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Absrract -The discrete-time Gaussian channel with intersymbol inter- 
ference (ISI) where the inputs are subject to a per SJ~& average-energy 
constraint is considered. The capacity of this channel is derived by means 
of a hypothetical channel model, called the N-circular Gaussian channel 
(NCGC), whose capacity is readily derived using the theory of the discrete 
Fourier transform. The results obtained for the NCGC are used further to 
prove that, in the limit of increasing block length, N, the capacity of the 
discrete-time Gaussian channel (DTGC) with ISI using a per block 
average-energy input constraint (N-block DTGC) is indeed also the 
capacity when using the per symbol average-energy constraint. 

I. INTRODUCTION 

T HERE IS presently much interest in the design and 
application of codes for channels with finite memory 

produced by linear filtering of the input digits [l]-[3]. This 
memory introduces intersymbol interference (ISI), which is 
generally considered to be an undesirable property of a 
pulse-amplitude modulated (PAM) digital communication 
channel [4]. There are situations, however, where it is 
sensible to introduce IS1 intentionally. Partial-response 
schemes [5], for example, are designed to produce a con- 
trolled amount of IS1 in the received signal in return for 
better spectral characteristics. What matters for the coding 
system is the equivalent discrete-time channel which is 
created by the actual transmission system. In this paper 
the capacity of such channels is of interest. In general, 
channel capacity can be defined and computed provided 
that the channel model includes 1) the basic channel model 
specifying the conditional probability for the output given 
a specified input, and 2) the constraints on channel usage. 
We introduce three related channel models for channels 
with IS1 and define their respective capacities. These mod- 
els differ in parts 1) or 2) or both, of the definition. 

A. Discrete-Time Gaussian Channel with ISI 

The well-known discrete-time model for the equivalent 
baseband channel of a PAM system with IS1 and with 
zero-mean additive white Gaussian noise (AWGN) having 
one-sided power spectral density N,, is the basic channel 
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model of interest [4], [6], [7]. The real input sequence { xk} 
produces the real output sequence { y, } given by 

y,= f h;xkpi+wk, -oo<k<cc (1) 
r=O 

where the finite-length sequence (h,, h,; * ., h,), with h, 
# 0 and h, # 0, is the unit-sample response of the equiv- 
alent channel filter. The transfer function of this filter is 

H(X) = f hie-Jix, j=J-1 (2) 
r=O 

and is periodic in X with period 2~. The noise samples wk 
are independent identically distributed (i.i.d.) Gaussian 
random variables with mean zero and variance N,/2, i.e., 

E[w~] =0 and E[w~w,] = (N,/2)S,_; (3) 

where E[ .] denotes expectation and where 6, =1 and 
S,, = 0 for n # 0. With the time unit taken as the interval 
between input symbols, M represents the memory of the 
channel. The channel is said to have IS1 if and only if 
M > 0. Since M is finite, the energy of the unit-sample 
response (h,, h,; . ., h,) is also finite. For m I k x N, we 
write (1) symbolically as 

y[m,N-l]=x[m-M,N-l]*h[O,M]+w[m,N-1] 

(4) 
where the asterisk denotes the linear convolution operator 
and where here and hereafter we use the sequence notation 
s[m, nl = (sm, smtl; . *, s,). Note that the subsequence 
x[m-M,m-l] of the input sequence x[m-M,N-1] 
represents the initial contents of the channel memory, i.e., 
the channel state at the time instant k = m when we 
assume that we begin to observe the output. 

We now require that the basic channel model (1) be used 
in a manner where the inputs individually satisfy the 
constraint 

E[x;] IE,, -cockcoo, (5) 
so that E, is the maximum allowed per symbol average 
energy. We call the channel defined by both the basic 
channel model (1) and the input constraint (5) the 
discrete-time Gaussian channel (DTGC) with finite memory 
M. The DTGC is the natural channel model for the 
energy-constrained Gaussian channel with ISI, although 
the difficulty of dealing with constraint (5) has led to the 
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more general use of a different channel model, namely, the 
block-energy-constrained channel described later. 

It follows from Gallager [S, sections 4.6 and 5.91 that the 
appropriate definition of capacity for the DTGC is 

C(4) = NfimmIN(E,) (64 

with 

I,(E,) = supN-‘1(x[O,N-11; JJ[O,N-11) (6b) 
4N 

where the supremum of the average mutual information 
I(. ; .) is taken over all probability densities qN for the 
sequence x[O, N - l] satisfying the symbol-energy con- 
straint (5), and where it is assumed that 

x[-M,-1]=(0,0;~~,0). (64 
The choice of x[ - M, - l] in (6~) is made for convenience 
but has no influence on C( ES) since M  is finite. Definition 
(6) is appropriate in the sense that a coding theorem and 
its converse can be proved to show that C( ES) is the upper 
limit of information rate (in bits per channel input symbol) 
such that arbitrarily reliable communication is possible 
over the DTGC. 

B. N-Block DTGC 

Our second channel model also includes the basic chan- 
nel model of (1); however, the constraint on the inputs is 
now 

N-l 

c E[x;] <NE, (7) 
k=O 

where N is the block length. Thus NE, is the maximum 
allowed per block average energy. We  call the channel 
model as defined by (1) and (7) the N-block DTGC. Note 
that for any N, constraint (7) is weaker than constraint (5); 
constraint (5) always implies (7), but not conversely. 

The capacity of the N-block DTGC is defined as 

C,(E,) = supNPII(x[O, N-l]; y[O, N-l]) (8) 
4N 

where the supremum is taken over all probability densities 
qN for the sequence x[O, N - 11 satisfying the block-energy 
constraint (7) and where x[ L  M, -11 is the same as in 
(6~). It is conventional to define the quantity 

C(E,) = JimmeN 

to be the “capacity” of the energy-constrained Gaussian 
channel with IS1 [9]-[12], but it is important to note that 
c^(E,) is not an actual capacity because the N-block 
DTGC is (by definition) a different channel for each N. It 
seems intuitively obvious, however, that 

but (to our knowledge) this has never previously been 
proved. All one can claim at this point is that C( ES) I 
c^( ES) since the symbol-energy constraint (5) is stronger 
than the block-energy constraint (7). To prove the validity 

of (lo), we introduce a new channel model whose capacity 
can be readily determined and used to relate C( ES) and 
C(4). 

C. New Channel Model 

We  define a new channel model by modifying (1). The 
samples of the output sequence of the new basic channel 
model { yk } are determined by 

N-l 

y"k= c i;;x((k-l))+wk> O<k<N (11) 
i=o 

where ((a)) denotes addition modulo N and where N > M. 
Defining &[O, N -11 = (h,, h,; . ., h,,O,O; . .,O) as the 
unit-sample response h[O, M] extended with N - M  - 1 
zeros, we can write (11) symbolically as 

J[O,N-l]=x[O,N-l]@h”[O,N-l]+w[O,N-l] 

(14 

where 0 denotes the circular convolution operator. For 
our new channel model, the input constraint is 

J+;] I Es, OIk<N, (13) 
so that ES is again the maximum allowed per symbol 
average energy. We  call the channel model defined by (11) 
and (13) the N-circular Gaussian channel (NCGC). 

The capacity of the NCGC is defined as 

C,(E,) = supN-‘l(x[O, N-l]; jj[O, N-l]) (14) 
4N 

where the supremum is taken over all probability densities 
qN for the sequence x[O, N-l] satisfying the symbol- 
energy constraint (13). Note that no need exists for an 
initializing input sequence since the output sequence 
y”[O, N-l] is completely determined from the input se- 
quence x[O, N - 11 and the noise sequence w[O, N - 11. For 
the NCGC, we define the asymptotic capacity 

c”(E,) = >mme,v(E,), (15) + 

which again is not itself a  true capacity since the NCGC is 
(by definition) a different channel for each N. 

D. Remarks 

The capacity of th,e N-block DTGC, C,(E,), as well as 
its limit as N * co, C( ES), have been derived by Tsybakov 
[9], [lo] and others [12], [13]. Tsybakov also treated the 
case where ihe channel memory is unbounded (M = 00). In 
all cases, C,(E,) was obtained by solving an eigenvalue 
problem, and c^(E,) was found by invoking asymptotic 
properties of Toeplitz forms [ll], [14]. 

We  present an approach to finding the capacity of the 
DTGC, C(E,), based on the discrete Fourier transform 
(DFT). It seemed worthwhile giving a rigorous derivation 
of capacity for this important channel model using only 
the well-known theory of the DFT rather than the more 
specialized theory of Toeplitz forms. Moreover, our ap- 
proach allows us to prove that the conventional “capacity” 
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c^( E,), defined as the limit as N + cc of the capacity of 
the N-block DTGC e,(E,), is indeed also the capacity of 
the DTGC C(E,). 

In Section II we state the main results of this paper, 
which are proved in the following sections. Section III 
contains an analysis of the new NCGC, and Section IV a 
proof of the fundamental relations between the channel 
models just introduced. The main results are proved in 
Section V, and Section VI provides a summary and con- 
cluding remarks. 

II. STATEMENT OF MAIN RESULTS 

Theorem I: The capacity of the NCGC (in bits per 
channel input symbol when logarithms are taken to the base 
2) is given by 

N-l 

cN(Es) = (2N)-’ c log[max(Q]~i]2,1)] (16a) 
i=o 

where fi[O, N-l] is the DFT of $[O, N - 11, i.e., 
N-l 

E?, = c &,e-J2”im/N, O<i<N, (1W 
m=O 

and where the parameter 0 is the solution of 
N-l 

c max(O - Ifiil-‘,O) = 2NE,/N,. 
i=O 

tiz # 0 

064 

Moreover, for the capacity-achieving qN, the components 
of the input sequence x[O, N - 11 are correlated Gaussian 
random variables with mean zero and covariances Fti’,, 
0 I n < N, given by 

?I = ‘%+nXkl 
N-l 

= N-’ c cjcos(27rni/N), 
r=O 

0 <k I k + n < N (17a) 

where the components of the spectral input energy se- 
quence E[O, N - 11 satisfy 

(%/‘2)(@-I’ilp2)~ 
0, 

@lr?,12 >’ (17b) 
otherwise. 

In particular, capacity is achieved when equality holds in 
(13) i.e., when all inputs xk, 0 I k < N, have the same 
average energy E[x,f] = f0 = ES. Equation (17a) implies 
that the covariance sequence r”[O, N - 11 is the inverse DFT 
of the spectral energy sequence c[O, N -11; conversely, 
e[O, N - l] is the DFT of r”[O, N - 11. 

Corollary 1: The DTGC, the N-block DTGC, and the 
NCGC are asymptotically equivalent channel models in 
the sense that 

C(E,) =c^(E,) =d(E,). 08) 
Theorem 2: The capacity of the DTGC (in bits per 

channel input symbol when logarithms are taken to the base 

2) is given by 

C(E,) = (2a)~1~~log[max(O]H(h)]2,1)] dX (19a) 

where H(X) is the channel transfer function given in (2) 
and where the parameter 0 is the solution of 

J 
n 

max(O - ]H(h)(-2,0) dh = 2nES/No. (19b) 
0 
H(X)#O 

Moreover, the capacity-achieving qN, the inputs xk, - cc < 
k < co, are correlated Gaussian random variables with 
mean zero and covariances r,,, - 00 < n < cc, given by 

rn = E[xk+nxk] = (~)-l~~SX(h)cos(nh) dh (20a) 

where the input power spectral density satisfies 

I 

(No/W - lffo)l-2)> 
Sx(Q = OIH(X)I~>I, 1~1 I T, (20’4 

0, otherwise. 

In particular, capacity is achieved when equality holds in 
(5) i.e., when all inputs xk, - cc < k < 00, have the same 
average energy E [ xz] = r. = ES. 

III. ANALYSIS OF THE NCGC 

The proof of Theorem 1 will be given by first consider- 
ing a channel model with the basic channel model of the 
NCGC, given in (11) and the block-energy input con- 
straint given in (7). We are thus interested in the quantity 

fN(ES) = supN-‘1(x[O, N-l]; 4;[0, N-l]) (21) 
qN 

where the supremum is taken over all probability densities 
qN for the sequence x[O, N - 11 satisfying the block-energy 
constraint (7). We shall then show that the optimizing qN 
in (21) also satisfies the stronger symbol-energy constraint 
(13) so that cN(ES) = I”,(E,). 

A. Derivation of fN(ES) 

The DFT of a sequence b[O, N - 11 = (b,, b,, . . . , b,_,) 
is the sequence B[O, N-l] = (B,, B,; . ., BNP,) defined 
by 

N-l 

B, = c bJ&Yk, Oli<N (224 
k=O 

where Q N = e J2=lN, j =m [15, p. 1001. The inverse 
DFT is given by 

N-l 

b,= N-l c Bin;, O<k<N. (22b) 
i=O 

Taking the DFT on both sides of (12) yields 

c = f&x, + fy, O<i<N (23) 
as a result of the linearity and the circular convolution 
properties of the DFT [15, p. 1101. In (23) c, r?,, Xj, and 
W, are the components of DFT{ y”[O, N-l]}, DFT{ h[O, N 
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-l]}, DFT{ x[O, N-l]}, and DFT{ w[O, N-l]}, respec- 
tively. In the following, let L  = [N/2], where 1. ] denotes 
the integer part of a  real number. 

For any sequence B[O, N - l] = DFT{ b[O, N - 11) where 
b[O, N-l] is real, Bi = BGpI, 1  I i < N [15, p. 1101 (here * 
denotes complex conjugate). Note that B. is real for N 
even or odd, and B, is real for N even. Therefore, knowl- 
edge of the components Bi, 0  < i I L, is sufficient to 
reconstruct the real sequence b[O, N - 11, and no informa- 
tion is lost by discarding the components B,, L  < i < N. 
The remaining complex components Bi, 0  _< i < L, may be 
further transformed according to 

I 
B,=B,R, i 0 , N odd 

I= OorL, N even 

B’= &BP, lli< L-l 
i 

L, N odd (24a) 
> N even 

Is 2B’ N-1, L<i<N 

where BR = Re( Bi) and B! = Im( B,). The obvious inverse 
of (24a) is 

B[, 
N odd 
N even 

(B: + j~;-,)/fi, 
N odd 

> N even 

B* N-i, L<i<N. 

w-4 

To obtain an equivalent representation of (11) we divide 
both sides of (23)_by the complex constant r?, (assuming 
temporarily that H, f 0  for all i) and transform the result- 
ing first L  + 1 components with (24a). The equivalent form 
of (11) in the transform domain is now 

y’=x,‘+y’, O<i<N (25) 
where the X; and V,‘, were obtained from (24a) with 
B; = X, and B, = w/H,, respectively, and where E?, f 0, 
0  I i 2  L. Later, it will become clear that this restriction 
on H, is not necessary. 

It will be useful to combine the transforms defined in 
(22) and (24). The relations between the real t ime-domain 
variables b,, 0  I k < N, and the real transform-domain 
variables Bl’, 0 I i < N, may be written as the transform 
pair 

N-l 

d, c b,cos(2rik/N), B; = k=O 
N-l 

di c b,sin(2nik/N), 
k=l 

b, = N-l 
[ 

i diB/ cos(2nki/N) 
i=o 

N-1 

+ c d,B/sin(2rki/N) 
i=L+l 1 

OlilL 

(264 
L<i<N 

O_<k<N (26b) 

where 

di = 1, i=OorL 
1 

0, N odd 
> N even ( 264 

JZT otherwise. 

Transform (26) is a form of the real discrete Fourier 
transform (RDFT) [16]. In Appendix I we prove the fol- 
lowing lemmas for transformations (24a), (26a), and (26b). 

Lemma I: Let U[O, N - 11 = DFT{ u[O, N - 11) where 
the components uk, 0 I k < N, are real i.i.d. Gaussian 
random variables with mean zero and variance a’, and let 
B, = C,U, be the components of the sequence B[O, N-l] 
where the C, are complex constants and C, = C,*- i, 1  I i < 
N. Then application of transform (24a) to the complex 
subsequence B[O, L] yields the real sequence B’[O, N-l] 
whose components B,’ are independent Gaussian random 
variables with mean zero and variances Na21Ci12, 0 I i < N. 

Lemma 2: Let b[O, N-l] be a sequence whose compo- 
nents b,, 0  I k < N, are real i.i.d. Gaussian random vari- 
ables with mean zero and variance u2. Then the compo- 
nents B,‘, 0 I i < N, of the transform-domain sequence 
B’[O, N -11 as obtained from (26a), are also real i.i.d. 
Gaussian random variables with mean zero and variance 
Na2. 

Lemma 3: Let B’[O, N - l] be a sequence whose compo- 
nents B/, 0  5 i < N, are real independent Gaussian ran- 
dom variables with mean zero and variances NoI and 
where 0; = uN-,, 1  I i < N. Then the components b,, 0  2 k 
< N, of the time-domain sequence b[O, N - l] as obtained 
from (26b), are real correlated Gaussian random variables 
with mean zero and covariances &, 0 I n  < N, given by 

Fn = Eh+nb,l 
N-l 

= N-’ c a,2cos(2vni/N), O<k<k+n<N. 
i=o 

Using Parseval’s relation for the DFT [15, p. 1251, one 
finds that the original block-energy constraint (7) becomes, 
in the transform domain, 

N-l 

i~oo721 sN2Es. (27) 
By Lemma 1, the y’ in (25) are statistically independent 
Gaussian random variables with mean zero and variance 

uf = N( No,‘2)IE?,I-2, O<i<N. (28) 
Thus it follows from (25) that the equivalent transform- 
domain channel model for the NCGC is a set of N parallel 
discrete memoryless additive Gaussian noise channels 
where the channel inputs X,‘, 0 < i < N, satisfy (27). This 
equivalence implies 

supl(x[O, N-l]; y”[O, N-l]) 
4N 

=supI(X’[O,N-l];Y’[O,N-11) (29) 
QN 

where QN is the class of probability densities for X’[O, N 
- l] satisfying block-energy constraint (27). To write (29) 
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we have made use of the fact that the average mutual 
information between two sequences is invariant to any 
succession of reversible transformations of one or both of 
the sequences [8, p. 301. Application of a theorem due to 
Gallager [8, theorem 7.5.11 to this transform-domain chan- 
nel model provides the solution for &(E,) in the form of 
the parametric expression 

N-l 

fN(E,) = (2N)-’ C log[max(0]Z?12,1)] (30a) 
i=O 

where the parameter 0 is the solution of 
N-l 

c max(O - ]fill-‘,O) = 2NE,/N,. WV 
i=O 

B. Properties of the NCGC 

Solution (30) was obtained under the assumption that 
Z!Zi # 0, 0 I i < N. However, (30a) indicates that compo- 
nent channel i does not contribute to fN(E,) whenever 
OlZ?j]2 I 1, a condition which certainly holds when Z?* = 0. 
This implies that any optimal transmission scheme will not 
make use of those component channels for which & = 0. 
Therefore, to include this case in the solution, we take the 
sum in (30b) only over those i where E?, # 0. 

It is implied in [8, theorem 7.5.11 that Z(X’[O, N - 
11; Y’[O, N - 11) in (29) is optimized by choosing QN such 
that the transform-domain inputs X;, 0 I i < N, are statis- 
tically independent Gaussian random variables with mean 
zero and variances E[ X:2] = NE;, where the ci are given in 
(17b); i.e., (27) and thus (7) hold with equality. We note 
that NE, is the average input energy that must be used in 
the ith component channel. Since E?, = Z?G+ 1 I i < N, it 
follows that E, = eNpi, 1 I i < N, as can be seen from 
(17b). 

Invoking Lemma 3 leads to the result that the optimiz- 
ing qN in (21) is such that the time-domain inputs xk, 
0 I k < N, are statistically correlated Gaussian random 
variables with mean zero and covariances fn, 0 I n < N, as 
given in (17a). Moreover, from (17a) and with equality in 
(27) it follows immediately that r. = E[xi] = EF, 0 < k < 
N. We conclude that the optimizing qN in (21) also satis- 
fies the stronger constraint (13) with equality; thus this q, 
is also the optimizing qN in (14) with the implication that 
cN( ES) = I”,( ES) for this qN. This completes the proof of 
Theorem 1. 

IV. RELATIONSBETWEENCHANNELMODELS 

This section is devoted to a proof of Corollary 1. Fur- 
ther, we also consider the case where the input symbols are 
chosen to be i.i.d. Gaussian random variables, and we 
show that the resulting information rate is readily obtained 
using the same approach as for capacity. 

In Section I we stated that for the NCGC, in contrast to 
the DTGC and the N-block DTGC, no need exists for an 
initializing input sequence. At the discrete-time instant 
k = 0 (when we assume that we begin to observe the 
output), the initial state of the basic channel model of the 
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NCGC is represented by the subsequence x[ N - M, N - 11. 
This means that the linear convolution in (1) can be made 
into a circular convolution if we choose xk = x~+~, - M  
5 k < 0. Conversely, by letting xk = 0, N - M  I k < N, in 
(11) the circular convolution becomes a linear one. In the 
following we shall frequently use these facts to establish 
fundamental relations between the three channel models 
introduced in Section I. 

A. Proof of Corollary 1 

Theorem 3: The capacities of the NCGC and channels 
of the N-block DTGC type are related by 

(l-M/N)~N~M(NE,/(N-M)) 

5i;,(E,) I (i+ M/N)&+,(E,). (31) 

Proof: The lower bound in (31) is proved first. Defin- 
ing 

N-1 

PO, N-l = kFoE lxk21 (324 

and using the result cN( ES) = fN( ES) obtained in Section 
III, we obtain from definition (21) 

N’N(Es) 

2 sup Z(x[O, N-l]; j[O, N-l]) 

( 
&I. N- 15 NE, 

x,=O.N-Msk<N ) 

= sup Z(x[O, N- ~-11; y[o, ~-11) 

2 sup 
(13,,,-~-1~Wl 

Z(x[O,N-M-l];y[O,~-M-I]) 

= (N- M)t,-,(NE,/(N-M)) (32b) 

where the suprema are over all probability densities qN 
satisfying the indicated constraints. The first inequality 
holds because an additional input constraint can only 
decrease average mutual information, and the first equality 
holds because circular convolution becomes linear con- 
volution for this input constraint. The second inequality 
holds because information can only be lost if the received 
sample vector is truncated [8, pp. 16-271, and the last 
equality follows from definition (8). 

The upper bound in (31) is proved by assuming, for 
notational convenience, that the first input digit is trans- 
mitted at time instant k = - M, i.e., we let m  = - M  in 
(4). Thus 

cN + M)eN+M(Es) 

2 cN+ M)zN+M(Es) 

2 sup 

i 
E[n,Z]<E,,-Mlk<N 
xk==xN+k,-Msk<O > 

+Z(x[-M,N-l];y[-M,N-1]) 

2 sup Z(x[O, N -11; y”[O, N-l]) 
(E[x:]~E,,O~k<N) 

= Ni;,(E,) (324 
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where the first two inequalities hold because stronger input 
constraints can only decrease average mutual information. 
The third inequality holds because of truncation of the 
input and output sequences and because the constraint 
xk =  XN+k, - M  s k < 0, implies that circular and linear 
convolution coincide. The last equality follows from defi- 
nition (14). From Theorem 3 and definition (9) one im- 
mediately has the following corollary. 

Corollary 2: The quantity ?(E,), defined as the limit as 
N + cc of the capacity of the N-block DTGC c,( E,), 
may be obtained as 

C^(E,) = ,$im_cN(E,). (33) 

Lemma 4: The optimized average block mutual infor- 
mation of the DTGC, defined in (6b), and the capacity of 
the NCGC are related by 

(l- M/N)IN-,tt(NE,/(N- MI> 

2 cN(4) 2 (I+ MI’N)I~+~(E,). (34) 

The lower bound in (34) follows directly from (32b) and 
the obvious inequality C?,( ES) 2 IN( E,), and the upper 
bound is implicit in (32~). From Lemma 4 and definition 
(6), one obtains the following. 

Corollary 3: The capacity of the DTGC, C( E,), may be 
obtained as 

C(E,) = lim cN(Es). (35) 
N-m 

Corollary 1 (Section II) now follows from Corollaries 2 
and 3 and definition (15). 

B. Information Rate for White Gaussian Inputs 

A further interesting relation between channel models of 
the DTGC and the NCGC types may be obtained by 
choosing qN such that the inputs xk, 0 I k < N, are i.i.d. 
Gaussian random variables with mean zero and variance 
ES. Call the resulting channel model DTGC-G and 
NCGC-G to distinguish them from the DTGC and the 
NCGC, respectively. For the DTGC-G we define the 
information rate 

N-l 

)&N-l c G(IE?,12) 
r=O 

N-l 

= $mm(2n)-’ c G(]H(X,)12) Ax, 
i=O 

= (2~7~7~ G(IH(A)12) dh. (40) 
--n 

where 

I’( E,) = zrnMIz( ES) (364 

The first part of Theorem 2 is now proved by Corollary 
3 and application of Lemma 5 to the parametric expres- 
sions in (16). Using the fact that IH( = ]H( - X)], 1x1 I 
71, leads to the final result (19). 

I;(ES) = N-‘I(x[O, N-l]; y[O, N-l]) (36b) 

with x[ - M, - l] as in (6~). Similarly, for the NCGC-G we 
define 

i;(E,) = N-‘I(x[O, N-l]; y”[O, N-l]). (37) 

Theorem 4: The average block mutual informations of 
the DTGC-G and the NCGC-G (in bits per channel input 
symbol when logarithms are taken to the base 2) are 
related by 

Cl- wwcLw 

Assuming that ES is finite, it can be shown that the real 
covariance sequence r”[O, N-l] in (17) is positive definite 
[17, p. 4731, thus confirming that the components of the 
input sequence x[O, N-l] belong to a (wide-sense) sta- 
tionary random process. The space over which this process 
is defined is N-dimensional. We  may now generalize and 
consider the case where N --f co. The covariances r,, = r _  ,,, 
0  5 n < co, exist as the Fourier-Stieltjes coefficients of the 
spectral distribution function F(A), 1x1 < r, in the form 

rn=E[xk+,,xk]=Jv e’“‘dF(X), -co<k<w, 
--s 

(41) 

sf$(E,) 5 (~+M/N)I;+,(E,) (38a) provided that F(X) 2 0 is absolutely continuous and non- 

where 
N-l 

f‘(E,) = (2N)-1 c log[1+2(E,/N,)J~~1’]. (38b) 
i=o 

Corollary 4: The information rate of the DTGC-G, 
I’(E,), is obtained as 

Z’(E,) = >mmf$(EI). (39) 

Theorem 4 is proved in Appendix II; Corollary 4 follows 
directly from (38a) and definition (36a). 

V. DERIVATION OF C( ES) AND I’( ES) 

In this section we prove Theorem 2 (Section II) and 
evaluate (39). In Section I we introduced the hypothetical 
NCGC which was described within an N-dimensional 
space. The relations derived in Section IV indicate, how- 
ever, that the circularity restriction imposed becomes less 
and less important as N is increased. Thus the infinite- 
dimensional generalization of the results obtained for the 
NCGC (NCGC-G) will yield the corresponding results for 
the DTGC (DTGC-G). W ith respect to N, the NCGC 
(NCGC-G) and the DTGC (DTGC-G) are thus asymptot- 
ically equivalent. 

From (16b) and the expression for the channel transfer 
function in (2), it follows that [Gil2 = IH(Ai)12, 0 < i < N, 
whereX,=iAX,,O<i<L, X;=(i-N)Ah,, L<i<N, 
and Ax, = 27~/N. We  shall make use of the following 
simple property of Riemann integrals. 

Lemma 5: Let G( .) be a continuous real-valued func- 
tion. Then 
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decreasing in the interval IX] 5 YT, F( - a) = 0, and F( VT) 
= r. <co [17, pp. 474-4761, [18, pp. 8-181. On the other 
hand, (17) and Lemma 5, with eI = eNei, 1s i < N, give 

N”-“, Fn = (2n)-‘Jc S,( A)ej”‘dh (42) 
-57 

where S,(A) is given in (20b). For the relation 
rn = lim F, 

N-CC 
(43) 

to hold, it follows by comparison of (41) and (42) that 
F(X) must be of the form 

F(X) = (2~) -‘/” S,(v) dv, JXII77. (44) 
-37 

The right side of (44) represents F(A) as required by (41). 
In particular, F(X) 2 0, F( - ~7) = 0, and F(X) is nonde- 
creasing since S,(X) 2 0. Furthermore, using F0 = E, (The- 
orem l), it follows from (42) and (44) that 

F(n)= lim Yo=ES. (45) 
N-CC 

Therefore, (43) is valid, and we obtain (20a) from (42) 
using the fact that S,(h) is an even function. It follows 
that the capacity-achieving input process of the DTGC, 
{ xk }, - co < k < co, is zero-mean Gaussian having a con- 
tinuous spectral distribution function F(X) with corre- 
sponding spectral density S,(h). As a consequence, we 
obtain the result that capacity is achieved when all inputs 
xk, - 00 < k < co, have the same average energy ES. 

From (20b), we note that (19) has the well-known 
water-filling interpretation of capacity [8, p. 3891. For 
C( E,) to be finite, a constraint must be placed on H(X). 
Assuming 0 < 0 < cc and using ln[max(z,l)] 5 ln(l+ z) 
5 z, z 2 0, (19a) yields the sufficient condition 

I’(E,) = (2+1~?og[1+2(E,/No)]H(X)]2] dX. 

J “IH(h)12dh <co (46) 
0 

for the capacity to be finite, which is equivalent to stating 
that the unit-sample response of the channel filter, h[O, M], 
has finite energy. This completes the proof of Theorem 2. 
Finally, we invoke Lemma 5 to obtain IG(E,) from (38b) 
and Corollary 4 as 

the channel where the inputs are subject to a per block 
average-energy constraint (N-block DTGC), capacity re- 
sults were previously obtained using asymptotic properties 
of Toeplitz forms [9]-[13]. However, the validity of 
Corollary 1 was (to our knowledge) never formally proved. 
Moreover, the capacity of the NCGC, c’,( E,), can be used 
to approximate the capacity of the DTGC, C(E,), to any 
desired degree of accuracy as N increases. This may be of 
some interest when C(E,) is to be evaluated numerically. 

As an additional result, we obtained the solution for the 
information rate of the DTGC-G, IG(E,), where the in- 
puts are chosen to be i.i.d. zero-mean Gaussian random 
variables with fixed average energy E,. This result was also 
obtained without resorting to methods which require the 
theory of asymptotic eigenvalue distribution of certain 
Toeplitz covariance matrices. 

Finally, note that our method is not applicable to the 
case where the channel memory is unbounded (M = co). It 
should be straightforward, however, to extend our ap- 
proach to the more general case of the discrete-time Gauss- 
ian (vector) channel with multiple inputs and outputs [lo], 
[12], [13] provided that the channel memory is finite. 

APPENDIX I 

Proof of Lemma 1: We want to show that the B,‘, 0 I i < N, 
are Gaussian random variables with 

E[ B:] = 0 and E[ B,‘B;] = No21CJ26,_,, O<k<N. 

(1.1) 

It follows from (22a) that the complex B, = C,q, 0 I i < N, are a 
weighted sum of the z+, 0 I k < N, which are (by definition) real 
i.i.d. zero-mean Gaussian random variables. Therefore, the B: 
obtained from (24a) are also zero-mean Gaussian. To prove the 
covariances in (I.l), it is required to evaluate the expectations 
E[ B,RB/], E[ BPBI], and E[B,‘B,‘], 0 I i < L, 0 I k I L. We first 
form the products BpBf, B,RB,‘, and B,‘B,’ by substituting 
B,R = (B, + B,*)/2 and B,‘= - j(B, - B,*)/2 to obtain 

B,RB,R = ( B,B, + B,B,* + B,*B~ + B,*B,*)/~ (1.2a) 

B,RB,‘= - j( B,B, - B,B,* + B,*Bk - B,*B,*)/4 (1.2b) 

Since E[B,*B,*] = (E[B,B,])* and E[B,*B,] = (E[B,B,*])*, the 
expectations of the products in (1.2) can be expressed in terms of 

B,‘B;= -( B,B, - B,B,* - B,*Bk + B,*B,*)/4. (1.2~) 

(47) E[ B, Bk] and E[ B,B,*] where 

E[B,B,I =(C;Ck>E[~%I 
VI. SUMMARYANDCONCLUSION = 

The canacitv of the discrete-time Gaussian channel with 
I  4 

ISI, where the inputs are subject to a per symbol average- and 
energy constraint (DTGC), has been derived. The result E[B,B,*l =(C,C,*)E[LIIU,*l 
was obtained through a novel indirect approach by in- O<i< L. 
traducing first the concept of the N-circular Gaussian 

= Nu*~C,~~~,-,, (1.3b) 

channel (NCGC) whose capacity is readily derived using In (1.3), we have used E[u,,u,,] = u*S,,-~ to obtain 

properties of the discrete Fourier transform (DFT). The N-l N-l 

capacity of the DTGC was then found with the help of E[q&] = c c E[u,,u,]~~‘~-~’ 
m=O n=O 

simple relations which were proved to hold between the 
different channel models. Studying first the hypothetical 
NCGC provides a better understanding of the DTGC. For 

N-l 

m=O 

i+k=Omod N 
otherwise (1.4a) 
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and  
N-l N-l 

E[l@J,*] =  c c E[u,I.J,]&~~+~” 
m=O n=O 

N-l 

=u2 c ilGm(r-k’= No’&,, Or is L. (1.4b) 
m=O 

Equation (1.4) is a  consequence of the orthogonality relationships 
between powers of the exponential  !& [15, p. 881.  Taking expec- 
tation on  both sides of (1.2) and  using (1.3) gives 

N~21C,12L~ 
r -B;] =  

i= OorL, Neven 1 0, N odd  

I .* -~ N odd  
N even 

(ISa) 

E[ B,‘B:] =  ( N/2)u2~C,~26;-k, 

(ISb) 

E[B,RB,‘] =O, O_ci<L, O<k<L.  (UC) 

From (24a) and  (1.5), it follows that the covariances E[ B,‘BL] are 
indeed as given in (1.1). The  B$‘, 0  I i <  N, are therefore uncorre- 
lated, and  since they are Gaussian, they are also independent.  

Proof of Lemma 2: Since transformation (26) is equivalent to 
the combination of transforms (22) and  (24), Lemma 2  is a  
special case of Lemma 1. The proof of Lemma 2  is obtained by 
replacing u[O, N - l] and  U[O, N - l] in the proof of Lemma 1  by 
6[0, N - l] and  B[O, N - I], respectively, and  letting C, =  1, 0  5  i 
<  N. 

Proof of Lemma 3: By definition, the B,‘, 0  I i <  N, are statisti- 
cally independent  Gaussian random variables with 

E[ B,‘] =  0  and  E[ B/B;] =  Nu,‘6,-,. (1.6) 
According to (26b), the bk, 0  I k <  N, are obtained from a  
weighted sum of zero-mean Gaussian random variables; there- 
fore, the b, are also zero-mean Gaussian. The covariances are 
obtained from (26b) as 

E[ b,b,,,] =  N-2 
i 

i f did,, E[ B/B,] 
1=0 n=O 

.cos(2Tki/N) cos(2rrmn/N) 

+ i Nf’ d,d,E[ B,‘B,;] 
i=o n=L+l 

.cos(2vki/N) sin(2nmn/N) 
N-l L 

+ c c 44,E[4’B,‘l 
r=L+l n=O 

.sin(2?rki/N) cos(2?rmn/N) 
N-l N-l 

+ c c d,d,,E[ B/B,:] 
r=L+l n=L+l 

.sin(2Bki/N) sin(2lrmn/N) 
1  

= N-’ 
i 

2  d,%,* cos(2rrki/N)cos(2nmi/N) 
i=O 

N-l 

+ c d,?uF sin(2lrki/N) sin(2?rmi/N) 
r=L+l 
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For N odd,  we find from (1.7) and  (26~) with u, =  u,,- I, 1  I i <  N, 

E[ b,b,,,] =‘N-’ ui +2  t q2[cos(2vrki/N)cos(2vmi/N) 
i r=l 

+ sin(2aki/N) sin(2nmi/N)] 
i 

=N-’ 
i 

ui+2; ufcos[2vr(k-m)i/N] 
i=l 1 

N-l 

= N-’ c u,*cos[2n(k-m)i/N], 
i=O 

O<k<N,O<m<N. (1.8) 

For N even the last equality is obtained similarly. The covariance 
matrix is completely specified by N different covariances since 
E[b, b,,,] depends  only on  the absolute (time) difference Ik - m( 
(the covariance matrix is circular, i.e., its first row specifies it). 
Letting m = k +  n  in (1.8) and  defining Y,, =  E[bk+,7bk], 0  I n  <  
N, completes the proof of Lemma 3. 

APPENDIX II 

Proof of Theorem 4: From definitions (37) and  (36b), we 
obtain the lower bound  in (38a) using arguments similar to those 
used in the development of (31). Thus 

N&$(&)?{Z(x[O,N-l];jj[O,N-11): 

x,=O,N-M<k<N) 

= Z( x[O, N - M-l] ; y[O, N - 11)  

>Z(x[O,N-M-l];y[O,N-M-l]) 

=(N- M)zL(EJ. (IISa) 

The upper  bound  in (38a) is proved similarly by using (4) with 
m = - M. Thus 

(TV+M)Z;+~(~,) 2  {z(x[-M,N-l];y[-M,N-I]): 

Xk=XN+k,- M<k<O} 

2  { Z(x[O, N-l]; y[O, N-l]): 

x.4 =XN+h 5  -M<k<O} 

=Z(x[O,N-l];j[O,N-11) 

=  Nf‘( ES). (Klb) 

To  prove (38b), we invoke Lemma 2  to show that the trans- 
form-domain inputs xl’, 0  pi <  N, are i.i.d. Gaussian random 
variables with mean  zero and  variance NE,. The equivalent 
transform-domain channel  model  is thus a  set of N parallel, but 
independent,  memoryless additive Gaussian noise channels each 
having zero-mean Gaussian inputs of variance NC,. The additive 
noise in the i th channel  is independent  and  zero-mean Gaussian 
with variance N( N,/2)(Z?,,(-2, as  previously shown in proving 
(28). The average mutual information between input and  output 
of the ith component  channel  is then simply given by [8, p. 321  

I( x,‘;Y) =(1/2)10g[1+2(E,/No)1~?,1~], (II.4 

and  (38b) follows immediately because the N component  chan-  
nels are mutually independent.  Clearly, component  channels 
where ii, =  0  do  not contribute to f$( E,). This completes the 
proof of Theorem 4. 
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