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The Source-Channel 
Sridhar Vembu, Sergio 

Abstract- The single-user separation theorem of joint 
source-channel coding has been proved previously for wide 
classes of sources and channels. We tind an information-stable 
source/channel pair which does not satisfy the separation 
theorem. New necessary and sufficient conditions for the 
transmissibility of a source through a channel are found, and 
we characterize the class of channels for which the separation 
theorem holds regardless of the source statistics. 
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I. INTRODUCTION 

T HE MEETING point of the two main branches of the 
Shannon theory is the joint source-channel coding theo- 

rem. This theorem has two parts: a direct part that states that if 
the minimum achievable source coding rate of a given source 
is strictly below the capacity of a channel, then the source 
can be reliably transmitted through the channel by appropriate 
encoding and decoding operations; and a converse part stating 
that if the source coding rate is strictly greater than capacity, 
then reliable transmission is impossible. Implicit in the direct 
source-channel coding theorem is the fact that reliable trans- 
mission can be accomplished by separate source and channel 
coding, where the source (resp., channel) encoder and decoder 
need not take into account the channel (resp., source) statistics. 
Because of the converse theorem (and except for the residual 
uncertainty in the case when the minimum source coding rate 
is equal to the channel capacity) it follows that either reliable 
transmission is possible by separate source-channel coding 
or it is not possible at all. This is the reason why the joint 
source-channel coding theorem is commonly referred to as 
the separation theorem. 

Ever since Claude Shannon’s 1948 paper [l], where the 
result was stated for stationary memoryless sources and chan- 
nels, the separation theorem has received considerable atten- 
tion, with a number of researchers proving versions that apply 
to more and more general classes of sources and channels. 
Dobrushin [2] and Hu [4] considered the separation theorem 
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in the context of information stable sources and channels, 
i.e., situations where, essentially, the Asymptotic Equipartition 
Property (AEP) is satisfied and minimum achievable source 
coding rate and channel capacity are equal to the entropy 
rate and the limit of maximal mutual information rates, re- 
spectively. In addition, joint source-channel coding has been 
a main focus of ergodic-theoretic researchers in Shannon 
theory, who have obtained general expressions for the maximal 
entropy rate of those sources that can be transmitted reliably 
through a given channel. In the foregoing discussion, reliable 
transmission of the source through the channel means that 
the probability of correctly decoding a block of n transmitted 
symbols goes to 1 as n --f 00. Since the works by Kolmogorov 
[6], Shannon [7], and Dobrushin [2], the separation theorem 
has also been investigated in the context of transmission with 
a distortion measure. In this paper we focus exclusively on 
the aforementioned reliability criterion of “almost noiseless” 
fixed-length block coding. 

Even though most analytically tractable channels and 
sources are encompassed by previous versions of the 
separation theorem, it is of considerable theoretical interest 
to study the validity of this theorem in the context of very 
general sources and channels. In particular, we do not impose 
restrictions such as memorylessness, stationarity, ergodicity, 
causality, information stability, etc. This is motivated by the 
recent papers [ 131 and [14], which find general expressions 
for the minimal source coding rate and channel capacity that 
apply without those restrictions. A result [14, Theorem 41 
which leads to a new general converse to the channel coding 
theorem in [14], proves to be a key tool in our investigation 
of the source<hannel coding theorem. Despite the generality 
of [13], [14] and the present paper, the proofs are, in fact, 
conceptually simple. 

After a review of definitions and previous results in Section 
II, we show an example in Section III where the converse 
to the separation theorem fails to hold: a memoryless in- 
formation stable source/channel pair such that the source is 
transmissible through the channel (with zero error), yet its 
minimum achievable source coding rate is twice the channel 
capacity. We note that previous instances where the separation 
theorem was known to fail were always within the context of 
multiterminal sources and channels (e.g., [S]). The example 
in Section III reveals that, in general, the channel capacity 
and the minimum source coding rate do not provide sufficient 
knowledge in order to determine whether the source can be 
transmitted reliably through the channel. A finer look at the 
statistical structure of the channel and source is necessary. This 
is done in Section IV where two similar conditions, domination 
and strict domination, are shown to be necessary and sufficient, 
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respectively, for reliable transmissibility. In Section V we 
characterize those channels for which the classical statement 
of the separation theorem holds for every source. It turns 
out that those are the channels whose definition of capacity 
is insensitive to whether good codes are required for all 
sufficiently long blocklengths or for only infinitely many 
blocklengths. We also characterize those sources for which 
the separation theorem holds for every channel. This class of 
sources includes but is not restricted to stationary sources. 
A conclusion to be drawn from our results is that when 
dealing with nonstationary probabilistic models, care should 
be exercised before applying the separation theorem. 

II. PRELIMINARIES 

A. Dejinitions and Classical Results 

Let F, A, and B be finite sets. A source Z with alphabet 
F is the sequence {P~~}~zl, where Pzn is a probability 
distribution on F”. Similarly, a channel W with input alphabet 
A and output alphabet’ B is a sequence of conditional dis- 
tributions {Wn(.I.)}n21 such that Wn(.(un) is a probability 
distribution on B” for every an E A”. Given an A-valued 
source X, and a channel W, we denote the joint source whose 
finite-dimensional distributions are WnPxn by (X, Y). 

De$nition I: Given a joint distribution PxnWm on A” x B” 
with marginals Px-, Py- the information density is the 
function 

= log wvnbn) 
PY”(bn) . 

The distribution of the random variable (l/n)ixnwn(an; b”) 
is referred to as the information spectrum of P,~%w-, [ 131, 
and the expected value of the information spectrum is the 
normalized mutual information (l/n)l(Xn; Yn). The mutual 
information rate of (X, Y) is defined as 

1(X; Y) = dim iI(Xn; Y”) 

provided that the limit exists. In case that X is equal to 
Y (i.e., W is an identity channel), the information density 
‘ixnwn (a”; bn) is referred to as the entropy density, which is 
given by 

The expected value of (l/n)hxn(Xn) is the normalized 
entropy (l/n)H(Xn), and the entropy rate of X is 

H(X) = Jim kH(X’“) 

provided that the limit exists. We proceed now to the classical 
definition of information stability of sources and channels. 
The concept of information stability was first introduced by 
Dobrushin [2]. 

’ The assumption that the channel alphabets are finite is made for notational 
convenience. It can be readily lifted without impacting our results or their 
proots. 

The mappings f and g are referred to as the encoder and 
decoder, respectively. 

Dejinition 2 [2], [3]: A source Z is said to be information- 
stable if H(Zn) > 0 for all sufficiently large n, and 
hz- (Zn)/H(Zn) converges in probability to one as n -+ 00, 
i.e., 

lim p hzn(Zn) - 1 > 6 = 0 n--tC2.Z (I ff(Zn 1 I 1 (1) 

for every t > 0. 
This definition is slightly more general than the- AEP [16] 

which requires that ( l/n)hzn (Zn) converges in probability 
to lim n-oo(l/n)H(Zn). The Shannon-McMillan theorem 
implies that stationary and ergodic finite alphabet sources are 
information-stable. 

Dejinition 3 [2], (41: A channel W is called irzformation- 
stable if there exists an input process X such that 

where the convergence is in probability, and 

The reason for defining information stability as in Definition 
2 lies in the fact that information stability is precisely the 
condition under which C, has an operational meaning asymp- 
totically. Before stating the classical results on source coding, 
channel capacity, and source-channel separation theorem, we 
record the standard definitions of the minimal achievable 
(fixed-length) source coding rate and channel capacity. 

DeJinition 4: An (n, M, t) fixed-length source code for Zn 
is a collection of M n-tuples { a;2, . . i a&} such that 

R is and e-achievable source coding rate for Z if for every 
y > 0 there exist, for all sufficiently large ‘n, (n, M, t) codes 
with 

LlogM < Rfy. 
n 

R is an achievable (jixed-length) source coding rate for Z if it 
is c-achievable for all E > 0. The minimal achievable source 
coding rate of Z is denoted by T(Z). 

DeJnition 5: An (n, M, t) code for a random transforma- 
tion W” with input alphabet A and output alphabet B is a 
pair of mappings 

f: (1, 2,. . , M} -+ A” 

g: B” i (1, 2,. . , M} 

such that 

W”(b”Jf[m]) 5 E. 
m=l bn: g(b”)#m 
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Dejinition 6: R is an t-achievable rate for W if for every 
y > 0 there exists, for all sufficiently large n, an (n, M, t) 
code for W” with 

$ogM > R-y. 

The maximum c-achievable rate for a channel W is called 
the t-capacity, C,(W), of the channel. The channel cupacity2, 
C(W), is defined as the maximal rate that is e-achievable for 
every t >‘ 0. The definition implies that 

C(W) = hpct(W) 

and that C(W) is the supremum of all the rates R for which 
there exist a sequence of (n, M, tn) codes such that 

1ogM > R 
n 

and 

Jl, t, = 0. 

In the definition of capacity we have used the average proba- 
bility of error. However, capacity remains unchanged if we 
use the maximal probability of error. This is due to the 
fact that the existence of (n, M, F) codes according to the 
average probability of error criterion implies the existence 
of (n, M/2, 26) codes in the maximal probability of error 
criterion. 

Dejinition 7: Let Z be a source with alphabet F, and let 
W be a channel with input alphabet A and output alphabet B. 
Z is said to be reliably transmissible over W if there exist a 
sequence of encoders { fn ( .)}nl 1 

fn: F” i A” 

and a sequence of decoders {gn(.)}n21 

gn: B” + F” 

such that 

lim P(Zn # Zn) = 0 12’00 

where ?’ is the output due to Z” of the cascade en- 
coder-channel-decoder. 

We briefly review the well-known results on source coding 
and transmission. The following theorems are not the most 
general statements that can be deduced from the results in [2], 
[4], but give a flavor of what is implied by the results in these 
works with regard to a separation theorem. 

Theorem I: Every information stable source Z satisfies 

T(Z) = limsup &H(Zn). 
n-03 n 

Theorem 2: Every information stable channel W satisfies 

C(W) = liminf sup II(X’“; Y”). 
n-+03 xn n 

If the liminf in Theorem 2 is actually a limit, the following 
joint source/channel coding theorem follows. 

‘The explicit dependence on W  will be omitted when convenient. 

Theorem 3: Let Z and W be an information-stable source 
and an information-stable channel, respectively. Assume that 
lim n-ooCn(Wn) exists (cf. Definition 3). Then 

a) T(Z) < C(W) implies that Z can be reliably transmitted 
over W. 

b) If Z can be reliably transmitted over W, then T(Z) 5 
C(W). 

The restriction on the classes of sources and channels in [4] 
are somewhat more general than those in Theorem 3; however, 
they are hard to verify. A summary and further discussion 
of those conditions can be found in [5]. Another well-known 
body of results on the source-channel transmission problem is 
ergodic theoretic in nature. Tutorial discussions on the ergodic 
theoretic approach to the separation theorem can be found in 
[91, 1101. 

For every channel we can define 

C,(W) n SUP H(Z). 
Z ergodic, block transmissible 

It was proved by Kieffer [ 1 l] that for a weakly continuous 
ergodic channel (see [l I] for definitions) CE equals the 
channel capacity C, and that C equals the supremum of mutual 
information rate over all stationary inputs. This amounts to 
the separation theorem for this class of channels and ergodic 
sources. Kieffer [ll] also shows that for the class of weakly 
continuous stationary channels, CE equals the information 
quantile capacity introduced by Winkelbauer [ 121. 

B. General Sources and Channels 

In this subsection we describe the results on source coding 
and channel capacity obtained in [ 131, [ 141 for general sources 
and channels. We start with a few definitions. 

Dejinition 8 [13]: The limsup in probability of a sequence 
of random variables {A,} is defined as the smallest extended 
real number p such that for all t > 0 

Jim P[A, > /3 + t] = 0. 

Analogously, the liminf in probability is the largest exiended 
real number CL such that for all t > 0 

lim P[A, 5 a - t] = 0. 7X-m 

Note that a sequence of random variables converges in prob- 
ability to a constant if and only if its limsup in probability 
is equal to its liminf in probability. The limsup in probabil- 
ity (resp., liminf in probability) of the sequence of random 
variables {(l/n)ix-w-(X”, Y”)}FE1 is referred to as the 
sup-information rate (resp., inf-information rate) of the pair 
(X, Y) and is denoted as 1(X; Y) (resp., 1(X; Y)). The 
limsup (resp., liminf) in probability of the sequence of random 
variables { (l/n)hx- (Xn)}rcl is referred to as the sup (resp., 
in&entropy rate of X and is denoted by H(X) (resp., E(X)). 

We are in a position to state the general source coding and 
channel capacity results of [13], [14]. 

Theorem 4 [13]: For any finite alphabet source Z 

T(Z) = H(Z). 
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SOURCE CHANNEL 
Fig. 1. A source and channel that do not satisfy the separation theorem. 

Theorem 5 [14]: The capacity C(W) of any finite alphabet position right before times 2i, i = 1, 2, 3, . . . Note that both 
channel W is given by the source and channel are memoryless. 

C(W).= s;pgx: Y) 
Let J denote the set of times at which the switch is in the 

“up” position. Assuming that the switch is “down” at time 
i = 1, we have 

where Y is the output of W to X. 
In view of Theorems 4 and 5, we have the direct part of the J = (2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32: 33,..., 

separation theorem that holds for general sources and channels: 62, 63, 128, 129;...}. 
Theorem 6: If a given source Z and channel W satisfy 

T(Z) < C(W) 

then Z can be reliably transmitted over W. 
Proof Let us assume that T + 6 < C for some S > 0. 

From Theorem 4, we can find a sequence of (n, exp {n(T + 
(S/2))}, E,) source codes for Z with E, ---f 0. Further- 
more, Theorem 5 implies that we can find a sequence of 
(n, exp {n(T + (s/2))}, m) channel codes for W with yn + 
0. 

performed independently. This is the crux of the separation 
principle. n 

A completely general separation theorem would follow if 

We define the encoder and decoder pair needed in Definition 
7 as follows: the encoder consists of the cascade of the source 
encoder and the channel encoder. The decoder is the cascade 
of the channel decoder and the source decoder. The overall 
probability of error is upper bounded by E, + y, which goes to 
zero. Note that we have proved not just that Z is transmissible 
over W, but also that the encoder can be split into a source 
encoder and a channel encoder and these functions can be 

At times i E J, the binary source is independently equally 
likely (0, l}, and the channel is noiseless, whereas at times 
i @ J, the source is deterministic and the channel output is 
independent of the input. Since the set J is deterministic and 
known to both transmitter and receiver, Z can be transmitted 
over W with zero probability of error. However, as we shall 
show, T(Z) = 2/3 and C(W) = l/3. 

To evaluate H(Z), write 

and observe that log Pz, (Zi) is deterministic, attaining the 
value -1 bit for i E J and 0 for i 6 J. (For conve- 
nience, the logarithms in this section have base 2.) Thus it 
is straightforward to verify that 

where J(n) stands for the cardinality of the intersection of J 

J(n) 2 

with the set { 1, 2,. . , n}, i.e., 

Z(Z) = limsup- = - 
3 (2) 

n+m n 

we could prove that J(n) fi IJn (1, 2;..,n}(. 

T(Z) L C(W) We proceed to the evaluation of the capacity’ of W. It was 

is a necessary condition for reliable transmission of Z over W 
shown in [14, sec. 71 that the capacity of a memoryless binary 

to be possible. This, however, is not true: in Section III we 
symmetric channel is given by 

give an example that disproves such a statement. C(W) = 1 -H(N) 

III. AN EXAMPLE WHERE SEPARATION DOES NOT HOLD 
where N denotes the random process of errors. Following the 
arguments leading to (2), we conclude that 

In this section we construct an example of a nonstationary 
source Z and a nonstationary channel W over which Z can 

J(n) H(N) = limsup 1 - -. 
be reliably transmitted, yet E(Z) > C(W). 

7L’CC n 

The source and channel pair is given in Fig. 1. Note that the Thus 
switches move in synchronism-either both are “up” position J(n) 1 
or both are “down.” The switches deterministically change 

C(W) = liminf- = -. 
3 (3) n-co n 
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It is interesting to note that both the source and the channel 
in this example are not only memoryless but information- 
stable. To check this, note that nonzero probability source 
strings of a given length all have the same probability; thus (1) 
follows immediately. Analogously, the information stability 
of the channel can be checked by noticing that Bernoulli 
(;) inputs achieve maximal input-output mutual information, 
and with that choice, every pair of input-output strings of a 
given length has the same probability or cannot occur at all. 
Separation need not hold because Cn(Wn) does not have a 
limit (cf. Theorem 3). 

IV. A GENERAL TRANSMISSION THEOREM 

In view of the example above, it is clear that the minimum 
source-coding rate and the channel capacity are inadequate to 
completely characterize the problem of reliable transmission of 
a source over a channel. In this section we present a general 
transmission theorem that serves to give an answer to this 
question. 

A. Notions of Domination 

We will now define two related notions, which we call strict 
domination and domination. 

Definition 9: A channel W is said to strictly dominate a 
source Z if there exists a S > 0 and a channel input process 
X such that 

The above definition captures the notion that asymptotically 
the information spectrum of the channel lies entirely above the 
spectrum of the’source. For example, if the sup-entropy rate 
of the source and the channel capacity satisfy g(Z) < C(W), 
strict domination holds. Note that strict domination does not 
necessarily mean that there exists a fixed scalar such that the 
channel information spectrum is asymptotically above it while 
the source spectrum is asymptotically below it. Such a case 
would be included in this definition but that is not the only 
way a channel can strictly dominate a source. 

We will define a closely related notion called domination. 
Dejinition IO: A channel W is said to dominate a source 

2 if for any 6 > 0 and any sequence. of nonnegative numbers 
{ cn}rE1, there exists X such that 

lim P khz.,(Z1’) > c, Tl,‘CC [ I 

The gist of both definitions is that the upper tail of the source 
information spectrum (i.e., the distribution of the normalized 
entropy density) has vanishing overlap with the lower tail of 
the channel information spectrum (distribution of the normal- 
ized information density) evaluated with a favorable input 
process. Domination compares the tails in nonoverlapping 
intervals [c,, +m) and (-cc, c, - 61, and forbids that both 

tails be nonvanishing for any sequence c,. Strict domination 
compares the tails in overlapping intervals [cn, foe) and 
(-00, c, + 61, and dictates that both tails vanish provided 
{en} is suitably selected. 

As we will see, domination (resp., strict domination) will 
take the role of the condition that the minimum source coding 
rate is greater than or equal to (resp., strictly greater than) 
the capacity. 

B. Transmission Theorem 

The following result3 is a generalization of the well-known 
source-channel separation theorem. In the classical theory, the 
case when capacity equals the minimum source coding rate is 
left unresolved. We have the same ambiguity here and that is 
the reason for two definitions in Section IV-A. 

Theorem 7: 
i) Reliable transmission for a source-channel pair is possible 

if the channel strictly dominates the source. 
ii) If reliable transmission is possible for a source-channel 

pair, then the channel dominates the source. 
Proof 

i) Let us assume that channel W strictly dominates source 
2. From the definition of strict domination, we can find a 
6 > 0 and a channel input process X such that 

+ P 
[ 
$qZ’“) > c, II = 0. 

This means that there exists a sequence {cn}rEl such that 

[ 
1 

p pc~w’i(xn; Y”) < c, + s 1 I r, 

and 

where r, goes to zero as n goes to infinity. 
Now we will apply Feinstein’s Lemma (see, for example, 

[ 171) to claim that there exists a sequence of (n, M, en) codes 
for the channel where M = exp{n(c, + (6/Z))} and E, is 
upper bounded by r,, + exp (-d/2) which goes to zero with 
n. 

We will only encode the source words that fall within the set 

whose probability goes to 1 with n. When an outcome in EE 
occurs we declare error. 

Clearly, E, contains fewer than exp (nc,) elements and 
they can be transmitted with probability of error at most t,. 
Hence the overall probability of error is upper-bounded by 
t, + 7, which goes to zero. This establishes the direct part. 

3With suitable modifications to the definitions of strict domination and 
domination, it is possible to prove a straightforward extension of Theorem 7 
to the case where the source words and the channel codewords do not have 
the same blocklength; see [5]. 
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ii) Recall from Definition 7 that reliable transmission of 2 
over W  implies the existence of a sequence of encoders {fn} 
and decoders {gn} such that 

CP~-(,“)Vn(g,l(zR)lz”) -+ 1 
zn 

where we have used the notation 

Furthermore, given a channel and a sequence of encoders, we 
will denote the cascade encoder channel by V. The following 
result gives a very simple property satisfied by the information 
spectrum of the cascade of a deterministic transformation and 
a random transformation. 

Lemma 1: Fix n. For any Pzn, deterministic transformation 
fn and random transformation W ”, the information densities 
iz-~~(Z”; Y”) and ixnwn(Xn; Y”) are identical, where 
X” = fn(Zn) and Vn(.lzn) = W ”(.lfn(xn)). 

Proof of Lemma I: Let 0 stand for the indicator function. 
Note that 

.I 

1  

log v(ynIZn) <  c 

pY"(Yn) - I 

= P[ipWn(Xn; Y”) 5 c] 

where the second equation is due to the fact that V(yn 12”) = 
W w lfn(zn)). n 

Now we will show that the reliable transmission of 2 
implies that V dominates 2. Due to Lemma 1 it follows 
immediately that 2 is dominated by W  as well, which is the 
desired result. 

Lemma 2: Reliable transmissibility of 2  over W  implies 
that the cascade channel V dominates 2. 

Proof of Lemma 2: We  will verify the condition of dom- 
ination in Definition 10. Let us fix an arbitrary subsequence K 
of the sequence of positive integers. Let us consider a sequence 
iCn)M of nonnegative real numbers such that the sequence 
of sets {&}rL~K 

B, = zn: 

satisfies the condition 

nlLmnCK Pz-(B,) > 0. (4) 

Hence we can find some pi > 0 such that for all large n E K 

Pzn(B,) > a. (5) 

Henceforth we will concentrate on those n E K for which 
(5) is true. 
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We know that there exists a sequence of encoder-decoder 
pairs such that the probability of error 

E, = Ce(z”)Pp(z^) 
zn 

goes to zero with increasing n  E K. We  have used e(P) to 
denote the probability of error when the input is P, i.e., 

e(z”) = P[Z” # znlZn = z”] 

where Zn is the decoder output. 
Let us define the following set: 

zn E B,: e(z”) > %  

Since E[e(Zn)O{Z” E Bn}] 5  E, 

Pzn(D,) 5 ;. (6) 

It follows from (5) and (6) that the set G, = B,\D, 
has probability at least o/2. Moreover, for each zn E G,, 
e(z”) 5 2t,/a. 

Let us fix an arbitrary S > 0. The cardinality of G, is 
bounded as 

l&l > ~exp{ncn} 
> exp {n(c, - S)} 

provided n is large. 
Therefore, we have found a set G, which has no fewer 

than exp {n(c, - S)} elements and the probability of error 
when any of these elements is used as a codeword is at most 
2&,/a, which goes to zero as n  increases in K. In other 
words, for the cascade channel V, we have found a sequence 
of (n, exp{c(c, - S)}, 26,/a) codes for large n  E K. 

Now we are in a position to invoke the central result in 
the new converse to the coding theorem proved in [14]. This 
result gives a simple lower bound to the average probability 
of error of any (n, M, t) code. 

Lemma 3 [14]: Every (n, M, E) code for a conditional 
distribution l$n satisfies 

&>P ii- 
[ 

n  x,,+,ii,(kin; ?‘“) 5 i log M  - T] - exp (-rn) 

for every y > 0, where XJ;in places probability mass l/M on 
each codeword. 

Taking M  = exp {n(c, - S)}, we know that there exist a  
sequence of (n, M, 2en/a) codebooks for large n  E K for 
the channel V. Let us denote the distribution that puts equal 
probability mass on each of these codewords as 22. Applying 
Lemma 3 with y = S to this sequence of codebooks, we get 

2% - > P +;ll’ii(zp: Y,“) < en 
[ 

- 26 - exp (-nS). (7) 
Q: 1 

where Y,” is the output of V due to input Zp. Since F, goes 
to zero as n  goes to infinity in K, we get 

&zc.li(Z:; Y,“) 5 c, - 261 = 0. (8) 
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Since the choice of S > 0 and the subsequence K satisfying 
(4) are arbitrary we have shown that the channel V dominates 
2. This concludes the proof of Lemma 2 and Theorem 7. n 

Remark: Theorem 7 can be strengthened by replacing S 
in the definition of strict domination and domination by a 
vanishing sequence {S,} such that nS, + cc. 

To illustrate an application of Theorem 7, we now state 
the following lemma, which immediately leads to Theorem 
3 whose proof is in the Appendix. In Section V, we derive 
more general results, dispensing with the information stability 
requirement. 

Lemma 4: Under the conditions of Theorem 3 
i) If T(Z) < C(W), h c annel W strictly dominates source 

2. 
ii) If channel W dominates source 2, then T(Z) 5 C(W). 
To conclude this section we point out that for the example in 

Section III the channel dominates the source, as it should from 
the converse part of Theorem 7. As we noted earlier the source 
2 and the channel with Bernoulli (i) input process X, for 
each n, have their respective information spectra concentrated 
at J(n)/n. Hence for any n, S, and c,, at least one of the 
probabilities in Definition 10 is identically zero. 

We now change the example in Section III slightly to 
illustrate a case of strict domination of a source by a channel 
whose ,capacity is strictly smaller than the minimum source- 
coding rate. The channel remains as before. But the source 2 
is defined slightly differently: The Bernoulli subsource now 
has probability p < l/2. The minimum source coding rate of 
z is (2/3)q~), h w ereas the channel capacity is l/3. Here 
h(p) denotes the binary entropy function in bits. To see that 
the channel strictly dominates 2, we will select the sequence 

c - 7L - $1 + h(p)]. 

From the law of large numbers it is easy to check that 

lim P Ahab > c, = 0. 
n+m [ 1 

On the other hand, if we let X be Bernoulli (i), we know 
that, with probability 1, 

$nwn (Xn; J(n) Y”) = ~ 
n 

which implies that as long as 

* < 1 -h(P) 
6 

lim P 
1 

n-CC 
,ixnwn(X “;Y”)<c,+S =o. 1 

In the special case of discrete memoryless channels and 
sources with a finite number of states, such as the example in 
Section III, the notions of strict domination and domination 
boil down to the asymptotic comparison of the deterministic 
sequences 

and 

It can be checked that in that special case, strict domination 
is equivalent to the existence of 6 > 0 such that 

for all sufficiently large n, whereas domination is equivalent to 

limi~f~l(;i?,; Y;) - CH(Z$ > 0. 
i=l i=l 

Note that in this special case of nonstationary discrete 
memoryless channels, the question of transmissibility depends 
only on the behavior of the deterministic sequences (9) and 
(10). Thus in the case, it is sensible to describe the source 
and the channel by those respective sequences, instead of 
the conventional scalar definitions of maximum source coding 
rate and capacity, which as we showed in Section III fail to 
predict whether transmissibility is possible. However, in the 
context of general (possibly information-unstable) sources and 
channels, we do not believe that the notions of domination 
can be substituted by simpler tests based on the comparison 
of a pair of deterministic scalar sequences characterizing the 
source and the channel, respectively. 

V. OPTIMISTIC CAPACITY AND THE SEPARATION THEOREM 

We saw in Theorem 6 that the direct part of the separation 
theorem holds in complete generality, namely, if the minimum 
achievable source coding rate is strictly less than the channel 
capacity, then the source is reliably transmissible through 
the channel. Furthermore, we saw in Section III that the 
converse part of the separation theorem fails to hold for 
some source-channel pairs. In this section, we characterize 
those channels (and sources) for which the converse separation 
theorem always holds. 

In this respect, it is of interest to define for any channel 
the source capacity C’S, as the supremum of the minimum 
achievable source coding rates of the sources that can be 
reliably transmitted through the channel.4 It follows from 
Theorem 4 that 

csm = SUP H(S). (11) 
S transmissible over W 

The next result is an immediate consequence of the def- 
initions and reveals the key role of the source capacity in 
checking the validity of the converse separation theorem. 

Theorem 8: For any channel W the following are equiva- 
lent: 

i) Cs(W) = C(W). 
ii) For every source 2 transmissible through W, we have 

q-q 5 C(W). 

4A similar quantity, CE, where the supremum is taken over the subset of 
transmissible ergodic sources was mentioned in Section II. 



VEMBU et al.: THE SOURCE-CHANNEL SEPARATION THEOREM REVISITED 

Proof First we show C’s > C for every channel. and 
According to Definition 6, for all y > 0 there exists a sequence 
of (n, M, en) codes such that t, -+ 0 and 

log M  
c-y<- 

n  . 

Let X” be the distribution that puts mass 2/M on each of 
the M/2 codewords with the lowest conditional probability 
of error. Clearly, all those codewords are different (for large 
enough n), for otherwise, t, does not vanish. The process X 
is reliably transmissible through the channel (with an identity 
encoder and the decoder of the corresponding channel code). 
Its minimum achievable source coding rate satisfies, 

Ml2 H(X) = lim sup log - zc-Y 
n+cx n  

which enables us to conclude that CS > C. 
Finally, it follows from Theorem 4 and the definition of Cs 

that property ii) is equivalent to C,s 5 C. n 
We would like to give a characterization of those channels 

whose capacity is equal to the source-capacity, without re- 
course to source-channel transmission properties.5 The main 
result of this section is that Cs is always equal to the so- 
called optimistic channel capacity, a  concept which is closely 
connected with the conventional definition of channel capacity 
(Definition 6). The conventional definition [15] requires that 
good codes exist for all suffkiently large blocklengths; alter- 
natively, we could require that good codes exist for’injinitely 
many blocklengths (cf. Definition 6): 

Dejinition II: The optimistic capacity of channel W , 
C(W), is the supremum of all the rates R for which there 
exist a  sequence of (n,, M, E,) codes such that 

1ogM > R 
n  

and 

lim inf t, = 0. 
71’00 

Unlike C, ?? does not admit a simple expression such as that in 
Theorem 5 (cf. [14]). For further discussion on the optimistic 
definition versus the conventional one see [14], [15]. 

The next result is a consequence of our main result in 
Section IV (Theorem 7). 

Theorem 9: For any channel W , the source capacity is 
equal to the optimistic capacity C’s(W) = c(W). 

Proof We  first prove that C’s > ??. To prove this 
inequality, we have to show that for every 6 > 0 there exists -x 
a transmissible source X with H(X) > ?? - S. 

By definition of optimistic capacity, for every S > 0 there 
exists a subsequence K c N and a sequence of (n,. M, en) 
channel codes for W  such that 

log M  >c-l 
n  4 

jNote that if C,y > C, then there may exist a source that cannot be 
transmitted reliably through the channel but whose sup-entropy rate is less 
than or equal C,s. 

We construct X as follows: for n E K, Xln is uniformly dis- 
tributed over the codewords of the corresponding (n, M, en) 
code, and for n 6 K, Xn is deterministic. Clearly, X can be 
reliably transmitted over W  and fT(X) 2 C - S. This shows 
that C’s > C. 

We  proceed now to show that C’S < c. Pick S > 0 and let 
2  be a transmissible source with H(Z) > C’S - (S/4). Such 
a source always exists by definition of Cs. Thus there exists 
a subsequence K c N such that 

lim 
nim, TLEK 

ihz,(Zn) > CS-; 
n  

and since 2 is transmissible, there exists a channel input 
process X satisfying 

lim 
n-co, neK 

= 0. 

In particular, there exists a sequence 7n + 0 such that 

( 
1. P ;zx~w~(x n; Y”) < cs - 6  

1 
5 T,, for all n  E K. 

We  now apply Feinstein’ s Lemma to conclude that there exists 
a sequence of (n, M, cn) channel code, such that for n E K 

M = exp {n(Cs - as)} 

and 

tn 5 7, + exp (-n6). 

This proves that C > C,s - 2s. Since S is arbitrary, C > C’s, 
and the proof is complete. n 

Theorem 9 reveals an important operational characterization 
for the optimistic capacity which was unknown up to now. It 
implies that the classical statement of the separation theorem 
holds for a given channel (and every source) if and only if its 
optimistic capacity is equal to its conventional capacity. This 
property is indeed satisfied for most channels of interest. It is 
tantamount to requiring that no matter which subsequence of 
blocklengths we concentrate on, we cannot achieve a higher 
capacity. Another way to characterize this property in terms 
of the channel statistical description is given by Theorem 11 
below. 

Theorems 6 and 9 allow us to state the following generalized 
form of the joint source-channel coding theorem. 

Theorem 10: 
i) A source 2 is reliably transmissible through channel W  

if T(Z) < C(W). 
ii) A source 2 is not reliably transmissible through W  if 

T(Z) > C(W). 
Thus it is only in the case where the source-coding rate lies 

between the conventional and the optimistic channel capacities 
that recourse need be made to the conditions derived in Section 
IV. Note that it is not possible to strengthen the direct part 
by replacing C by ??. To check that, the reader may easily 
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construct a suitable source which is not reliably transmissible 
through the channel of Section III. 

We now give an equivalent characterization of the condition 
C = C based on the information spectrum of the channel. The 
proof is relegated to the Appendix. 

Theorem 11: For any channel W, c(W) = C(W) if an 
only if for all 6 > 0, and for all channel input processes X 
the following holds: 

[ 

1 
lin&f P ;~x-w- (X n; Y”) 5 C(W) + s 

I 
> 0. (12) 

To conclude this section, we consider the dual problem; 
namely, under what condition on a given source can we guar- 
antee that the converse to the separation theorem holds for any 
channel? Not surprisingly, the sought-after condition is that 
the optimistic and pessimistic (i.e., conventional) definitions 
of minimum achievable source coding rate coincide for that 
source. 

Analogously to C’s(W), define for any source 2 

Tc(Z) = i+fC(V) 

where the infimum is over all channels over which 2 can be 
reliably transmitted. Analogously to Theorem 8 we have, 

Theorem 12: For any source Z, the following are equiva- 
lent: 

i) Tc(Z) = T(Z). 
ii) For every channel W over which the source is transmis- 

sible, we have T(Z) < C(W). 
Proof: We first show that Tc(Z) 5 T(Z). Select 6 > 0. 

There exists a sequence of (n, M, E,) source codes for 2 
such that 

7 I T(Z) + s 

and 

&\&, = 0. 

Let W be a channel with the same input and output alphabets 
with cardinality exp {T(Z) + 6). Let W” be such that each 
of the elements of a subset of size M of A” is mapped to 
itself with probability I, and every other element is mapped 
to a common element. Clearly, C(W) 5 T(Z) + 6 and 
Z can be reliably transmitted over W. Since 6 is arbitrary, 
Tc(Z) I T(Z). 

Finally, it is obvious that property ii) is equivalent to 
T&-q 2 T(Z). n 

Analogously to the phenomenon we saw for channels, 
Tc(Z) is equal to T(Z), the optimistic minimum achievable 
source-coding rate defined as in Definition 4, substituting for 
all suficiently large n by for infinitely many n. The proof of 
the following result can be found in the Appendix. 

Theorem 13: For any source Z; Tc(Z) = 7’(Z). 
As an example, if the source Z is stationary, then it satisfies 

the property that the optimistic and pessimistic definitions of 
the minimum source-coding rate coincide. To prove this, note 
that the minimum source-coding rate of any stationary source 
will be the essential infimum of the minimum source-coding 

rate over all the ergodic modes that comprise this source-this 
is a simple consequence of the ergodic decomposition of the 
limit of {(l/n) hz- (P)}. Hence for any real number o, 

exists. The equality of optimistic and pessimistic definitions 
of the minimum source-coding rates follows immediately and 
hence the separation theorem is true whenever the source is 
stationary regardless of the channel. This result cannot be 
shown from the classical results of [2], [4]. 

APPENDIX 

Proof of Lemma 4 
Using the fact that the channel is information stable and 

ilwC;,(Wn) = C(W) 

we will show that (l/n)i,ynlvn (Xn; Y”) converges in proba- 
bility to C(W) for some input process X. Indeed, information 
stability of the channel (Definition 3) implies that there exists 
an input process X such that for any X > 0 and r > 0, and 
for sufficiently large n 

P 
[ 
(1 - T)cn(wn) 5 $pw%(x”: Y”) 

< (1+ T)Cn(Wn) > 1 - x. (13) 1 
We also know that for any 6’ > 0 and for all sufficiently large 
n, C(W) - 0 5 C,(Wn) 5 C(W) + 8. Using this and (13), 
and taking n suitably large we conclude that 

P 
[ 
(1 - T)(C(W) - 0) 5 ;ix%wn(x”: Y”) 

< (1 + T)(C(W) + 0) 
I 

2 1 - x. 

Since X, 7, and 8 are all arbitrary positive numbers, 
we have proved the convergence in probability of 
(l/n)ixtiw-(X”; Y”) to C.(W). 

From [14], any pair (X, Y) satisfies 

,1(X; Y) 5 lim&f iI(Xn; Y”). (14) 

This property can be applied for a particular subsequence of N 
too; the inf-information rate defined over any subsequence is 
greater than or equal to the inf-information rate defined over 
the whole sequence. 

i) Let 6 = C-T, and c, = C - 2s for all n. We see that the 
definition of strict domination (Definition 9) is satisfied with 
this choice, using Theorem 4. 

ii) Fix y > 0. In the definition of domination (Definition 
IO), choose c, = H(Z) - y, for all n. It follows by definition 
of H(Z) that there exists a subsequence K c N such that 
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Hence, for any S > 0 there exists a channel input process X which contradicts our assumption that for all 6 > 0 and X 
such that (12) is satisfied. This establishes the if part. 

s =o. 1 We proceed now to prove the other direction, again by a 
contradiction argument. Thus assume that 

Hence, the inf-information rate of (X, ?), defined over the C=C (19) 

subsequence K is greater than or equal to H(Z) - y. We also 
have, using 

yet there exist 6 > 0, an input process X a subsequence 
K c N and a sequence r, -+ 0 such that 

lim C, = C 7L’cc 1 

that 
P ,ixq*(X 

( 
n; Y”) < css 

1 
1r,, for all n E K. 

limsuplI(X’“; Pn) 5 C. Using Feinstein’s Lemma we conclude that there exists a 
n+oo 71. sequence of (n, M, en) codes for the channel W satisfying, 

Applying (14) over subsequence K, we see that inf- on the subsequence K 

information rate defined over K is less than or equal to C, 
and hence C > H(Z) - y, where the choice is y is arbitrary. 
This concludes the proof. 

M=exp{n(C+g)} 

n 
and 

Proof of Theorem 11 s 

Observe from Theorem 5 that if a channel has capacity C, 
t, 5 r, + exp 

( > 
-nz 

then for any 6 > 0 there exists a channel input process X 
such that implying that C 2 C + (s/2), in contradiction with (19). n 

lim P ‘ix nWn(~n; Y”) 5 c(w) - s = o. (15) Proof of Theorem 13 
n--too n I We start by proving that 

We will use a similar characterization of C (replacing the 
limit in (15) by liminf). Tc(Z) 52x-q. (20) 

Lemma 5: For any 6 > 0, there exists a channel input 
process X such that 

To prove this inequality we have to show that for every 6 > 0 
there exists a channel W over which Z is transmissible, with 

liminf P n-00 [ 
ki~=n;~(X~; Y”) 5 c(W) - 6 

I 
= 0. (16) 

C(W) 5 T(Z) + 6. By definition of T(Z), there exist a 
subsequence K c N and a sequence of (n, M, E,) source 

Proof Construct the process X which is transmissible 
codes for Z such that 

over W exactly as in the proof of Theorem 9. This process 
satisfies (cf. proof of Theorem S), 

log 5 T(Z) + ; 
n 

and 
lim > 0. 

n+m, ncK 
(17) 

l@ntKtn = 0. 

By Theorem 7, W dominates X and hence from Definition 
10, there exists an input process X such that 

liIIKP &vn(X~; Y”) 5 c - 6) = 0. 
( 

n 

We now proceed with the proof of Theorem 11. Observe 
that by definition, C > C. Hence to show that condition (12) 
implies C = C, it is enough to show that it implies c < C. 
By way of contradiction, assume that (12) is satisfied for every 
6 > 0 and every X, yet ?? > C + y for some y > 0. Now 
from Lemma 5, we know that there exists an input process 
X such that 

Since by assumption ?? > C + y, (18) implies that 

Let G, be any subset of F” (where F is the alphabet of 
Z) which includes the (n, M, F) source codebook, and has 
cardinality 

IG,l = exp {n[T(Z) + S]}. 

Let W be a channel with input and output alphabets both 
equal to F satisfying 

W”(Z” IP) 
1, for zn E G,, Z” = zn 

ZZ for n E K 
7. IF; ’ for ,P 6 G, 

and 

W” = identity channel on F” for n $ K. 

iiinwn(Z”; Y”) 5 C + S 
> 

= 0 Clearly Z can be reliably transmitted over TV, and C(W) = 
T(Z) + 6. Since S is arbitrary, we have proved (20). 
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We proceed to prove that 7’~ (Z) 2 T(Z). We have to 
show that the capacity of every channel over which Z is 
transmissible, is at least T(Z). By definition of T(Z) and 
the source coding results of [13], for every S > 0 we have 

liminf P ihp(Z") > T(Z)- i 
( 1 

> 0. (21) 7L’oC 

Now let W be a channel over which Z is transmissible. Since 
W dominates Z, (21) implies that there exists an input process 
X such that 

Using again Feinstein’s Lemma as in the proofs of Theorem 
9 and 11, we conclude that r(Z) - S is an achievable rate for 
the channel W, whenever Z is transmissible over W. Since S 
is arbitrary, the proof is complete. H 
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