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Ahstrurf -A random coding strategy for discrete-time additive Gaussian 
noise channels with feedback is analyzed. It has long been known that 
feedback may  increase the capacity of such channels as long as the additive 
noise process is not white. We  prove that a strictly positive gain is always 
achieved. In addition, we prove that as the signal power goes to zero the 
ratio of feedback capacity to capacity without feedback may  be strictly 
greater than one if the noise spectrum has a null. This is not the case when 
the noise spectrum is bounded away from zero. We  also demonstrate that 
random coding, where the codewords are chosen from an ensemble of 
stationary Gaussian sequences, does not achieve capacity. 

I. INTRODUCTION 

W  HILE it has always been clear that feedback may 
increase capacity when the noise process is not 

white, the extent to which it can do so remains only 
partially explored. Butman [l] outlined a deterministic 
strategy, which he was able to evaluate only for first-order 
Markov noise, and demonstrated a strict increase in capac- 
ity. Schalkwijk and Tiernan [2] obtained upper bounds for 
the first-order Markov case, and Ozarow [3] has obtained 
bounds for the general case. Ozarow’s result applied to the 
Markov case yields upper bounds that are quite close to 
Butman’s lower bounds. 

In the present work we analyze a random coding strat- 
egy for discrete-time additive Gaussian noise channels 
with feedback and obtain an expression for the power 
required as a function of rate. We  have successfully evalu- 
ated this quantity for first-order Markov noise and for 
first-order moving average noise. Our result may be ex- 
pressed as follows: let the power spectral density of the 
noise be represented as 

s,,( e> = QP( P) I2 

where 6,: is the entropy power of the process {n}, and 
w 

P( 6~“) = Cpkelak 
0 

where p,, = 1 and P(z) (the analytical extension of P( erg) 
into the unit disk) has no zeros inside the unit disk. Let 
Q(efs) be a polynomial: 

M  

Q(e’“) = xqkefBk 
0 
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such that Q(z) (Q( e”) extended to the interior of the unit 
disk) satisfies 

Q(0) = epR 

lQ(z>l'~l 
and 

Then let 
Q(z) f 0, for ]z] cl. 

Y=; 
U,l 

be the ratio of average signal power to the noise process 
entropy power 15,:. and denote by { f( e”)} + the function 
derived from f(e”) by discarding negative powers of its 
Fourier series expansion. We  show that 

I{ P(eiS)Q(e~‘S)}+ 12d6’ (1) 

is achievable. 
While (1) is not particularly enlightening, it does allow 

fairly straightforward solutions in at least two cases: first- 
order Markov noise (as in Butman [l]) and noise whose 
spectrum is given by 

S,,(d) = $,,“]I + peiB12, 

i.e., a  first-order moving average process. 
Our results demonstrate a number of interesting facts. 

First, we show that, provided the noise process is not 
white, capacity is strictly increased. Second, we can show 
by use of (1) applied to the moving average channel that 
cases exist for which the following holds. Denote the 
power required to achieve rate R without feedback by 
P,,(R) and the power with feedback by PF( R); then 

40) 
dimOPNFO=IIl. 

This behavior is exhibited when ,S,,(0) is zero for some 
value of 13. Conversely, it can be shown that if S,,( 0) 2  6 > 0 
for all 8, then 

P,(R) 
di-mo P,,(R) =” 
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i.e., that feedback shows no gain asymptotically as R (or 
P) goes to zero. 

In addition our results demonstrate that the intuition 
obtained from channels without feedback is contradicted 
when feedback is available. The random codes we derive in 
the next section pile all of their energy on the point at 
which the noise spectrum is at its minimum, quite unliJ;e 
the case without feedback, where the signal is distributed 
as evenly as possible. 

Yet another interesting corollary of what follows is that 
random coding cannot achieve capacity for the feedback 
channel. In [l] Butman demonstrated a deterministic 
scheme similar to that introduced in [5] for the white 
channel Mth feedback. For the first-order Markov case, 
the only one he was able to compute, he achieves a rate 
strictly greater than ours. 

Our scheme is optimum among codes with codewords 
selected from the traditional random ensemble, with the 
addition of linear feedback. Since Ihara [6] has shown that 
Gaussian signals with linear feedback maximize mutual 
information, we are led to conclude that the best codes are 
either of the deterministic type employed in [l] or with 
codewords drawn from some hitherto-unexamined en- 
semble. 

II. RESULTS 

The coding scheme we will use is as follows. Let { Wi};r: 
be a codeword set whose code-words are drawn from a 
stationary Gaussian distribution with power spectral den- 
sity S,,.( 19). Provided 

reliable communication is possible when the codewords are 
transmitted over a one-way additive Gaussian channel 
whose noise samples { nJ} have power spectral density 
fue). 

Now let { ai}y=i be an arbitrary sequence, and at time i 
transmit the variable 

cc co 
x; = w; + &ljWi&, + &Yjnipj 

,l 1 

where wk and rzk are taken to be zero for k < 0. Of course, 
since we have assumed that feedback is available, then n, 
is known at the transmitter for all j < i. The received 
datum at time i is 

y,=wj+faiM;-i+ftXjn,-j+n,. 

Define 

1 

I 

j-l terms, 

i.e., vj is the N vector with j - 1 leading zeros followed by 
a unity element followed by ((~i, (Ye,. . . , (Y,+]). Then the 
N-vector of received variables is 

y=A(xSn) 

where A is a matrix in which the jth column (starting with 
0) is vi. 

Since A is subdiagonal and has ones on the diagonal, it 
is nonsingular and may be inverted. Premultiplying y by 
A - ’ yields 

y’=xfn, 

and if (1) is satisfied, reliable communication is possible. 
One would expect that the best transmitted datum, from 

the point of view of average power at time i, would be 

X,=W,-~[w;l~-,,~_,;~~,Y,]. 

However, if we follow this scheme, then w, + n, is a causal 
linear function of the {y }, so that the reverse is also true: 
Y, is a causal linear function of the { w, + n, }. Therefore, 
E[Wjl~-I, y-2,. * ., Y,] = E[w,(w,-, + n,-,; . ., w. + no], 
which is the representation we shall use. Thus the perfor- 
mance we achieve is the best possible using random codes. 

The power required on the i th transmission is 

Pj=E(X,2)=~~+$(UTIM,+.ol,+2curR, (3) 
where 0,” is the variance of wi, eri is the i-vector with 
elements (pi, fx2,. . . , (Y~, R, is the autocorrelation vector of 
process {w} omitting the R(0) term, and M,,, is the 
autocorrelation matrix of the stationary process { w + n }. 

We now digress to prove the following. 
Corollary I: Feedback strictly increases capacity when 

the noise process is not white. 
Equations (2) and (3) (with 0~; = 0) are exactly the para- 

metric expressions for capacity in the absence of feedback. 
Provided the noise process is not white, the optimizing 
S,,,(e) in the absence of feedback is not flat. Hence some j 
exists for which R,(j) is not zero. Therefore, by picking 

(y,= -%W 
I u,‘+ u,’ ’ 

and all other (Y~ = 0, we achieve the same rate as without 
feedback, but using 

PI= u,’ Rw) 
u,’ + u,” ’ 

strictly less than the power required without feedback. 
Since (nonfeedback) capacity is strictly monotonically in- 
creasing in power, capacity as a function of P is strictly 
increased. 

Returning to the main theorem, if we define 

r,,,(e’“) = fR,,>( j)e”(Ipl) 
1 

and 



then 

+2a~(eis)r,,,(4] de. (4) 

Let us choose s,,,(e) so that 

s,,.+,o> p w>+ &V) 

w> 

= lQ(e’“) 1’ 

where Q( .) is as defined in the introduction. 
The last integrated term in (4) may be written as 

because 

s,,.(e) = E R,(~)@J 
-cc 

and negative powers of ers will not contribute to the 
integral. Since 

wu = h+,,(e)- s,,(e), 
we may write 

Factoring S,., ,?( 8) as 

K+,,(e) = IC+Aeie> I’> 

we can write 

+2aP(ere)S,T+,,(efe) 
i 
h+,(e) - s,,(e) 

S,Sn( e”) I ‘-le I de 
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Completing the square in the integral yields 

P,,=o:-&/: l{g(e’e)}+12de 71 
+&/” ~ak(eie)S~+,(eie)+{g(eie)}+~2dB. 

-77 

Since the coefficients of ak(eie) may be chosen freely, 
we pick them to cancel the first k terms in { g(eie)} +. If 
{gl+ is in L,, then as k + cc the last term may be driven 
to zero. Now 

I{de’e))+ 12dB 71 

+ s,,(e>lQ(de> I’-2s,,(e)] de. 
Since lQj2 11 and S,,(e) 2 0, we see that 

so Tk may be driven to zero. The average power may 
therefore be written as 

Noting that 

{F(eie)eefe}+= {F(e’e)-Fo}+e-ie 

where 

we have 

&=t/” F(eie) de, --?i 

where 

&;+,,(e”) = (s,t,,,(e”))*. 

Defining 

g(e”) = (S,~+,,(e’“)-$7 (efe)Q*(eie))epre, 

we get 

=&r” I{F(eie)}+12dtl-F~, 
5-l 

P=oz-k]” ~{S~+,,(e’e)-S~(eie)Q*(eie)}+~2d~ 
n 

+2u~(e’e)S;+n(e’e)(g(e’e)}+l df3. 
+- 

i J 
,‘, i 

71 
S;+,,( de) de - -& 1: S,’ (eie)Q*(eie) dB)i. 

n 
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Since ]S,‘,.(e”)] * is the power spectral density of w + n, where Q(p) is the value of Q(z), the analytic continuation 
we have 

&Iv s;+,,(eie) de = &,+n, 
-77 

which from (2) is &e R. Therefore, 

~=u~-~~~,("'.(B)+I{S.~~*(~'~)}+I~ 

of Q(eie) into the unit disk, evaluated at z = p. Since 

/S,,‘(e’8)Q*(e’e)dB=/{S~Q*}+d0 

and 

-2S~+,(eie)S;(eie)Q(eie)) de 

+[&,leR-&/~/~(eie)Q’(eie)d0)2. 

Noting that 

S,“,,,(e”)S; (eie)Q(eie) = S,,(e), 

we deduce that 

P=u575J,~f2u,2 

+ ( SneR - &/“:z(e”)Q*(eie) de)* 

- &]: I{s,:Q*(e'")}+ l*de. 
71 

Dividing by 5,; and recalling that 

s,,(e) = f$f,21P(eie)12, 

we have 
2 

P( eie)Q*( e’“) de 

- &/: I{P(e’“)Q*(e”)}+ 12d0 
n 

which is (1). In Sections III and IV we examine the 
first-order Markov and moving average noise models in 
detail. 

III. MARKOV NOISE 

We evaluate (1) for the case 

s,(e) = 6:,21P(eie)12 

fJn2(l - P’) 
]I - peie12 ’ 

If Q(ele) has the Fourier series representation 

Q(e’“) = fqkeiek, 
0 

then 

{Sz(eie)Q*} + 
+ 

00 
pkqk 

= 
a- o 1-pe” = s,'(e")Q(p) 

11;;JlS,T(eie)12=&J” s,(e)de=u,“, 
n 

(1) becomes 
1 

-+(eR-Q(p))‘-&Q’(p) y= pp* 

and average power is minimized by maximizing Q(p). 
Now the analytic function Q(z) satisfies 

Q(0) = eeR 

lQ(z>l'~l, 1212 Il. (5) 

Since we have required that Q(z) have no zeros, then 

q(z) ClogQ(z) 
is analytic on the disk, and (3) implies 

q(0) = - R 

If we define 

Req(z) 5 0. 

w(z) = 
4(z) - 4(o) 

4(z) + 4(o) ’ 

then w(z) is analytic on the disk and 

w(0) = 0 

]w(z)]~<~ for all z such that ]z12 ~1, 

so by Schwarz’s lemma [4] 

IW(P>I 2 IPL 
which implies that 

Q(p) -xP( -Rz). 

By choosing 

Q(z) =~XP 
l- Ssgr(p)z 

-R1+Ssgn~P~z 1 : 

we can achieve 

Q(p) =exp -R [ (kg] 
for S arbitrarily close to one. Therefore, power arbitrarily 
close to 

L+(eR-exp[-R~~~2 y= lpp2 

-&exp( -2Rz) 

is achievable. In Table I we compare some achievable rates 
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TABLE I 
ACHIEVABLE RATESAND UPPERBOUNDSFORMARKOVCHANNELS 

Achievable 
Upper Bound 

P &F Butman Ozarow (Ozarow) 

p = 0.1 
0.1 0.1033 0.1224 0.1223 0.1880 
1.0 0.4860 0.5792 0.5757 0.6074 

10.0 1.3428 1.4365 1.4254 1.4415 
100.0 2.4514 2.4905 2.4197 2.4915 

1000.0 3.5982 3.6115 3.6055 3.6118 
p = 0.9 

0.1 0.3629 0.4229 0.4213 0.5390 
1.0 1.0521 1.1380 1.1325 1.1960 

10.0 2.0280 2.0944 2.0892 2.1211 
100.0 3.1379 3.1709 3.1678 3.1810 

1000.0 4.2847 4.2965 4.2945 4.3002 

with those of Butman [l] and upper bounds on capacity 
derived by Ozarow. 

IV. MOVING-AVERAGE NOISE 

We now evaluate (1) when 

s,,(e) = 8i,‘I P(e”) I2 

0,’ 
= l+]l+ pe”12. 

As before, if 

Q( e’“) = fqke”“, 
0 

then 

{S,+(e'e)Q*(e'e)}+=~~(qO+P(q~e'e+ql)) 
=~n(40+w1+p40eie)- 

Therefore, 

1  n 

z --n s S,‘(e’“)Q*(e’“) de = gn(qo + pql) 

and 

~~~{~,~(e")Q*(e'e)}+~2de=~~((qo+pql)2+p2q~). 

Since by hypothesis 

go = eCR, 

(1) becomes 

Y=~,,2+(~R-(40+p41))2-(90+p91)2-P29~ 

=u,‘+ e2R-2eR(q0+pq1)-p2q~ 

4 = x + e2R -2- p2e-2R -2peRql. 
%  

Again, we can apply Schwarz’s lemma to 

w(z) = 
logQ<+logQ<O> 
logQ(z)+logQ<O> 

to get ]w’(z)I I 1, which implies that 

IQ’(O) I= 1qJ 4 2RewR. 

Again by choosing 

we can achieve 

ql= 2Rsgn.(p)eeR, 

so that 

u2 
y = 3 - 2  + e2R - p2e-2R -4lplSR %  (f-9 

can be achieved for any S -C 1. 
As a special case consider p = 1, y + 0. Equation (4) 

becomes 

y = e2R - e-2R - 4SR. 

If y is small, so is R, so asymptotically 

1+2R+4R2+?R3... 
3  i 

- 1-2R+4+$R3... ( i -2SR 

=4(1-S)R+;R3. 

The solution to this equation is continuous in S and may 
be driven arbitrarily close to 

[ 1  l/3 
R=; . 

Since 8,: = u,,2/2, then rates close to 

R'= $ [ 1  l/3 

?I 
can be attained. 

On the other hand, without feedback, if we assume for 
convenience that 

s,,(e) = u,2(i-c0se), 
then for small power all the signal power will be dis- 
tributed near the origin, where 

s,,(e) - u;$ 

We  can solve the parametric expressions for capacity with- 
out feedback given by 

B’ 1 K 
R=L/ - 

277 -et2 -log s,(e) de 

where 

s,,(e’) = s,(- ey = K, 
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to obtain 

3 P 1’3 

i I 
c,,= --y-y . 

=n @?I 

This is not the case if the power spectral density is bounded 
away from zero. 
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