodic. Note that an AMS channel v may yield an 
ergodic pv for some AMS ergodic sources and not for 
others. This raises an issue that often occurs when studying 
channels. In some applications it suffices to know that 
given a channel v and a specific AMS ergodic input source 
p, the resulting pair process pv is ergodic. In other cases 
one requires the stronger result that pv will be ergodic for 
all such input sources. For example, information theoretic 
quantities such as the channel capacity can be defined as a 
maximization or minimization over all AMS ergodic 
sources and the proofs of coding theorems require ergodic: 
ity of the input-output process. We will consider both 
types of results here and this will require different types of 
properties of channels: those which hold almost ev- 
erywhere for a particular source, those which hold almost 
everywhere for all sources within some given class (such as 
all stationary sources), and those which hold everywhere. 

The most general known class of AMS channels are the 
Markov channels introduced by Kieffer and Rahe [9]. For 
a fixed positive integer K, let P denote the space of all 
K x K stochastic matrices P = { P(i, j); i, j =1,2; . ., K}. 
Using the Euclidean metric on this space we can construct 
the Bore1 field 9 of subsets of P generated by the open 
sets to form a measurable space (P, 9). This, in turn, gives 
a one-sided or two-sided sequence space (Z,, 2,). 

A map +: 2, + Z, is said to,be stationary if $T = T+. 
Given a sequence P E Z,, let M(P) denote the set of all 
probability measures on (Z,, Z,) with respect to which 
y,, y,+1, ym+2, * * * forms a Markov chain with transition 
matrices P,, P,+l, * . . for any integer m, that is, X E 
M(P) if and only if for any m, 

n-1 

w,=y,,-, ~~=Ynl=x[ym=Yml II ‘~(Yi,Yi+l>, 
i=m 

In the one-sided case only m = 1 need be verified. Observe 
that in general the Markov chain is nonhomogeneous. 

Define a channel [A, v, B] to be Murkou if there exists a 
stationary measurable map +: Z, + Z, such that v, E 
M(+(x)), x E Z,. Kieffer and Rahe [9] proved that one- 
sided and two-sided Markov channels are AMS. 

An important example is given by finite state channels 
and codes. Given a Markov channel with stationary map- 
ping +, the channel is said to be a finite state channel 
(FSC) if we have a collection of stochastic matrices P, E P; 
a E A and that G(X), = Px”, that is, the matrix produced 
by 9 at time n depends only on the input at that time, x,. 
If the matrices P,; a E A contain only O’s and l’s, the 
channel is called a finite state code. There are several 
equivalent models of finite state channels and we pause to 
consider an alternative form that is more common in 
information theory. (See Gallager [5, Ch. 41 for a discus- 
sion of equivalent models of FSC’s and numerous physical 
examples.) An FSC converts an input sequence x into an 
output sequence y and a state sequence s according to a 
conditional probability 
Pr(Yk=yk,Sk=sk;k=m;..,nlXi=xi,Si=si;i<m) 

n 
= n ‘(Yj> s,Ixj> ‘i-1); 

i=m 

that is, conditioned on Xi, SiPi, the pair yi, S, is indepen- 
dent of all prior inputs, outputs, and states. This specifies 
an FSC defined as a special case of a Markov channel 
where the output sequence above is here the joint state- 
output sequence { yi, si}. Note that with this setup, saying 
the Markov channel is AMS implies that the triple process 
of source, states, and outputs is AMS (and hence obviously 
so is the Gallager input-output process). We will adopt 
the Kieffer-Rahe viewpoint and call the outputs {Y,} of 
the Markov channel “states” even though they may corre- 
spond to state-output pairs for a specific physical model. 
We do not here treat the issue of when the process 
{ X,, Y, } in the Gallager FSC model might be AMS and 
ergodic without the process {X,, S,, Y,} sharing the prop- 
erty. 

In the two-sided case, the Markov channel is signifi- 
cantly more general than the FSC because the choice of 
matrices (p(x), can depend on the past in a very com- 
plicated (but stationary) way. One might think that a 
Markov channel is not a significant generalization of an 
FSC in the one-sided case, however, because there 
stationarity of cp does not permit a dependence on past 
channel inputs, only on future inputs, which might seem 
physically unrealistic. Many practical communications sys- 
tems do effectively depend on the future, however, by 
incorporating delay in the coding. The prime example of 
such “look-ahead” coders are trellis and tree codes used in 
an incremental fashion. Such codes investigate many possi- 
ble output strings several steps into the future to determine 
the possible effect on the receiver and select the best path, 
often by a Viterbi algorithm. (See, e.g., Viterbi and Omura 
[16].) The encoder then outputs only the first symbol of the 
selected path. While clearly a finite state machine, this 
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code does not fit the usual mode l of a  finite state channel 
or code because of the dependence of the transition matrix 
on  future inputs (unless, of course, one  greatly expands the 
state space). It is, however, a  Markov channel. 

W h ile the proof that Markov channels are AMS is 
difficult, especially for the one-sided case, we will need a  
few properties of the construction which we now sum- 
marize. 

Let [A, ~1 be  an  AMS source and [A, v, B] a  Markov 
channel. Let +: Z, + Z, be  the stationary map  such that 
v, E M+(x)), x E 2,. Since [A, ~1 is AMS, there is a  
stationary measure F  such that F(F) = 0  for an  invariant 
F  E Z, implies that p(F) = 0  also. For both the one-sided 
and two-sided cases the key construction takes place on  a  
two-sided process. Consider a  two-sided source [A, ,E*] 
defined as follows: if the original source is two-sided, then 
F* = ,E; if the original source is one-sided, then let FL* be  
the two-sided extension of the one-sided measure j& that 
is, 

I”*((&, &+I,. . . > E F) = E-i(F), f’~Alm, (1) 
which specifies ,ii*. W e  also define a  two-sided stationary 
map  +‘: A” + PO0 by setting #  = $I if the original system 
is two-sided and defining +‘(x)~ = (+((xi, xi+i,. * *)))i if 
the original system is one-sided. 

Kieffer and  Rahe construct a  two-sided channel [A, 9, B] 
with the following properties. 

a) The  channel is stationary and  hence so is the 
input-output process p*9. 

b) $, E M(+‘(x)) and  hence P has the same transition 
structure as v. In particular, for any a, b  E B and 
any integers n  > m , 

;,( Y, = blY, = u) = v,( Y, = blY, = a). 

c) If the original system is two-sided, then pv is abso- 
lutely continuous with respect to F*; and  hence pv 
is AMS. If the original system is one-sided, then let 
(F*;)’ denote the restriction of the two-sided 
stationary measure p*P* to a  one-sided process, that 

;sF’;)‘(F) = fi*fi((X,, r,), (X,+1, y,,,), . . . E F), 
FE (A+)?. 

Then  if (F*?)‘(F) = 0  for an  invariant set F  E 
(A.B)y, then also pv(F) = 0  and  hence again yv is 
AMS. 

INDECOMPOSABLEMARKOVCHANNELS 

Our development is based ‘on the following observation 
of Kieffer and  Rahe: if the two-sided stationary process 
p*fi is also ergodic, then so is the original AMS process pv 
from property c) above. Thus in order to prove that a  
Markov channel is ergodic, we must show that connecting 
a  two-sided stationary ergodic source to a  special two-sided 
stationary Markov channel yields a  stationary and  ergodic 
input-output process. Kieffer and  Rahe used this ap- 
proach to prove the result we describe next. 

G iven a  stochastic matrix P E P, a  nonempty set B’ c B 
is a  closed set of states for P if 

c P(a, b ) =l, 
h E B’ 
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a E B’. 

P is decomposable if there exist two disjoint closed sets of 
states. O therwise P is indecomposable. A one-sided Markov 
channel [A, v, B] such that vX E M(+(x)) for a  stationary 
map  + is said to be  indecomposable if for every x E A? 
and every positive integer n  the product +(x)~+(x)~ . . . 
G(X), is an  indecomposable stochastic matrix. (One can 
define indecomposabil i ty for a  two-sided channel in a  
similar manner.)  Kieffer and  Rahe [9] proved that an  
indecomposable Markov channel is ergodic. It follows 
easily from their proof that if we only require that vX be  
indecomposable p-a.e. for an  ergodic stationary source p  
in the sense that with p  probability one  we get an  x for 
which +(x),+(x), .. . +(x), is an  indecomposable 
stochastic matrix for all n, then yv is also ergodic. For an  
AMS source a  similar conclusion can be  drawn by requiring 
that the channel be  indecomposable almost everywhere 
with respect to the stationary mean.  

Observe that stationarity of + implies that if the channel 
is indecomposable, then the matrices +( T  “x) 1~( T  “x) 2  
. . . rp(T”x), = +(x),+~~(x),+, . . . G(X),+, are also in- 
decomposable for all appropriate m  and n. 

It is easy to find important examples of Markov chan- 
nels that are not indecomposable. In particular, finite state 
codes have matrices +(x)~ that have only l’s and O’s and 
are often decomposable for a  fixed X. This is a  common 
occurrence, for example, in finite state vector quantizers 
designed by clustering algorithms based on  a  training 
sequence (Dunham and Gray [3]). As another example, 
a  Markov channel could be  such that for each x in a  
set of positive measure, there exists an  n  for which 
+(x)1,. . -9 44x), is decomposable,  but after some N = 
N(x) all products from 1  to n  are indecomposable. For 
example, a  finite state channel in which the transition 
matrix is scrambling (as defined later) with positive prob- 
ability has this property. In the second example the tech- 
niques of Kieffer and  Rahe should still apply to yield an  
ergodic channel. Kieffer and  Rahe make explicit use of the 
indecomposabil i ty property in their ergodicity proof. W e  
here bypass this strong condition and a  simpler proof of 
ergodicity is given using the strongly m ixing condition of 
Adler [l]. 

The  original definition of an  indecomposable FSC of 
Blackwell, Breiman, and  Thomasian [2] was different. They 
defined an  FSC to be  indecomposable if connecting any 
indecomposable Markov source to the FSC yielded an  
indecomposable input-output Markov chain. They proved, 
however, that for FSC’s their definition and the above 
definition, in terms of products of transition matrices, were 
equivalent. W h ile their proof of this equivalence does not 
appear  to generalize to Markov channels, we will adopt the 
Kieffer-Rahe definition of indecomposable as the more 
natural for our purposes. In particular, it is not desirable 
to require Markov sources for determining the properties 
of a  channel. 
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Gallager [5] gave another definition of an indecompos- 
able FSC and stated that his definition produced the 
same class of channels as the Blackwell, Breiman, and 
Thomasian definition. The definition is quite different, 
however, and Gallager did not provide a proof. Further- 
more, unpublished proofs are based on the construction of 
periodic input sequences to force certain channel behavior 
and hence the equivalence of these two definitions of 
indecomposabiiity does not appear to extend to the more 
general p-a.e. indecomposability definitions (since such 
periodic sequences will in general have total probability 
zero). In addition, the proof does not appear to generalize 
to all Markov channels. Hence we shall refer to this 
property as indecomposability in the Gallager sertse or 
Gallager indecomposability and consider it separately. For 
any integer m E I, any integer n 2 m, and any x E Z,, the 
stochastic matrix describing the output transition probabil- 
ities from time m to time n is given by 

H,,(x)= {v,(Y,=klY,=j); k,j=1,2;..,K} 

= ii +tx>i. (4 
i=m 

Define a Markov channel to be indecomposable in the 
Gallager sense if for every E > 0 there is an N such that for 
all x, final states b, and initial states a, a’ 

that is, the channel is indecomposable if 
~~~~vx(Y,=b~Yl=a)-vx(Y,=b~Y,=a’)~=O (4) 

uniformly in x, b, a, and a’. This is essentially a condition 
that the rows of the product matrices asymptotically be- 
come more alike uniformly in x. Gallager [5] proved that a 
finite state channel is indecomposable if and only if for 
some n and each x 

Wl,b)Lb>O~ all a (5) 

for some b; that is, Hi,(x) must have for each x at least 
one column that has no zero entries. Furthermore, n can 
always be taken to be less than 2KZ, where K is the 
number of channel states. In the general case of a Markov 
channel, Gallager indecomposability still implies the ex- 
istence of a positive column since if the rows are the same 
in the limit, at least one column must be positive. Gallager’s 
proof of the converse, however, does not immediately 
generalize and hence these conditions may not be equiv- 
alent in the general case. Hence when considering general 
Markov channels we will refer to (5) as the strong positive 
column property rather than as indecomposability. The 
adjective “strong” is because one n must serve for all x. 
For later use we generalize this property by dropping the 
uniformity requirement. A Markov channel is said to have 
the positive column property if for every x there is an n for 
which N,,,(x) has a positive column. 

As discussed by Kieffer and Rahe, Pfaffelhuber [13] 
showed that if a finite state channel is indecomposable in 
the Gallager sense, then a two-sided stationary channel 

constructed in a manner similar to Kieffer and Rahe yields 
an ergodic source when driven by a stationary and ergodic 
source, but Phaffelhuber did not show that this meant the 
original channel was ergodic. 

WEAKLY ERGODIC MARKOV CHANNELS 

In this section we introduce a new class of Markov 
channels by simply adopting a definition from the theory 
of nonhomogeneous Markov chains. We begin with a 
Markov channel [A, v, B] and an AMS ergodic source p. 
Let p* and P be the induced two-sided stationary source 
and channel of the first section and let +’ be the two-sided 
map such that fi, E M(+‘(x)). As above, for any integer m, 
any integer n 2 m, and any x E Am, the stochastic matrix 
describing the output transition probabilities from time m 
to time n is given by 

H,*(x) = {~,(Y,=klY,=j); k, j=l,;..,K} 

= fi #(x)i. (6) 
i=m 

Note that (2) and (6) are the same for the two-sided case 
because then +‘= +. In particular, given x, Y,, Y,, . . . is a 
nonhomogeneous Markov chain with the transition prob- 
abilities given by either (2) (for the original channel) or (6) 
(for the induced two-sided stationary channel). 

A nonhomogeneous Markov chain described by the 
transition matrices H,,,,; m = 1,2, . . . ; n = m, . . . is said 
to be weakly ergodic (Hajnal [7]) if 

lim I(Hmn)ij-(Hmn)/cjl=O; n+oo 

The theory of weakiy ergodic nonhomogeneous Markov 
chains has been extensively studied in the literature (see, 
e.g., Hajnal [7], Paz [12j, Kingman [lo]). The definition 
immediately suggests a corresponding definition of a class 
of Markov channels: we shall say that a Markov channel 
[A, v, B] is weakly ergodic if for all positive integers m 
(one-sided) or if for all integers m (two-sided) 

?,‘Frn l(H,,(x>>ij-(H,,(x)),jl=o; 

alli,j,k=1,2;..,K,allx. (7) 
As usual, we shall say that a channel is weakly ergodic 
p-a.e. for a source p if (7) holds for all x in a set of p 
probability one. Clearly with this definition we inherit all 
of the properties of weakly ergodic nonhomogeneous 
Markov chains, but that is not our goal; our focus is to 
randomly select one of these chains and determine when 
the joint input-output process is ergodic in the usual 
sense. Observe the strong resemblance between (7) and (3); 
a weakly ergodic Markov channel is a natural generaliza- 
tion of a channel that is indecomposable in the Gallager 
sense where we have simply dropped the requirement that 
the limits be uniform in x. Both conditions require that 
asymptotically the rows of a matrix become more alike, 
but the above condition permits different input sequences 
x to have different convergence rates. 
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Since the mapp ing + is stationary, it follows that note in passing that 6  can be  viewed as the maximum d  
Hm,(x) = H,C,p,,(T”x) and  hence we need only verify distance between the rows of the stochastic matrix and  this 
(7) for the special case m  =1 to prove a  channel is weakly fact can be  used to prove the above mu ltiplicative in- 
ergodic. The  next lemma shows that a  similar simplifica- equality. 
tion holds for the almost everywhere definition if the A nonhomogeneous Markov chain is weakly ergodic if 
source is stationary. and  only if 

Lemma 1: Suppose that p  is a  stationary source. Then  
a  Markov channel v is weakly ergodic a.e. if and  only if 
with p  probability one, 

$nrn I(H,,(x))ij-(H,,(X)),jl =O; 

all i,j,k=1,2;..,K. 
Proof Define the sets F, by 

F,= X: ,lim  l(H~,(x)>ij-(H~,(x)>~~l=O; ( 
all i, j,k=1,2;**, K . > 

lim  6(H,,) = 0; m=1,2,3;.. (8) n-+cc 
(In fact, (8) is used by Paz as the definition for weakly 
ergodic.) The  equivalence of the two properties is easily 
shown since both correspond to the rows of the sequence 
of matrices becoming more alike. Translating this into a  
statement for channels, and  recalling the stationarity of C#J 
and the equivalence of the transition matrices for the 
original channel and  the induced stationary two-sided 
channel, we have the following lemma. 

lim  6( H,,(x)) = 0; XEZ, 
n+cc 

Lemma 2: A Markov channel is weakly ergodic if and  
only if 

Using the stationarity of +, 

alli, j,k=1,2;*.,K > 
= Tp  mF , 

and  hence since p  is stationary p( F,,,) = p(T-“F,) = 1  all 
m  and therefore p(n m  E ,F”) = 1  and  the channel is 
weakly ergodic p-a.e. 

It will be  convenient to use an  alternative description of 
weakly ergodic Markov chains. Following Paz [12], given a  
stochastic matrix P = {P,,; t, s E B}, define 8(P) by 

W ) = ma+ C (P,k - P,k>’ 
ksB 

where (a)’ is a  if a  is positive and  0  otherwise. 6(P) is a  
measure of how unlike the rows of a  stochastic matrix are. 
If, for example, the rows are all identical, 6(P) is 0. 6(P) 
is 1  if and  only if at least two rows are orthogonal, that is, 
there exist two rows such that the nonzero entries of one  
are in a  disjoint collection of columns from the nonzero 
entries of the other. Intuitively this means that there are 
two initial states which place all of their probability on  
disjoint collections of final states and hence we can dis- 
tinguish between these two initial states by observing only 
the final state. These provide two extremes since 0  I 6(P) 
I 1. W e  now collect some properties from Hajnal [7], Paz 
[12], and  W o lfowitz [17]. A necessary and sufficient condi- 
tion for 6(P) < 1  is that for any two rows i and  k there is 
at least one  column j for which both Pij > 0  and  Pkj > 0. 
A matrix with this property is said to be  scrambling. A 
matrix is not scrambling if and  only if at least two rows 
are orthogonal. A sufficient (but not necessary) condition 
for 8(P) ~1 is that P have at least one  column with all 
entries nonzero. 6  satisfies the following inequality: 

lim  6(H,*(x)) = 0; XEA~. 
n+oo 

If a  Markov channel v is weakly ergodic, then so is the 
induced stationary two-sided channel 9. G iven a  source 
[A, ~1, a  Markov channel is weakly ergodic p-a.e. if 

If the source is stationary, then from Lemma 1  only m  = 1  
need be  considered. 

There is nothing “mag ic” about the particular choice of 
S, any nonnegat ive function of a  matrix with the properties 
that 6(PQ) I S(P) S(Q) and the fact that B(P,) + 0  if 
and  only if I(Pn)ik -(Pn)jkl + 0  all i, j, k will work. 

W e  now state and  prove the first ma in result which 
provides an  alternative characterization of Markov chan- 
nels that are weakly ergodic a.e. 

Theorem 1: A necessary condition for a  Markov chan- 
nel to be  weakly ergodic a.e. [p] for a  stationary measure p  
is that there exists an  N such that 

(9) 

A sufficient condition for a  Markov channel to be  weakly 
ergodic a.e. [p] for a  stationary and  ergodic measure y is 
that there exists an  N such that (9) holds. 

Proof: The  necessary condition is trivial. Let J4, = 
+(X), denote the stationary and  ergodic sequence of ran- 
dom stochastic matrices, and  consider the lim it of 

11n6 fiM j . 
n  i i j=l 

Thus, for example, given a  product of matrices, if any one Let N be  such that (9) holds, let i be  a  nonnegat ive 
of the matrices is scrambling, then the product is also. W e  integer such that i < N, and  let n  be  a  large integer. W e  
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can parse the product of n  matrices into an  initial piece of 
i matrices, a  group of K, = ((n - i)/N) blocks of N 
matrices each, where (u) denotes the largest integer con- 
tained in a, and  a  remaining group of n  - i - NK, matrices 
and apply the product inequality for 6  to write 

Since K, 2  ((n - N)/N), we have further that 
((n - W /N)-1 

and hence that 
((n ~ N)/N)-1 

Ina 
i 

Since this inequality is true for any i in the allowed range, 
we also have that 

1 1 N-I ((-W /N)-1 c Ina l?i Mi+jN+m 
j=O i m=l 

1 1 N((n-W/N)-1 
=-- c Ina 

nN j=O 

From the ergodic theorem, the right-hand sum converges 
as n  -+ cc with probability one  to the expectation 

!NElna 
i 1 

fi M , CO. 
m=l 

Thus we have shown that 

00) 

with probability one. This, however, implies that 
I n  \ 

lim  6  nit4, =O. 
n--‘cc 1  J i=l 

To see this, assume the contrary. Since 6  is nonnegat ive 
this would mean  that a  subsequence of d, = 6(FIfi,Mi) 
would converge to, some d  > 0  which would imply from 
continuity of logarithms that a  subsequence of In d, would 
converge to In d  and  hence that a  subsequence of n  - ’ In d, 
would converge to 0, violating (10) which says that all 
subsequences must converge to something strictly less than 
0. This completes the proof. 

The  proof resembles the “easy half” of the subadditive 
ergodic theorem of Kingman [ll]. In fact, the result can be  

proved by applying the subadditive ergodic theorem 
[ll], [8] to the sequence lnS(n,“,,+(X)i). The  condition of 
the theorem is similar to conditions developed by Shi and  
Kozin [15] on  matrices used in adaptive algorithms in 
order to prove the exponential convergence of those 
algorithms. They, however, used the results of Furstenberg 
and Kesten [4] on  products of random matrices rather than 
the simpler tools used here. 

The  theorem provides easily several relations among the 
various classes of channels. 

Corollary 1: G iven a  Markov channel and  a  stationary 
source p  the following conditions are equivalent (all state- 
ments are p-a.e.). 

a) The  channel is weakly ergodic. 
b) For each x there is an  n  such that no  two rows of 

H,,(x) are orthogonal. 
c) For each x there is an  n  such that H,, is scram- 

bling. 
cl) The  channel has the positive column property. 

Proof: The  proof follows from the necessary condition 
of the theorem and hence does not require ergodicity of p. 
Since 6( H,,( x)) I 1  for all n, it can have an  expectation of 
1  for all n  if and  only if, for all x in a  set of probability 
one, 6(H,,(x)) =l for every n. This can only be  if for 
every n  there are at least two orthogonal rows in the 
matrix product. Thus b) implies a). Obviously d) implies c) 
and  c) implies b). That d) follows from a) follows analo- 
gously to the proof of Ga llager’s Theorem [5, th. 4.6.31. Let 
K denote the size of the state alphabet and  choose z <l/K. 
Choose n  so large that 

for all k, j, i, and  observe that one  of the columns must 
have an  element no  smaller than l/K. Hence, all the 
entries in that column are positive. 

John Kieffer has pointed out to the authors that the 
results of Theorem 1  and Corollary 1  can also be  derived 
as consequences of results of Nawrotzki [18] (see also 
Cogburn [19]) which provide sufficient conditions for the 
maximal &distance between the rows of M ,M,. . . M , to 
go  to zero almost surely and  hence for condition c) of 
Corollary 1  to hold. 

Corollary 2: A sufficient condition for a  Markov chan- 
nel to be  weakly ergodic p-a.e. for a  stationary p  is that it 
be  indecomposable in the Ga llager sense p-a.e. 

Proof: This follows immediately from the fact that the 
strong positive column property implies the positive col- 
umn property and  that Ga llager indecomposabil i ty implies 
the strong positive column property. 

Corollary 3: A sufficient condition for a  Markov chan- 
nel to be  weakly ergodic p-a.e. for a  stationary p  is that it 
be  indecomposable p-a.e. 

Proof: From W o lfowitz [17, Lemma 41 there is a  finite 
number  t = t(K) such that all products HI,(x) = +(x)~ 
a.. G(X), with n  > t have 6(H,,(x)) ~1 if all such 
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products are indecomposable. Since this holds for a  set of 
measure one, (9) must hold and  the conclusion follows 
from the theorem. 

The  result of W o lfowitz used above suggests an  interest- 
ing class of weakly ergodic channels that are not indecom- 
posable. Consider a  finite state channel with state transi- 
tion probability matrices P,; a  E A, where A is finite. 
Suppose that one  of these matrices, say Pb, is bad  in the 
sense that all finite products of the remaining matrices are 
indecomposable, but finite products including the bad 
matrix Pb may not be  (e.g., P, itself is decomposable).  
Suppose a  source is connected to the channel that pro- 
duces a  sequence of independent identically distributed 
symbols according to a  distribution which places a  small 
nonzero probability on  b. Clearly $(x), . . . $(x), = P:, 
. . . P,, will not always be  indecomposable with probabil- 
ity 1  since the matrices Ph can occur with nonzero prob- 
ability; hence the channel is not indecomposable a.e. If the 
probability that Pb occurs is small enough,  however, with 
probability one  we will get an  x such that decomposable 
matrices will occur sufficiently rarely to ensure that for 
some m  and n  > m  + t there will be  a  subsequence P,, * * * 
P,,, having all subproducts indecomposable and  hence 
having 6( P,,, . . . P,,) < 1  and  hence having 6( PX, . . . P,,) 
< 1. Since this happens with probability one, again (9) 
must hold and  the channel must be  weakly ergodic p-a.e. 

MIXING MARKOV CHANNELS 

Before stating the second principal result, we require yet 
another definition of a  class of channels. Following Adler 
[l] we define a  channel to be  strongly m ixing p-a.e. (or 
asymptotically independent of the remote past) for a  sta- 
tionary measure p  if for any finite-dimensional cylinder 
sets F  and G  we have that 

lim  Iv,(FnT-‘G)-v,(F)v,(T-‘G)I=O. (11) 
n-cc 

Adler built the mod ifier “a.e.” into the definition, but we 
make it explicit for consistency with the other definitions. 

Lemma 3: G iven a  stationary measure p, a  Markov 
channel is weakly ergodic p-a.e. if and  only if it is strongly 
m ixing p-a.e. 

Proof: Eq. (11) is trivially true if v,(F) is 0, so an  
equivalent definition of strongly m ixing is to require (11) 
to hold for all F  with v,(F) > 0. In this case we can divide 
by v,(F) to obtain an  equivalent condition using condi- 
tional probabilities. A channel is strongly m ixing if and  
only if for all finite dimensional cylinders F  and G  

lim  Iv,(T-“GIF)- vX(T-“G)I = 0. (14 n-+oo 
This in turn is equivalent to showing that (12) holds for all 
thin cylinders of the form 

F= {Y:Y,=~,,Y,+,=~,,...,Y,+,-,=a,} 

and 

G= {Y:Y,=b,,Ym+l=b2,‘..,Y,+j-l=bj} 

since general  cylinders are finite unions of disjoint thin 
cylinders and  if (12) holds for, say, F,, G , and  F2, G ,, then 
it also holds for FI U F2,G1 U G, using the triangle in- 
equality. Consider first one-dimensional cylinders of the 
form F= {y: ~,=a}, G= {y: y,=b}. If the channel is 
strongly m ixing, then 

IYx(ym+, =blY,=a)-v,(Y,+,=b)l -+ 0; 
n-oo 

all a  E B 
and hence by the triangle inequality also 

lo-m+n = blY,=a)-v,(Y,+.=blY,=a’)j + 0; 
n-fee 

all a, U’E B; 
that is, the channel must be  weakly ergodic. Conversely, if 
the channel is weakly ergodic, then 

l~x~Ym+n =bJY,,,=a)-v,(Y,+,=blY,=a’)) + 0  
n--r* 

for any a, a’, b. Thus we must also have that 

I#nl+n = blY, = u)- v~(Y~+~ = b)l 

= Ivxvii?+* =b(Y,=a)- c v,(Y,=a’) 
a'sB 

~,(Y,,,+,=blY,=a’)l 

I c v,(Y,=a’) 
a'sB 

+xK?2+n = blY, = u) - v,( Ym+n = b(Y, = a’) I 
*+o 

n-+cc 
and hence (12) must hold for such sets. The  result for 
general  thin cylinders follows similarly since, given x, the 
Y, form a  Markov chain. In particular, define Y,” = 
(Y,, L+1,. . *2 L+k-1 3  ) the random vector beginning with 
the sample at time  m  and having dimension k and  bk = 
(b,, b,; . .y bk). Let F  be  the event Y,” = ak and G  be  the 
event YL = bj. Then  once n  > k there is no  overlap of the 
events F  and T-“G and hence v,.(Yi+, = bjlY,k = bk) 
depends on  bk only through v,(Y,+, = bllYm+k-l = bk), 
which asymptotically does not depend on  bk by the one- 
dimensional result. This completes the proof of the lemma. 

The  lemma coupled with Adler [l] provides the final link 
for the second ma in result of this paper, which begins the 
next section. 

ERGODIC MARKOV CHANNELS 

Theorem 2: If a  stationary Markov channel v is weakly 
ergodic a.e. [p] for a  stationary and  ergodic source p, then 
pv is stationary and  ergodic. A Markov channel is ergodic 
if it is weakly ergodic p-a.e. with respect to all stationary 
measures (e.g., if it is weakly ergodic everywhere). 

Proof of Theorem 2: If v is stationary and  weakly 
ergodic, then from the previous lemma it is strongly m ix- 
ing. Adler [l] proves that connecting a  stationary ergodic 
source p  to v will then provide a  stationary and  ergodic FLY. 
This proves the first statement. If v is Markov and hence 
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AMS, form the stationary two-sided channel 9 as de- 
scribed previously. If v is weakly ergodic, then so is 3. 
Thus P is stationary and, from the lemma, strongly m ixing. 
The second statement follows from the first by applying 
the first statement to the two-sided and stationary source 
jJ* and channel 4 and recalling the observation of Kieffer 
and Rahe [9] that ergodicity of ,ii*P implies that pv is 
ergodic. 

Theorem 2 provides the most general class of ergodic 
AMS channels currently known. 
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