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Gaussian Multiaccess Channels with ISI:
Capacity Region and Multiuser
Water-Filling
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Abstract—The capacity region of a two-user Gaussian multiac-
cess channel with intersymbol interference (ISI), where the inputs
pass through respective linear systems and are then superimposed
before being corrupted by an additive Gaussian noise process, is
found. A novel geometrical method is given to obtain the optimal
input power spectral densities and the capacity region. This
method can be viewed as a nontrivial generalization of the single-
user water-filling argument. We show that as in the traditional
memoryless multiaccess channel, frequency-division multiaccess
(FDMA), with optimally selected frequency bands for each user,
achieves the total capacity of the A -user Gaussian multiaccess
channel with ISI. However, the capacity region of the two-
user channel with memory is, in general, not a pentagon unless
the channel transfer functions for both users are identical.

Index Terms—Multiaccess channels, intersymbol interference,
channels with memory, Gaussian channels, channel capacity.

I. INTRODUCTION

NFORMATION THEORETICAL LIMITS of memoryless

channels have been studied extensively since Shannon in
1948. The capacities and the capacity regions of single-user
and multiuser memoryless channels were found by Shannon
{1] and Ahlswede [2] (see also [3], [4]), respectively. However,
channels with memory did not receive as much attention as
their memoryless counterparts. This is partly due to the fact
that single-letter characterizations [S5] for the capacities of
channels with memory do not exist. Only a limiting expression
[6] is known for the capacities of single-user channels with
memory and a not uncommon misconception is to dismiss
limiting expressions for capacity as uncomputable. The classi-
cal example where limiting expressions can be not only readily
computed but lead to a celebrated solution is the single-user
Gaussian channel with intersymbol interference (ISI) ([7], [8],
[9], see also [10]).

In a recent paper [11], a limiting expression for the capacity
regions of multiaccess channels with memory was obtained.
Such a limiting expression was explicitly evaluated for some
channels with memory in [11] and [12]. In particular, the
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limiting expression is applied to the asynchronous code-
division multiaccess (CDMA) channel (which can be viewed
as a multiaccess channel with memory) [12] to obtain its
capacity region. In this special case, the capacity region can
be evaluated by solving an optimization problem with low
computational complexity. In this paper, we show that the
limiting expression of [11] can be used to obtain a computablé
capacity region formula for Gaussian linear vector multiple-
access channels with finite ISL.

A natural extension of the single-user channel with ISI to
the two-user case is shown in Fig. 1. However, we consider
a general linear multiaccess channel model in Fig. 2 where
the inputs and the output are vectors with possibly different
dimensions. By linearity, we can obtain an equivalent model
in Fig. 3 where there are two channels, one for each user,
and their outputs are superimposed before being corrupted by
noise. Throughout the paper, we concentrate on this channel
model with the only assumptions being that the channel is
linear and time-invariant with finite-length impuise response,
and the noise is stationary Gaussian and m-dependent (i.e., the
autocorrelation function has finite support, or in other words,
any two noise samples that lie more than m positions apart are
independent.) This model is a generalization of the classical
memoryless multiaccess channel to channels with memory, as
well as a generalization of the single-user channel with ISI to
the two-user vector channel with ISI.

The capacity of a single-user Gaussian channel with ISI
is obtained using the Karhunen—Lo¢ve expansion. This ex-
pansion decomposes the channel into independent parallel
memoryless Gaussian channels whose capacities are well
known; thereby reducing the problem to one of optimal power
allocation into various channels. It is crucial to note that the
kernel used in the Karhunen—Lo¢ve expansion depends on the
ISI coefficients. In the two-user Gaussian channel with ISI as
shown in Fig. 3, there are two sets of ISI coefficients, one for
each user. If both linear systems are identical, the traditional
procedures can be applied and the capacity region has been
obtained in [13], [14]. However, this is a very restrictive
assumption because it rules out any cases where both users
do not see the same channel. If the sets of ISI coefficients
are not the same, a similar decomposition into independent
memoryless channels cannot be applied since no kernel can
simultaneously decompose the signals from both users.

Therefore, in order to obtain the result in the multiuser case,
a new approach has to be used. It turns out that the circular
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Fig. 3. Equivalent model for Gaussian linear vector multiaccess channel.

channel methods of [12] and [15] can be employed here. This
approach enables an orthogonal decomposition of the channel
using the discrete Fourier transform (DFT) that is independent
of the ISI coefficients. In this paper, we employ these ideas and
the limiting expression for the capacity region of multiaccess
channels with memory in [11] to obtain the capacity regions
of the Gaussian multiaccess channels with ISL

What makes the single-user channel with ISI interesting
is not just its capacity formula, but also the well-known
geometrical water-filling argument used to obtain the optimal
input power spectral density (PSD). We extend the single-
user water-filling argument to the two-user case when the
inputs and the output are scalars. We derive a geometrical
method to obtain the optimal input PSD’s. It turns out that
this geometrical argument can be explained via two main
ideas: the equivalent channel idea and the successive decoding
idea (decode one user’s information while treating the other
user’s information as noise first and then decode the remaining
user’s information). The equivalent channel idea bears some
resemblance to the single-user water-filling argument in the
sense that it obtains graphically the optimal input power
distribution over the frequency domain. It can be applied
directly to the single-user channel to obtain the optimal input
PSD. Roughly speaking, in the two-user case, the equivalent
channel idea determines graphically the optimal distribution
of the total power over the frequency domain, while the
successive decoding idea determines, again graphically, the
optimal split of the total power among the users for each
frequency.

In Section II, the main theorem giving the capacity region
of a Gaussian vector multiaccess channel with ISI is presented.
Then, we specialize the result to the scalar case (inputs and
output are scalars) in Section III where we come up with
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a generalization of the water-filling argument to the two-
user case. Examples of some simple channels are-given to
demonstrate how the optimal power spectral densities are
obtained by the equivalent channel and successive decoding
ideas. As we will see, the generalization of the water-filling
argument to the two-user case is not straightforward except
when the channels seen by both users are identical.

II. CAPACITY REGION OF GAUSSIAN MAC WITH ISI

In this section, we consider a general multiaccess linear
channel with additive Gaussian noise shown in Fig. 2. It is
easy to see, by linearity, that the models in Figs. 2 and 3
are equivalent and they include, as special cases, the scalar
Gaussian multiaccess channel (MAC) with ISI in Fig. 1. From
now on, we shall concentrate on the equivalent model in
Fig. 3:

n
Z; = ZGin—j + H;Vi—j + Ni,
=0

(M

where Z; is the output of the channel in R, U; and V; are
symbols sent by user 1 and user 2 in IR? and IR?, respectively,
and N; is a zero-mean stationary Gaussian noise vector
process with autocorrelation function R;_; = E(N;NT ).
The power constraint requires each codeword of the kth user,
(ckoy* -+ s cr(n—1)), of each (N, My, Ma, €) code (see, e.g., [5]
for definition) to satisfy

| N1
2
= 3 llewll® < Wi, @
i=0
where ||| denotes the Euclidean norm on R? (resp. RY).

We assume that both channels have finite-length impulse
responses with length less than or equal to n, and the noise
process is an m-dependent stationary process (i.e., IV; and
N, are independent for all |i — j| > m.) These are crucial
assumptions in the proof of our result. However, the causality
assumption is introduced for convenience and ease of notation
only. The same result follows if the channel is noncausal,
provided that the impulse responses have finite lengths.

Since this channel is a special case of a general (not
necessarily linear) multiaccess channel with finite memory,
we can make use of a result in [11] which gives the capacity
region as a limit of the capacity regions, Cn, of a series of N-
block channels. Applying that result here and denoting by C
the capacity region of the Gaussian linear multiaccess channel,
we have

C = Closure (13611_335 CN) , G)

where
Cn =
UN-1yN-1
Z’Nﬁgi tr(E(U,UT)) < NWy
Yico t(E(VVT)) < Nwe
0< Ry < %I(UéV—l;YON—ll%N—l)
(Ri,R2): 0< Ry < IV LY Hug' ™)
Ri+ B < R0V )
4
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In (4), Uév -1 VON ~1 and YON ~! are the inputs and the output
of the N-block multiaccess channels. The inputs and the output
of the N-block channel are the N-vectors of the inputs and the
output of the original channel, respectively. The conditional
probability of the outputs given the inputs in the N-block
channel is induced by the original channel except for the first
t output symbols with ¢ being the maximum of n, the length
of the impulse response, and m, the length of the noise auto-
correlation function. The conditional output distribution is

N-1}, N—-1  N-1
PYON—llUON—l,VON——l (yO I’U,O » Yo )

= Pl o)

P (v g™

N—1,;;N—1 {N—1 N—l)
Z, T Y, ’

» Vg (5 )
As pointed out in [11], important aspect of this result is that the
conditional probability of the first £ output symbols given the
inputs can be arbitrarily assigned. This flexibility allows us to
define P appropriately so that the N-block channel becomes

YON—l —_ GON—I ®U67V—1 +Hé\/'—1

eVy T+ MY, (6)

where ® denotes the circular convolution and MY ™' are
Gaussian with mean 0 and E(M;M;) = R(i — j), where
() denotes the modulo N operation. (A similar formulation
for the circular N-block channel is used in obtaining the
single-user Gaussian channel with ISI [15].) Then, the discrete
Fourier transform can be used to decompose the N-block
channels into independent channels whose capacities can be
found easily. Using these ideas, we find the capacity region
of a two-user Gaussian multiaccess channel in the following
theorem.

Theorem 1: The capacity region of the two-user Gaussian
multiaccess channel is
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A*(w) denotes the conjugate transpose of A(w), and G(w),
H(w), and N(w) are the Fourier transforms of G;, H;, and
R;, respectively.

Proof: Appendix A. O

Remark 1: In the single-user case, it is easy to check that
the above capacity region degenerates in the multivariate (or
vector) case to that obtained in [16] and in the unvariate (or
scalar) case to the well known water-filling result (e.g., [8]).

Remark 2: Theorem 1 can be easily extended to include
compound and K -user channels. Since the limiting expression
in (3) and (4) can accommodate compound channels [11], it is
straightforward to generalize the result to the case where there
are several linear systems and the transmitters do not know
which one will be used. In such case, the capacity region of
the N-block channel, Cp, will be the union of intersections
of pentagons instead of the union of pentagons as in (4). The
intersection will be taken over all possible linear systems.
Using a similar characterization for K-user capacity regions as
in [17], one can easily generalize the result to the K -user case.

In order to get a better understanding of Theorem 1, we
consider two special cases in the following corollaries which
correspond to cases where the inputs and the outputs are
scalars.

Corollary 1: 1If both the inputs and the output are scalars
(ie., p q r = 1), then the capacity region of the
two-user Gaussian multiaccess channel is shown in (9) at
the page where Ti(w) = |G(w)[’/N(w) and Th(w) =
[H (w)[*/N (w).

Corollary 2: Suppose that both the inputs and the output
are scalars (ie, p = ¢ r = 1), and the channels for
both users are identical (i.e., G(w) = H(w) for all w). Let
T(w) 2 Ti(w) = Ta(w). Then, the capacity region of the
two-user Gaussian multiaccess channel becomes the pentagon

C = C =
£1(w) € RP*P, $y(w) € RI%¢ 0< By < 57 [y log[L + S1(w)T(w)] dw
Si(w) >0 Ywe [0,7] (R1,Rs): 0< Ry < 5 foﬂlog[l + So(w)T{w)] dw ¢,
L [ trSi(w)dw < Wi, i =1,2. Ri+ Ry < 5= [, log[l + S12(w)T(w)] dw
0< Ry < F(%4,0) (10)
(Ri,R2): 0 Ry<F(0,%2) ¢, (7) whereSi(w)=[c1— T‘l(w)]+, Sa(w) = [e2 ~ T-1(w)] ™,
Ri+ Ry < F(¥1,%9) Si2(w) = [e12 - T‘l(w)]+, and ¢i, a2, c12 are chosen so
where ' that
n 1 ("
F(A,B) = 2l/ log det ?/0 Se(w)dw =W, k=12, (1
T Jo
* -1 1 ™
I + G(w)A(w)G (w)N1 (w) 1 Sua(w) dw = Wi + Wy (12)
+ Hw)B(w)H* (w)N~ (w)]dw, (8) ™ Jo
0< Ry < & [y log[l + 81 (w)T(w)] dw
C= U (R1,Re) 0 < Ry < 5[5 log[1 + Sa(w)To(w)] dw : ®

S1(w),Sz(w)ER

Si;(w)>0 V we(0,r]

1 T a i
?fo Si(w) dw<Wi;,i=1,2.

Ri+ Ry < 5= [ log[l + S1(w)Ti(w) + Sz(w)T2(w)] dw
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The proofs of these corollaries are in Appendix B. A novel
two-user water-filling argument to obtain the optimal input
PSD’s is presented in Section III. Corollary 2 corresponds
to the simplest scalar channel where the users’ channels are
identical and the result agrees with those reported in [13] and
[14]. In such case, the capacity region is a pentagon and the
corresponding optimal input PSD’s can be obtained through
the classical single-user water-filling argument.

III. Two-USER WATER-FILLING

In this section, we consider the Gaussian multiaccess chan-
nel with ISI in the scalar case (i.e, p = ¢ = r = 1) and
give a geometrical characterization of the optimal input power
spectral densities (PSD’s). It is important to note that unlike
the single-user channel, the two-user capacity region is a
two-dimensional region and different PSD pairs are needed
to achieve different boundary points of that region. Hence,
instead of finding the optimal PSD that achieves the capacity
as in the single-user case, the task in the two-user case is
to find, for each boundary point of the capacity region, the
corresponding optimal PSD pair.

We start by reviewing the classical single-user water-filling
argument in Section III-A. Then, a special case of the two-
user channel in which the channels seen by the users are
identical (i.e., G{w) = H(w)) is studied in Section III-B,
where we show how the single-user water-filling argument
can be applied repeatedly to obtain the optimal PSD pairs.
Unfortunately, this is no longer true in the general case when
G(w) # H(w). We discuss the difficulties in extending the
water-filling argument to the two-user case in Section III-C.
After briefly outlining the new ideas needed in the two-user
water-filling argument, we present in detail the procedure and
the interpretation for obtaining the PSD pairs that achieve the
total capacity and other boundary points in Section III-C-1
and III-C-2, respectively. Finally, some examples are given in
Section III-D.

A. Classical Water-Filling

The classical water-filling argument is a geometrical method
to obtain the optimal input PSD that achieves the capacity. The
optimal PSD is the unique solution to the following equations:

S(w) = [e— T Y (w)] ¥, (13)

w=1 / S(w) dw, (14)
T Jo

where W is the total power and T(w) = |H (w)[*>/N(w), the
magnitude square of the channel transfer function over the
noise power spectral density. The geometrical interpretation
is illustrated in the water-filling diagram as shown in Fig. 4.
We can imagine that T~ !(w) is the bottom of a container
and a fixed amount, W, of water (power) is poured into the
container. The water (power) will distribute itself to maintain a
water level, c. Then, the shaded area indicated in Fig. 4 gives
the optimal PSD.

The water-filling argument gives a nice interpretation for
obtaining the optimal PSD. As we will see in the sequel, in
order to extend the method to the general multiuser channel,
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Fig. 4. Classical water-filling argument for single-user channel.
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Fig. 5. Capacity region when G(w) = H(w), Yw € [0, 7].

we need to modify the water-filling diagram to an equivalent,
but less appealing form. However, in the case where both
channels seen by the users are identical (i.e., G(w) = H(w)),
the problem is greatly simplified. We show in the next section
how the classical water-filling method is used to obtain the
optimal PSD pairs in that particular case.

B. Two-User Channel (G(w) = H(w))

We now consider the two-user channel with G(w) = H(w).
It turns out that this special case avoids most of the difficulties
we will encounter in the general multiaccess channel, and only
the classical water-filling argument is needed to obtain the
optimal PSD pairs.

In Corollary 2, we found that the capacity region of this
channel is a pentagon as shown in Fig. 5 and the optimal PSD
pair achieving point C at the corner of the capacity region is
the solution of the following equations:

S1(w) + Sa(w) = [er = T (w)] ", (15)

l/w Sy(w) + Sa(w) dw = Wi + W, (16)
T Jo
Si(w) = [er =T ()], (@7

The geometrical interpretation is similar to that in the
single-user case, and is illustrated in Fig. 6. The water-filling
argument is applied twice: first with the sum of the users’
power to obtain the sum of the PSD’s, and second with the
power of user 1 to obtain the PSD of user 1.

By symmetry, the optimal PSD pair achieving point B can
be obtained using the same procedure with the roles of the
users interchanged. The points on line BC can be achieved by
time-sharing between the coding strategies for points B and
C; however, if stationary inputs are desired, those points can
also be achieved by PSD pairs equal to convex combinations
of the optimal PSD pairs for points B and C. In fact, any
nonnegative PSD pair satisfying (15) and the power constraints
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Fig. 6. Optimal PSD’s for point- C' in the capacity region when
G(w) = H(w), Yw € [0, 7].

achieves a point on line BC. In particular, frequency-division
multiaccess (FDMA) with appropriately selected bands always
achieves the total capacity. As we will see in Section III-C,
this remains true even when the channels seen by the users
are not identical.

The relative simplicity for obtaining the optimal PSD in this
special case is mainly due to the fact that the capacity region
is a pentagon. Once we determine the optimal PSD pairs for
the corners, the optimal PSD pairs for all points along the
side of the pentagon are just convex combinations of the PSD
pairs for the corners. Since each corner represents a rate pair
achieving both the total capacity and the single-user capacity
of one user, the PSD of that user and the sum of the PSD’s can
be obtained by applying the classical water-filling argument
twice. Notice that in the general case, when other points are
under consideration, no user achieves its single-user capacity
and hence, none of their optimal PSD’s can be obtained via
the classical water-filing argument.

This procedure can be generalized straightforwardly to the
K-user channel in which all users see the same channel. In
that case, the capacity region is a polytope. For example, in the
three-user case, S1{w) + Sa(w) + S3(w), S1(w) + S2(w), and
S1(w) can be obtained via three water-filling diagrams with
total power Wy + Wo + W3, W1 + W, and W1, respectively.
Then, the resulting PSD triple achieves a vertex of the capacity
region. With different combinations of users, we can obtain
six different PSD triples, each achieving a vertex in the
capacity region for the three-user channel. Similarly, convex
combinations of the PSD triples for three vertices achieve all
points on the plane connecting those vertices.

C. Two-User Channel (G(w) # H(w))

Now, we proceed to the general two-user case where the
channels seen by the users are not necessarily identical.

The capacity region of the general two-user channel is a
convex region, but not necessarily a pentagon. One way to
describe the capacity region (a convex set in the positive
quadrant) is to bound it by straight lines (hyperplanes), aR; +
(1-a)Rs = C(a), for « € [0,1]. The capacity region can
then be written as

C= {(Ri,R2) €R] :aR; + (1 — &)Ry
< C(a), Va € [0,1]} (19)

The points achieving aR; + (1 — @)Rgy = C(«) with equality
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are the boundary points of the capacity region. The objective
of the two-user water-filling argument is to find, for each
a € [0,1], the optimal PSD pair maximizing C(«) and thus
the maximum achievable aR; + (1 — a)Rs. It is also useful
to view « as a parameter determining the relative priorities of
the users. The closer « is to 1, the higher the priority given
to user 1.

In contrast to the special case considered in the previous
section, this general channel poses two main difficulties in
obtaining a generalized water-filling argument.

1) The capacity region is no longer a pentagon and the
optimal PSD pair for every boundary point, not just the
corners, have to be found using a generalized water-
filling method. Unlike those corners in the special case
where the highest priority is given to one user to achieve
its single-user capacity, a typical boundary point in the
general case maximizes a weighted average of the users’
rates. In that case, no user can have an optimal PSD
equal to its single-user optimal PSD, and neither of
the PSD’s can be obtained via the classical single-user
water-filling argument.

2) Since the two channels seen by the users are differ-
ent, we have two curves, T, ' (w) 2 R(w)/|G(w)|®
and Ty '(w) £ R(w)/|H(w)|?, and two water-filling
diagrams. In general, the PSD’s of the users cannot be
found separately in two water-filling diagrams since their
signals interfere with each other. At first glance, it is not
clear how these two curves should be combined in one
water-filling diagram with a single water level in the
multiuser case.

Despite these differences, the study of the special case in
the previous section does help to develop a general approach.
As in the special case, we find the sum of the PSD’s first,
and then split the sum into two optimal individual PSD’s.
In the process, we need two ideas: the equivalent channel
idea that leads to the proper combination of the two curves,
T (w) and Ty *(w), to find the sum of the PSD’s, and the
successive decoding idea that determines the optimal split of
the PSD sum into individual PSD’s. We explore the equivalent
channel idea in Section III-C-1 where it is used to obtain
the optimal PSD pair for the boundary point achieving the
total capacity (i.e., « = 1/2). It turns out that when the two
users are given the same priority, the split of the PSD sum
is trivial and only the equivalent channel idea is needed. In
particular, the PSD’s of the users should never overlap and
FDMA with appropriately selected bands always achieves the
total capacity for any number of users. Then, in Section II-
C-2, the successive decoding idea is introduced and combined
with the equivalent channel idea to find the optimal PSD pairs
for all the boundary points of the capacity region.

1) PSD Pair for Achieving Total Capacity (Equivalent
Channel Idea): In this section, we consider the optimal PSD
pair for the boundary point achieving the total capacity. In
other words, we find the optimal PSD pair maximizing the
rate sum, R; + Ro, over the capacity region. It turns out that
the total capacity can always be achieved by FDMA, even for
channels with more than two users.
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Fig. 7. Equivalent channel idea.
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We shall motivate the equivalent channel idea by consid-
ering a two-user channel where G{w) and H(w) are two
bandpass filters with nonoverlapping passbands. In that case,
the multiaccess channel decouples into two single-user chan-
nels and the optimal input PSD’s can be determined separately
via two single-user water-filling diagrams. Depending on the
gains of the filters and the input power constraints, the water
levels may not be the same. This difference in the water
levels causes no problem in this special case because the
PSDs optimal for the single-user channels will never overlap.
However, in the general case, the PSD’s have to be determined
in one water-filling diagram with a single water level and
this difference in the water levels prevents us from combining
the single-user water-filling diagrams directly. The equivalent
channel idea introduces channels equivalent to the original
channels, but with scaled versions of the respective water
filling diagrams. Then, by proper selection of the equivalent
channels, the two water-filling diagrams can be properly
scaled, and then combined into one diagram with a single
water level where the sum of the PSD’s can be determined.

We now proceed to define the equivalent channels. For
any linear additive Gaussian noise channel with transfer func-
tion, H{w), and power constraint W, we define a family of
equivalent channels, parameterized by b > 0, each of which
has transfer function H (w)/v/b and power constraint bW as
shown in Fig. 7. Then, the optimal PSD for the equivalent
channel is the unique solution to the following equations:

§(w)

i/ S(w)dw = bW .
T Jo

[ — 6T~ (w)] ", (20)

@1

The capacities of the equivalent channel and the original
channel are naturally the same while the optimal PSD of the
equivalent channel is a scaled version of the optimal PSD of
the original channel.

In order to extend the water-filling argument to the two-user
case, we need to scale two water-filling diagrams such that
they can be combined appropriately to maintain a single water
level for all users. Hence, using the equivalent channel idea,
we define a modified version of the water-filling diagram, as
shown in Fig. 8, in which the water level is fixed to 1, and the
bottom of the container is scaled by adjusting the parameter
b such that the amount of water (power) is equal to bW, the
power constraint of the equivalent channel. As in the classical
water-filling argument, the height of the shaded region gives
the PSD of the equivalent channel or the PSD of the original
channel scaled by b.

The equivalent channel idea is applied to the two-user
channel in Fig. 9 where the equivalent two-user channels are
parameterized by b; and by. If we find the optimal PSD pair
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bT (w)

Y :
Fig. 8. Water-filling diagram for the equivalent channel.
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Fig. 9. Equivalent channel idea applied to the two-user channel.

for one of these equivalent channels, we can find the optimal
PSD pair for the original channel by scaling.

The optimal PSD pair, (S1, S2), achieving the total capacity
is the solution to the following equations:
S‘k (w)

, k=1,2,
b

Sk(w) (22)

~

S1(w) + Sa(w) = [1 - min{bs T (w), bo Ty H(w)}] T, (23)

1 (", A
- / S1(w) + So(w) dw = bWy + b, Wa,  (24)
1]

[-6T7 @), 0T (W) S 6T W), (o5
0, otherwise,

S1(w)
{

1 / 81 (w) dw = by Wy . (26)
s 0 .

The geometrical procedure is shown in Fig. 10. We first fix
the water level to be 1 and plot the two curves, b1 T (w)
and byT; ! (w), on the same diagram. Treating the minimum
of the two curves as the bottom of the container, we adjust the
parameters b; and by such that a) the total amount of water
is equal to byWy + boW> and b) the amount of water in the
region where blTl_l(w) < bgTz_l(w) is equal to by W7. Then,
the two shaded regions in Fig. 10 give the PSD’s for the two
users.

Using the equivalent channel idea, we can see that the
parameters by and b, select two equivalent channels such that
their water-filling diagrams can be combined into one diagram
with a common water level equal to 1. The selection of these
parameters depends on the shapes of 7! (w) and T;; ! (w), and
the power constraints, W; and W, in a complicated fashion.
However, we can obtain b; and by graphically as described
above (or numerically).
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Fig. 10. Power spectral densities achieving total capacity.

Regarding this procedure, we want to justify a) why do we
treat the minimum of the two curves as the bottom of the
container in determining the sum of the PSD’s? b) why do
we split the sum of the PSD’s into two individual PSDs as
in (25)? The rationale behind these can be seen by examining
the equivalent channel model in Fig. 9 again. Using the same
idea as in the single-user ISI channel, we consider a two-user
ISI channel as a series of parallel independent channels, each
of which is a two-user channel, Y = (|H{w;)|/vb1)X1 +
(|G(w;)|/vb2 ) X2 + N(w;). Let us imagine that there is a
virtual user who has total power equal to bW + baWa.
We assume that this virtual user can transmit over all the
parallel channels and in each parallel two-user channel, he
can transmit over either or both subchannels simultaneously.
Then, the virtual user has to determine the distribution of
the total power over these parallel channels as well as
the split of the power allocated for each two-user channel
between its two subchannels. For each parallel channel, since
the output of the two subchannels are superimposed before
being corrupted by noise, the optimal split between the two
subchannels is to send all the power over the subchannel with
a larger gain as this strategy maximizes the power of the
superimposed signal (|H (w;)|/vb1 ) X1 + (|G(w:)|/v/b2 ) X2
and hence the signal-to-noise ratio. Therefore, each two-
user channel appears to be a single-user channel with
gain equal to max{(|H(w;)|/vBr),(IG(w:)|/v/bz)} and
the distribution of power over the parallel channels can
be obtained using the single-user water-filling argument
with min{b; Ty (w),boTs *(w)} as the bottom of the
container. Moreover, the water (power) over the region where
b Ty H(w) < boTy'(w) is the PSD transmitted over the
channel seen by user 1 and the remaining part is the PSD
transmitted over the channel seen by user 2. Hence, as with
the multiaccess channel without ISI, FDMA maximizes total
capacity even in the presence of ISL

Although we have only discussed the two-user case, the
argument holds for arbitrary number of users. The following
theorem shows that FDMA achieves the total capacity for any
K -user Gaussian multiaccess channel with ISI and its proof
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illustrates the recursive procedure to obtain the optimal PSD’s
(or the frequency bands) for the users.

Theorem 2: For any K-user m-dependent Gaussian multi-
access scalar channel with finite intersymbol interference and

power constraints W1, .-, Wgk:
K n
Zi= Y HijXuij+Ni, 27)
k=1 j=0

the total capacity can be achieved by FDMA with optimal
input PSD K-tuple, (S1(w),- -, Sk(w)), where

S’k(w)

Sk(w) = b

(28)

(28) (shown at the bottom of the page), and by, - ,bx are
chosen such that

L / Sp(w) dw = bWy, (29)
™ Jo

for k =1,---,K.

Proof: Generalizing the result in Theorem 1 and applying
it to the scalar case where both the inputs and the output are
scalars, we find that the total capacity, C, is

1
C= max R
Sk(w) € Ry Yw € [0, 7] 27
%fowsk(w)dwf Wi, k=1, K
w K
log|1 +ZSk(ﬂ))Tk(w) dw, (31)
0 k=1

where Ty(w) = |Hp(w)|?/N(w), the magnitude squared of
the kth user channel transfer function over the noise spectral
density. Using the equivalent channel idea, we have that for
any (b1,---,bx) € R¥4,

Sk(w) =

1
C= . max -~
Sk(w) € Ry Yw € [0, 7] 27
%foﬂ Sp(w)dw < bWy, k=1,---, K.
K
" NN
: / log |1+ Sk(w)_k_b(w_)} dw (32)
1
S N max .
Sk(w) € Ry Yw € [0, 7] 2
LTS (w)dw < bW, k=1,--, K.
K
’ 3 T;(w)
. /0 log |1+ Z Si(w) J’=I{1,?-'§K b jl dw
k=1
(33)
(10T w)] ", i 0Ty (w) < BTN (w), foralll #k, .

0, otherwise .
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1
= . max —
S(w) € Ry Vuw € [0 ] 27
L f3 S(w)dw < iy kWi
f/ log[l—}—S( w) max M} dw, (34)
0 j=lK b;
where the optimal $(w) = Zszl S, (w) can be obtained via
the single-user water-filling argument:
X +
. I ) .
2 Sk(w) = [1 pJin b T, (w)] , (35

(36)

1 [T, X
?/ S(w)dw: E kak-
0 k=1

Now, we have a set of upper bounds on the total
capacity parameterized by (b1,---,bk). If there exists
(b1,--,b K) satisfying (29) and (30) it is easy to check that
(81 (w ) -, Sk (w)) obtained in (29) satisfies (35) and (33)
with equahty Hence, it achieves the upper bound and is the
optimal PSD K-tuple.

In order to complete the proof, we need to show that
for arbitrary power constraints, Wy, .-, Wk, there exists
by, --,bx satisfying (29) and (30) for k = 1,.--, K. Note
that (29) is equivalent to

k
> Si(w) =
=1

’ +
{1— min T, Hw)| , if l_I{linkblTl_l(w)

=1,k
< min 6T (w),

I=k+1,- K

0, otherwise,

(37

for k = 1,---,K. (We have adopted the convention that
minimizing over an empty set is equal to infinity.) Now, we
show the result by induction on the following proposition.
P : For any br.1,--,bk, there exists by,---,by satis-
fying (37) and (30) for k¥ = 1,---, L. Moreover,

each b; for ¢+ = 1,---,L is increasing in b; for
j=L+1, K.
The assertion is true for L = 1. Let us define
1 /™4
Balbr, b = = [ Biwdw-nWi,  G9)
0
where S1(w) is the solution to (37) for £k = 1. Since

A1(b1,--+,bx) > 0 when by = 0 and decreases to —co as by
increases to oo, there must exist a by satisfying (37) and (30)
for £ = 1. Moreover, as b; for j > 1 increases, it follows from
(37) that S’l(w), and thus A;(by,---,bx), increases. Since
Aq(by,--+,bg) is a decreasing function in by, b; satisfying
(30) for k¥ = 1 must increase. This shows the second part of
the assertion.

Let us assume that Py, is true. Then, for any br 41, -, bk,
there exists by,-:-,br satisfying (37) and (30) for k
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-, L. Using these by,---,bx, we find Sk(w) from (37)

and define

. 1 T .

Ak(bL-f—l,"',bK) - ;/ Sl(w) dw—kak, (39)

0

for k = -, L 4 1. Note that in this definition, for any
brt1,-- bk, Ap(bryr, - bx) = 0 for k = 1,---,L
because bq,---,br are chosen to satisfy (30) for k =
1,---,L. For byy; small enough, it is easy to see that
AL+1(bL+1, bK) > 0. Let b/L+1 > bL—i—I, and b;v and

( ) be the corresponding solutions to (37) and (30) for
= 1,.--,L, Then, we have

Apy1(bpi1,b042, 7, bK)
L+1
=3 A(br41,bppa i bK) (40)
=1
L+1 L+1
L+1 L+1 '
g_/ Zs, w) dw — Zlel 42)
L+1
= 3" Ak(brrbres, - bx) 3)
=1
= Ary1(bpy1,bn42,- k), (44)
where (40) and (44) follow from Ay (¥, 41,1 45, -+, bx) =0

and Ag(br41,-+,bkx) = 0, respectively, for k = 1,---, L.
Equation (42) follows from the facts that b, > by for
k= , L, (assured by the second part of Pr) and its
imphcatlon in (37), le Sj(w) < EL“ Sy(w). Therefore,
Ary1(br+1,- -, bx) is also a decreasing function in by, 1 and
tends to —oo as by 1 — oo. Hence, there must exist br41 and
by,:--,br, whose existence is guaranteed by P, satisfying
(37) and (30) for k = 1,---, L+ 1. Now, we show the second
part of Pryq. If b; for j = L+ 2,---, K increases to b;-,
it follows from P; that each b; for i = 1,---, L increases.
Then, we observe from (29) that Sp,i(w) increases and
Ar1 (bL_|_1, .. ], . bK) > 0. Therefore, by 1 satisfying
(30) must increase, and by Pj again, so are by,---,br and

the proof is completed.
By induction, we have shown that the proposition Py, is true
for L =1, --,K and hence, the desired result which is Px.
|

2) PSD Pairs for all Boundary Points (Successive Decoding
Idea): In this section, we derive the two-user water-filling
“procedure to obtain the optimal PSD pairs achieving the
boundary points of the capacity region. Specifically, we seek
to find the optimal PSD pair that maximizes a weighted rate
sum, aR; + (1 — a)Rs.

The main differences between the procedures for obtaining
the optimal PSD pair for the total capacity and other points are
the way the two water-filling diagrams are combined and the
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Fig. 11. Successive decoding idea in two-user channel.

way the sum of the PSD’s is split into the individual PSD’s.
When a # 1/2, the relative priorities given to the users are not
the same and it turns out that when combining the two water-
filling diagrams, offsets equal to the relative priorities, oo and
1 — , have to be added. Instead of b 7} (w) and by Ty * (w),
we have to draw b, 7, ' (w)+ (1 — a) and 2T *(w)+ on a
diagram with a fixed water level equal to 1. Moreover, splitting
of the PSD sum into individual PSD’s is no longer trivial and
the successive decoding idea is needed to explain it.

Let us consider the successiveé decoding idea first put
forward by Cover in [18] to explain the capacity region
(Cover—Wyner pentagon) for the memoryless Gaussian mul-
tiaccess channel. The idea is iilustrated in Fig. 11 for the case
when user 1 has a higher priority than user 2. The receiver
decodes the signal sent by user 2, the user with lower priority,
first, treating the signal component from user 1 as noise. Then,
the receiver regenerates the signal from user 2 and subtracts it
from the received signal. The difference is then used to decode
the signal sent by user 1. Notice that user 2 sees a new channel
whose noise is the sum of the original channel noise and the
signal sent by user 1. If user 2 communicates at rate less than
the capacity of this new channel, the component due to user
2 can be eliminated almost perfectly from the received signal
and the presence of user 2 is virtually transparent to user 1.
Since the shape of the PSD of user 2 has no effect on the rate
of user 1, the PSD for user 2 should be set to maximize the
rate of user 2. The optimal PSD of user 2 then follows from
the single-user water-filling argument with the bottom of the
container equal to

N(w) + 81 (w) €020
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Theorem 3: If both the inputs and the output are scalars
(ie., p = ¢ = r = 1), the capacity region of the two-user
Gaussian multiaccess channel is

C={(R,R2) € R*; :aRy + (1 — )Ry < C(a)}, (47)
where (see (48) at the bottom of the page)

1

: / " logl1 + A(w)T (w) + B(w)Ts(w)] duw,
| (49)

Ty(w) = |G(w)|*/N(w), Ta(w) = |H(w)|’/N(w), and
(81,0(w), Sz,o(w)) is the corresponding optimal PSD pair.
For each a,

Sk(w)
b

k=12,

Sk,a(w) = (50)

where by > 0, by > 0, 5’1(11)), and 5'2(111) are the solutions to

i/W Se(w)dw = bWy, k=12, (51)
7™ Jo
S1(w) + Sa(w) = [1 — minf{b1 T (w) + (1 — @),
baTy ' (w) + )], (52)
and if a € [0,1/2],
Sl(w) = [1 - (blTl"l(w) + (1 — a)
A blT—l(w) *
+ Sz(w)—‘——b2T:_1 (w))} , (53)

= l:Oé - blTl—l(w)

T3 (w) = : (45)
[H (w)| - - +\1+
by [b1T1 1(w) — boT; 1(w) + (1~ 2a)]
1 & o b1 (w) S\ -1 1, T ’
= boTy Y (w) + S1(w) (46) [b2T5H (w) = b1 T7H (w)]
because the noise seen by user 2 is the sum of the original .
channel noise and the signal sent by user 1. Note that the PSD and if o € [1/2,1],
of user 1 cannot be obtained via the classical water-filling
argument since its signal will become noise to user 2 and the  Sy(w) = [1 - (sz{ Yw) +
effect on the rate of user 2 cannot be ignored when one tries
to maximize a weighted sum of the users’ rates. . bgT’l( w) +
Now, we are ready to give our result on the optimal PSD + 51(711)—2_1——) ; (55)
. blTl (w)
pairs.
aF(S1,a,52,a) + (1 — 2a)F(0, S3 o), if a €[1,1/2]
Cla) = (48)

(1 - a)F(S1,a,524) + (20— 1)F(S1,4,0), if a €[1/2,1]
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Fig. 12. Sum of the user’s optimal power spectral densities in example 4.

= [1 —a — byTy Hw)
: <1+

Proof: Though tedious, the proof basically involves ap-
plying the Kuhn—Tucker theorem to the capacity region in
Corollary 1. O

[b2T5 H(w) = by T7 Hw) + (20 — 1)] +)j| *
(b7 () = boT5 ™ (w)]
(56)

First of all, note that when « = 1 or 0, the result reduces
to the single-user water-filling argument. For example, let
us consider the case when « 1. Since b T '(w) <
boTy t(w) + 1 if 577 (w) < 1 and the right-hand side of
(54) must be 0 if b; 7, *(w) > 1, (54) becomes

Si(w) = [1— by T Hw)] F.

7

Hence, the result reduces to the single-user water-filling
argument.

When « = 1/2, the result reduces to that in Section III-C-1
(except that the common water level, which can be arbitrarily
fixed, is set to 1/2 instead of 1.)

For 0 < @ < 1/2 or 1/2 < & < 1, both the equivalent
channel and the successive decoding ideas are needed to obtain
the optimal PSD pairs. By symmetry, we will consider only the
case when 1/2 < a < 1 and the corresponding water-filling
diagram is illustrated in Figs. 12 and 13. Since the priorities
given to the users are not the same, as pointed out before,
different offsets, corresponding to the relative priorities, have
to be added to b;77 ' (w) and byTy ' (w) before they can
be combined in a single water-filling diagram. It turns out
that this is the only modification we need to obtain the sum
of the PSD’s. Similarly to the total capacity case, in (51)
and (52) and in Fig. 12, the minimum of the offset curves,
T (w) + (1 — @) and byTy H(w) + a, is treated as the
bottom of the container and the water-filling method is used
with the sum of the power, b1 W7 + by W5, to determine the
sum of the PSD’s, Sy(w) + Sa(w).
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xvovz ol j
= - -1 b, T, (w)+(1-
[o,T, "(@)0,T,  (@)* (@)+(1-a)
I
Fig. 13. - Optimal power spectral density of user 2 in example 4.

The split of the sum of the PSD’s into individual PSD’s is
more complicated. In the case of total capacity, since the rates
of the two users are weighted equally, all the signal power
assigned to a frequency is sent over the channel with a higher
gain at that frequency (i.e., FDMA is optimal). However, this
is not optimal if the users’ rates are weighted unequally. For
example, if the rate of user 1 is weighted heavily, a portion
of the signal power should still be transmitted over channel 1
even at frequencies where its gain is lower. Hence, at some
frequencies, the signal power should be split between both
users rather than completely assigned to one of the users as
in the case of achieving the total capacity. As a result, the
PSD’s overlap.

When the PSD’s of the two users overlap, the successive
decoding idea suggests that the user with lower priority should
be decoded first. Moreover, once the PSD of the user with
higher priority is fixed, the PSD of the user with lower priority
can be obtained via the classical water-filling argument with
the noise equal to the sum of the original channel noise and
the other user’s signal. When 1/2 < a < 1, user 2 has a
lower priority. Hence, from the successive decoding idea, the
optimal PSD of user 2 is obtained, in (55) or in Fig. 13, via the
water-filling argument with the bottom of the container equal
to 75 ' (w) in (45) or curve ABXC. In Fig. 13, XZ = §;(w)
and hence,

: Tt
xy = xz2f2 (@) (58)
hTi " (w)
After some manipulations, we can obtain the relationship
boTy !
XY = YZ 2Ty (w) (59)

62T (w) — by Ty (w)]

which can be used to construct the curve BXC in Fig. 13.
Now, we concentrate on the numerical procedure of obtain-
ing the PSD pair for each 1/2 < & < 1. As in the single-user -
channel where the PSD can be obtained by an algorithm
iterating on b until the area of [1 — T~ (w)]* is equal to bW,
a similar algorithm which has two levels of iterations: one on
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Fig. 14. Capacity regions of the channels in examples 1 and 2.

by and the other on b», is given for the two-user channel. First,
we arbitrarily fix by and plot by T, ! (w)+(1 — o) as in Fig. 12.
Then, we plot 52T ! (w) + « and adjust by such that the total
shaded area is equal to b1 W7 + byWs. On the same graph,
we construct curve BXC, as shown in Fig. 13, using (59). If
the shaded are in Fig. 13 is larger than b, W5, we decrease the
value of by (thereby lowering the curve BZE); otherwise, we
increase the value of b;. The same procedure is repeated until
the area above the curve ABXC is equal to boWs. Then, the
shaded regions in Figs. 12 and 13 give the sum of the PSD’s
and the PSD of user 2, respectively and their difference gives
the PSD of user 1.

D. Examples

To illustrate the application of the two-user water-filling
argument, we give four examples representing different levels
of intersymbol interference:

1 g1: [1 + O.Ie_jw], hy: [1 + O.2e‘jw]
2) g2 : [14+0.8e79%], hy : [1+0.9¢7"]
3) gs: [1 -{—O.le‘jw], hs : [1 - 0.2e_j“’]
4) g3 : [L+0.8¢79%], hy : [1 —0.9e77¥].

In all four examples, we assume that Wy = 3, Wy = 4,
the white Gaussian noise has variance 1 and the impulse
responses of all channels are normalized to have unit en-
ergy. (i.e., Gi(w) = (1 +0.1e77%)/y/1.01, Hy(w) = (1 +
0.2¢79%)/4/1.04, etc.) In Examples 1 and 3, intersymbol
interference is mild while in Examples 2 and 4, intersymbol
interference is much stronger. In Examples 1 and 2, the
channels for both users are low-pass while in Examples 3
and 4, one user transmits via a low-pass channel and the other
user transmits via a high-pass channel. The capacity regions of
the channels in Example 1 and 2 are shown in Fig. 14 while
those in Example 3 and 4 are shown in Fig. 15. It is clear,
from all four examples, that with the energy of the transfer
functions fixed, intersymbol interference decreases the single-
user capacity. However, the same is not necessarily true for
the total capacity. When both channels are low-pass, the total
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Fig. 15. Capacity regions of the channels in examples 3 and 4.

capacity decreases as intersymbol interference increases as
shown in Figs. 14 and 15. When one channel is low-pass and
the other is high-pass, the total capacity actually increases as
intersymbol interference becomes stronger. This is because in
that case, the increase in single-user ISI is more than offset by
the decrease in multiuser interference. However, it is important
to note that the single-user rate is degraded. Therefore, when
the system designer has some latitude shaping the channel
spectra, there is a trade-off between the single-user capacities
and the total capacity.

APPENDIX A

Proof of Theorem 1: Following from the discussion in
Section I, in order to find the capacity region of the two-
user Gaussian linear vector channel, we need to solve the
limiting expression in (3) and (4) with Uév -1 VON ~1, and
YV ! related by (6).

Taking the DFT on both sides of (6), we have

Y, = GU; + HVi + M;, (A1)
where X' ! is the vector DFT of X'~ (i.e., the jth entries
of X;,i=0,---,N — 1 is the DFT of the jth entries of X;,
i=0,---,N—1)1t is well known [19, p. 122] that if X ~*
is a real vector sequence, X, and Xpn_; are complex conjugate
pair for¢ = 1,---, N — 1. Therefore, it is sufficient to consider
(A1) for i =0,1,---, L where L = |[N/2|. Moreover, if N
is even, XO is a real Vector while if N is odd, both X, and
X L are real vectors. For simplicity, we shall concentrate on
the case when NNV is even, analogous argument follows for the
case when N is odd.

It can be shown that since M, N-lisa sequence of zero-
mean, jointly Gaussian vectors w1th EM,; M =Rii—j),» Mo
is a sequence of zero-mean, independent cornplex Gaussian
vectors. Moreover, MO is real with EMOMQ = NRO and
for i = 1,---,L, M; is complex with EM; M* = NR;
where Rév s the DFT of RY™! and * denotes the complex
conjugate transpose.
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By the invertibility of the DFT, the transformation from

XY 1to XE is also invertible and hence, we have
1 - - _ U /or ors
SHO YY) = < 1(0F: 9517
L
1 -
== z_oI( V) . (A2
1 - _ _ 1 /et oL
LIV YY) = 1 (VETAOE)
L
1 "
== IlVyYi|U;), (A3)
> 1(7 i)
and
1 1 _fop o -
NI(Uév LyN-Ly N1 = NI( L OL;Y0L>

i
2| =
th

L
—

=

BN

=
~—

On the other hand, Parseval’s theorem transforms the power
constraint to

——Ztr

=0

E(U,UT))

Similarly, we have
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where the union is taken over all real random vectors Up and
Vb, and all complex random vectors U; and Vi,i=1,..-,L.

Since M; are complex Gaussian random vectors, each
channel in (A.1) is a complex Gaussian vector channel, it
can be shown, by extending the proof in the real random
vector case (e.g., [20, p. 248]), that complex Gaussian dis-
tributions maximize the three mutual information quantities
simultaneously. Then, we have (A.8) (shown at the bottom of
the page).

Finally, using standard properties of Riemann integration,
we have, in the limit as N — oo, the desired result. O

APPENDIX B

Proof of Corollary 1: When the inputs are scalars, we
can apply the equality det(I + AB) = det(I + BA) and we
have
log det [I + G(w)S1(w)G* (w)N ™" (w)]

= log[1 + S1(w)G* (w)N ™ (w)G(w)], (B.1)

logdet [T + H(w)Sz(w)H" (w)N ™ (w)]
= log[1 + So{w)H*(w)N ™ w)H(w)], (B.2)
and :
log det[I + G(w)S(w)G*(w)N " (w)
+ H(w)Ss(w)H* (w)N~ (w)]

ﬂﬁw#mmmwﬂﬁy)&&ﬂ

.. 2 -
— T PR . .*
(A.6) H*(w) '
Therefore, C'x can be expressed as
= logdet|I + 51 (w) 0
Cn = Y, 0 SQ(’U))
UOL, VOL .
o[BS 2 tr(E@00)] < W . [Ti(“’) T“(“’)] (B.4)
—1—2[EVOVT + 38 2tr(B@V)] < we Tir(w) - Ta(w)
0< R < 2L I(0:Y: | T = log[l + S1(w)T1(w) + Sa(w)T2(w)
N S S T T
(FaRo): 0< Ry < 250 1(7:%, | 0) V. + 1(w)Sa(w) T3 (w)To(w)
Fut B < 4 S0, 77 - i)
(A7) (B.5)
Cn = U
Y10 ERPXP, 5750 € RIX9, 57, € CPXP, 50, € CIX1:
211"221‘ 20 Vi=0,---,L
Fr(C10) + 200 (X0 | < W
F 101 (T00) + 2300, tr(3o,) | S we
0<R <% iz log det [I+ G Y G:Rz_l]
(Ry, Ry) : 0< Ry < & iy logdet [T+ [1; o, H; R (A8)
Ri+Ry < % Zf:o log det [I+ Gi > C’?Ri_l +H; Y, fI:Ri_l]
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When the output is also scalar, it is easy to see that
T (w)Ty(w) = |Ti2(w)|? and we have the desired result. [

Proof of Corollary 2: The result follows straightfor-

wardly from Corollary 1, the convexity of the capacity region
and traditional water-filling argument. The power spectral
densities that achieve the corner points in the pentagon are
discussed in Section III. 0
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