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On Error Exponents for Arbitrarily Varying Channels 
Brian L. Hughes, Member, IEEE, and Tony G. Thomas, Member, IEEE 

Abstract- The minimum probability of error achievable by 
random codes on the arbitrarily varying channel (AVC) is in- 
vestigated. New exponential error bounds are found and applied 
to the AVC with and without input and state constraints. Also 
considered is a simple subclass of random codes, called randomly 
modulated codes, in which encoding and decoding operations are 
separate from code randomization. A universal coding theorem is 
proved which shows the existence of randomly modulated codes 
that achieve the same error bounds as “fully” random codes for 
all AVC’s. 

Index Terms- Arbitrarily varying channels, error exponents, 
random codes, jamming. 

I. INTRODUCTION 

T HE arbitrarily varying channel (AVC) models a commu- 
nication channel with an unknown state that varies with 

time in an arbitrary way from one symbol transmission to the 
next. The practical significance of the model lies mainly in its 
relevance to the problem of communication in the presence 
of jamming. 

The capacity of the AVC depends on whether deterministic 
codes or random codes are used. The deterministic code capac- 
ity further depends on whether the average or the maximum of 
the error probability over all codewords is used as the measure 
of performance. For many AVC’s of practical interest, random 
codes can achieve a much larger capacity and reliability 
function than deterministic codes. Indeed, when the channel is 
symmetrizuble [6], a positive rate of transmission is possible 
only if random coding is used. Consequently, random codes 
are important not only as tools for proving coding theorems, 
but also as models for practical communication systems. 

A central problem in the information-theoretic study of the 
AVC is to determine the minimum error probability achievable 
with random block codes. The first results on this problem are 
due to Blackwell, Breiman, and Thomasian [3] who, in their 
pioneering paper introducing the AVC, derived the capacity 
for random codes. Stiglitz [9] presented a simplified proof of 
their result which also established an exponential error bound. 
Ahlswede [ 11 showed that capacity can be achieved by random 
codes with an ensemble of size at most n2, where n is the 
blocklength of the code. Ericson [7] generalized Stiglitz’s error 
bound to reflect dependence on a quantity he termed the key 
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rate, a measure of the size of the random code ensemble. More 
recently, Csiszk and Narayan [5] extended the coding theorem 
of Blackwell et al. to the situation where the channel input and 
state symbols are subject to cost constraints. 

This paper revisits the problem of exponential error bounds 
for the minimum error probability achievable on the AVC with 
random codes. Our main contributions comprise two parts. 
First, we derive AVC analogs of the random coding, sphere 
packing, and expurgated bounds for random codes and state 
sequences of fixed composition. We then use these results to 
obtain a stronger form of Stiglitz’s bound, and to refine the 
coding theorem of Csiszk and Narayan for the AVC subject 
to constraints. 

Coding theorems for AVC’s are typically proved using ran- 
dom codes in which codewords are independent and identically 
distributed. Because of the obvious practical disadvantages 
of such schemes, it is of interest to determine whether the 
same performance can be achieved by less complex codes. 
One approach to this goal, pursued in [l] and [7], is to 
look for random codes with a small ensemble size. In this 
paper, we explore an alternate approach. We consider a simple 
subclass of random codes in which coding and randomization 
are separate. More specifically, a randomly modulated code 
consists of a deterministic code combined with a random 
permutation mapping. Our second contribution is a universal 
coding theorem which demonstrates the existence of randomly 
modulated codes that achieve the same error bounds as “fully” 
random codes for every AVC and for every state sequence. 

The rest of the paper is organized as follows. Section 
II introduces terminology and summarizes our main results. 
These results are proved in Section III. A simple example is 
given and conclusions are summarized in Sections IV and V, 
respectively. 

II. SUMMARY OF RESULTS 

A. Preliminaries 

The notation used in this paper is adapted from [5]. Let X, 
S, and y be finite sets. A discrete memoryless channel (DMC) 
is defined by a stochastic matrix W: X -+ Y. For n channel 
uses, the transition probability is 

where 2 = (xi,... ,z,) E X” and y = (yi,...,yn) E P. 
A (discrete memoryless) arbitrarily varying channel (AVC), 

w L {W(- 1 .,s): s E S}, is a collection of channels 
W: X + Y indexed by a parameter s called the channel state. 
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We interpret W(y 1 ZJJ, s) as the conditional probability that the 
channel output is y E y when the channel input is x E X and 
the channel state is s E S. The channel operation on n-tuples 
x E X”, y E y”, s = (sl,...,s,) ES”, is given by 

W ”(y I x, s) A fi W (Yi 1  xi, Si). 
i=l 

An (n, M) code is a pair (f, ‘p) consisting of an encoder 
f: M  + Xn and a decoder ‘p: y” -+ M, where M  g 
{ 1, . . , M} is the message set. The rate of this code is 
R 2 (l/n) log M. (Throughout this paper, all exponents, 
logarithms, and information measures are to the base 2.) For 
any channel W ,: X” + yn, the probability of error of (f, cp) 
when message m E M is sent is 

emWn, f, ‘~1 A 1 - Wn(V1(m) I f(m)). (1) 

In the particular case Wn(. 1 .) = Wn(. 1 . , s), we display the 
dependence on s of the error probabilities by writing 

e,(J, f, cp) A emW”(. I .,J), f, cp). 

An (n, A4) random code, (F, (a), is a random variable (RV) 
that takes values in the set of all (n, M) codes defined on the 
same alphabets X and Y. 

Following [5], we impose cost constraints on the encoder 
and the channel state sequences. Let g and I be nonnegative- 
valued functions defined on X ~ and S, respectively. For all 
3: = (XI,... ,x,) E X” and s = (sl;..,s,) E S”, let 

The random code (F, a) is said to satisfy the input constraint 
l? if for all m  E M 

g(F(m)) < I almost surely (a.s.) (2) 

Similarly, a  random state sequence S = (Si , . . . , S,) satisfies 
the channel constraint A if 

Z(S) < A a.s. (3) 

For simplicity, we assume min, g(z) = min, Z(s) = 0, l? > 0, 
and A > 0. 

We  will need several definitions from the method of types 
[4, pp. 29-391. For any finite sets X and Y, D(X) denotes 
the set of all probability distributions on X. The type of a 
sequence 2 E X” is the probability distribution P, E D(X) 
given by Pz(&) 4 N(x 1 ~)/Tz for x E X, where N(z 1 ZE) 
is the number of occurrences of z in x. The set of all 
types of sequences in X” is denoted by Dn( X), and the 
set of all n-tuples x E X” of type P is denoted by I$, 
or simply 7~ when n is understood. Similarly, the joint type 
of a pair (x, y) E X” x yn is the probability distribution 
Psy E 23(X x Y) given by 

pq(x> Y) 4. N(x, Y I x,!I)ln 

and the conditional type of y given x is defined by 

PyjdY I XI A Pzdx, Y)lPz(X) 

for (x, y) E X x Y. For x E X” and V: X + Y, let I,“(x) 
be the set of all y E y” of conditional type V given x. 

For any V: X -+ Y and P E D(X), I(P, V) denotes 
the mutual information between RV’s X and Y with joint 
distribution P(z)V(y 1 x). The mutual information between 
the sequences x E X” and y E yn is defined by 

Given a code (f, cp), we say that cp is a maximum mutual 
information (MMI) decoder for f if for all m  E M and 
y E Yn 

P(Y) = m  ==+ W(m) A Y) = mytc W(m’) A Y). 

Similarly, given a random code (F, a), we say that Q is an 
MM1 decoder for F  if, for all y E y” and m E M, the above 
condition holds almost surely on the ensemble of (F, @). 

B. Error Exponents 

The coding problem associated with the AVC subject to 
constraints is to construct random codes satisfying the input 
constraint I’ such that the maximum error probability 

(4) 

is uniformly small for all s satisfying the channel constraint 
A. The main goal of the information-theoretic study of this 
channel is to determine the most favorable possible relation- 
ship among the error probability, blocklength, and code rate 
of a random code. A first step toward this goal was taken by 
Csiszar and Narayan [5], who showed that the (random code) 
capacity is 

where 

Q W (. I .I a  c Q(s)W (. I .>s) 

QA A {Q E D(S): c Q (sMs) 5  Al 

and where 
s 

73. b {P E D(X): CP(s)g(s) 5 r). 
s 

This paper investigates the error exponents of the AVC 
subject to constraints, which give bounds on the exponential 
rate of decrease of the error probability with respect to the 
blocklength n, as a function of the rate R of the random code. 

(5) 
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Dejnition 1: A number E 2 0 is an achievable error 
exponent at rate R of W  under random coding if, for every 
S > 0 and all sufficiently large n, there exists an (n, M) 
random code (F, a) satisfying the input constraint r such that 
M  2 exp{n(R - S)} and 

is convex and decreasing 
R < I(P,QW), and 

in R > 0, positive if and only if 

&CR, W  P, Q) 

The largest achievable error exponent at rate R of W , consid- 
ered as a function of R, is called the (random code) reliability 
function of W  and is denoted by E(R). 

In general, we must be content to merely bound E(R), since 
an explicit characterization of the reliability function is lacking 
even in the special case of the DMC. Our results rely on 
the methods used in [4, pp. 161-1741 to bound the reliability 
function of the DMC. In particular, we find it useful to begin 
by restricting attention to codes and channel state sequences 
of fixed composition. To this end, we say that a random code 
(F, @) is of constant type P if F(m) E ‘&, almost surely, for 
all m  E M. 

= % @ ,W’,Q)+~-R, 
{ Esp(R,W ,P,Q), 

where R g R(W, P, Q) is the smallest 
which E,,(R, W , P, Q) meets its supporting 

R > 0 at 
line of slope 

-1. Note that E,,(R, W , P, Q) can be infinite; we de- 
note by R,(W, P, Q) the infimum of R > 0 such that 
E,,(R, W , P, Q) is finite. 

Returning now to the coding problem for the AVC subject 
to constraints, we observe that a random code of constant type 
P satisfies the input constraint l? if and only if P E Pr, 
and s E 7~ satisfies the channel constraint A if and only 
if Q E GJh. Recalling Definition 1, we see that Theorem 1 
implies a lower bound for E(R), and Theorem 2 implies an 
upper bound. These bounds are summarized in the following 
theorem. 

Theorem 1 (Random Coding Bound): For all R > 0, 6 > 
0, M  45 [exp {n(R - S)}], and P E Dn(X), let (F,@) be 
an (n,A!Z) random code such that the RV’s F(m),m E M, 
are independent and uniformly distributed on IF, and @  is an 
MM1 decoder for F. Then for all Q E 2),(S) 

Theorem 3: For R > 0, the reliability function of the AVC 
W  subject to constraints satisfies 

E,(R) 5  E(R) I Es,(R) 
except possibly at 

whenever n > ni(lYl, 1x1, ISI, S), where where the upper bound need not hold. Here 

-&CR, W  P, Q) g min 
Uyxs: Ux=P,lJs=Q 

D(~YXS II W  x P x Q> 
+ KP, UYIX) - RI+. (6) 

Here 

(W x P x Q)(Y,x, s) A W(Y I 2, sP’(x)Q(s); 
D is the divergence (e.g. [4, p. 201); ]rl+ A max{r, O}; Uyxs 
denotes a probability distribution on Y x Xx S; and Uylx, Ux , 
and Us are the obvious conditional and marginal distributions 
induced by Uyxs. 

Remarks: i) As above, Esp( R) is convex and decreasing, 
positive if and only if R < C, and 

ET(R) = 
Q,(ii) + li - R, 0 5 R < R 
E&R), R<R<C 

Theorem 2 (Sphere Packing Bound): For all R > 0, 6 > 0, 
&f 2 exp{n(R + S)}, Q E Dn(S), and P E D,(X); every 
(n, M) random code (F, @) of constant type P satisfies 

where R is the smallest R > 0 at which Esp(R) meets its 
supporting line of slope - 1. ii) When the constraints in (9) are 
absent or inactive (e.g., g  = Z  %  0), it can be shown as in [4, p. 
1921 that E,(R) d re uces to Stiglitz’s exponent [9]. However, 
Stiglitz’s proof used a different decoder for every R and every 
AVC W , whereas it is evident from the proof of Theorem 3 
that MM1 decoding suffices to achieve this exponent for all 
R and W . 

max e(s, F, a) 2 max 1 c 
SE7Q mEM I%\ sE7Q 

e,(s, F, @ I 

L exp {-4%,(R, W , P, Q> + 611 (7) 

for all n  2 na(JJJl, IX], ]Sl,S,y), where y is the smallest 
nonzero value of W  and 

Es,(R,W ,P,Q) ih uyx$gx=p DVYXS II WxPxQ). 
US=QJ(P,UY~XKR 

(8) 
Remarks: Proceeding as in [4, p. 1681, we can show the 

above exponents enjoy properties similar to their DMC coun- 
terparts. In particular, for fixed W , P, and Q, Esp( R, W , P, Q) 

It is interesting to compare the above exponents with the 
capacity (5). Observe that C equals the mutual information 
optimized over all joint distributions P(x)Q(s) satisfying 
the constraints. By contrast, the programs in (6) and (8) do 
not require UXS(Z,S) = P(z)Q(s). Indeed, as will become 
apparent from the proof of Theorem 4, the choice of UYXS 
achieving the minimum in (6) and (7) will not generally be 
such that UXS is of product form. 

From (5), the capacity of the AVC can be interpreted as the 
minimum capacity of the DMC Q W  for all Q E !&. It is 
natural to ask whether the error exponents of the AVC admit 
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a similar interpretation. In particular, what is the relationship 
between E,(R, W , P, Q) and l?,(R, QW, P), where 

&(R, r/ii, P) A v,$;yD(V II * I PI + II(P, VI - RI+ 
(11) 

from code randomization. Specifically, we define a randomly 
modulated (RM) code to be a random code (F, a) of the form 

F(m) =Tf( m ,m E M,@(y) =  cp(T-ly), 1 y E y” (12) 

is the random coding exponent of the DMC I@: X -+ Y for 
codes of constant type P [4, p. 165]? 

Theorem 4: For all R, W , P, and Q 

E,(R, W  f’, Q) 2 &(R, Q W  P) 

with equality if and only if 

&(R, Q W  P) = Q,ED(~;~Q,<Q J%(R> Q'W PI. 0 

where (f, ‘p) is a deterministic code of blocklength n and 
where T  is a random permutation mapping. By this we 
mean that T  maps any n-tuple z = (xi, . . . , z,) ‘into a 
randomly selected permutation (x,~, . . , z~,), with all such 
permutations equally likely. Hereafter, we write (F, a) = 
(Tf, VT-‘) as a shorthand for (12). 

One consequence of Theorem 4 is that 

Q$; A EAR, W , P, Q) > Q$gA -&PC Qw, P) 

unless there exists a Q E Qa that achieves the minimum on 
the left which also achieves 

Q,EDc~;nQ,<Q -G-CR, Q'W PI. 

We  may define the RM code capacity C* and the RM code 
reliabilityfinction E* (R) of the AVC subject to constraints by 
restricting the codes in the definitions of C and E(R), respec- 
tively, to the form (12). Our objective is to determine whether 
the class of RM codes can achieve the same performance as 
random codes with no structural restrictions. Of course, the 
upper bound in Theorem 3 applies to RM codes, as does the 
converse proof of (5); hence E*(R) < Esp( R) and C* 5 C. 

In (12), T  plays a role equivalent to Ahlswede’s “robusti- 
fication” technique [2, sec. IV-B]. Using this technique, it is 
easily shown for Q E Vm(S) and s E 7Q 

Roughly speaking, this occurs when the channel constraint is 
inactive on the support of Q. In particular, this occurs when 

e(s,Tf, cpT-‘) I (n + l)‘s’4(QW”, f, cp). (13) 

QFg * &(R, Qw, P) = Qn&, &(R, Q W  P). 

However, except in these rare circumstances, the random 
coding exponent of the AVC is strictly larger than the corre- 
sponding exponent of the DMC Q W  for every Q E !&. It 
follows, that there exist codes (f, cp) such that 

It is immediate from (13) that any rate achievable for the 
compound DMC l&J = { QW(. I .): Q E QA} subject to the 
input constraint I is also achievable for the AVC W  under 
RM coding. A minor modification to the proof of [4, p. 173, 
Cor. 5.101 shows that the capacity of this compound DMC is 
equal to C; thus C* 2 C and hence C* = C. Similarly, it 
follows from [4, p. 165, Theorem 5.21 that 

is substantially larger than 

max 43, f, v)). 3: l(s)g 

To see why this can occur, observe that 

is an achievable error exponent for the compound DMC; hence 
(13) implies E*(R) 2 i?,(R). From Theorem 4, it is apparent 
that this lower bound usually falls short of E,(R). To improve 
upon it, we need a refinement of (131. 

em((QW”, f, cp) = c Q”(sh(s, f, cp). 

They-em 5: Let Q E Dn(S) and Q E z)(S) be such that 
Q << Q. Then for all x E X”, s E IQ, and A c y” 

SES” 
EW”(TA 1 Tx,s) 5 [dj”(7Q)]-1(@t9”(w4 1 x). (14) 

When this sum is dominated by terms s satisfying l(s) > A 

can be much smaller because such terms are not permitted by 
the channel constraint A. 

In the particular case A = iv(x) for some V: X --+ Y 

EW”(T%(x) 1 TX, 3) 5 (n + l)lsI exp {-nG(V, W  f’, Q)} 
(15) 

C. A Restricted Class of Codes 
where P is the type of x and 

Theorems 1 and 3 imply that ET(R) can be achieved by 
random codes in which codewords are chosen independently 
and uniformly on 7~ for some P E I+. Because of the 
obvious practical disadvantages of such codes, it is of interest 
to determine whether similar performance can be achieved 
with less complex codes. In this paper, we consider random 
codes in which encoding and decoding operations are separate 

Uyxs: lJyx=PxV,Us=Q 
D(~YXS II W  x P x Q). 

(16) 

0  
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Remarks: Note that in order for G(V, W , P, Q) = $00 it is 
necessary and sufficient that D(V 11 Q W  1 P) = fco. Suffi- 
ciency is immediate; for necessity, observe G(V, W , P, Q) = 
+oe implies there is an 5, y, and Q such that 

this end, we say that cp is a maximum-likelihood (ML) decoder 
for the channel U: X -+ Y and encoder f, if 

P(X)V(Y I x> > 0 

and QW(y 1 Z) = 0. Since Q < Q, it follows that 
QW(p 1 Z) = 0 and hence D(V 11 Q W  ) P) = fco. 

It is immediate from (4) and (14) that any RM code 
(Tf, $f’-‘) and s E 7~ satisfy 

P(Y) = m  ==+ U”(Y I f(m )) = mn;l~ U”(Y I f(4). 
Theorem 8 (Expurgated Bound): For every R > 0, 6 > 0, 

P E DDn(X), and Q E ;D(S), there exists an (n,M) code 
(f, ‘p) of constant type P such that cp is the ML decoder for 
the channel 6W: X ---f y and f, M  > exp{n(R - S)}, and 
such that 

e(s, Tf, cpT-‘) 5 8:i~~,rOn(~)l-‘e(tcjw)n: f, cp). 

This bound improves upon (13), as can be seen by considering 
the special case Q = Q and observing [Q”(~Q)]-’ < 
(n + l)lsl. Using Theorem 5, we can prove a counterpart of 
Theorem 1 for RM codes. 

syg e(s, T f, VT-‘) I exp {-n[EdR, W  0, P, Q ) - 61) 
(18) 

for every AVC W , every Q E D,(S), Q < Q, and all 
n 2 74lYl, 1x1, ISI,@ , where 

&CR, w, a, P, Q) 
A min 

v: X+X,I(P,V)<R, [J(djw, V, P> - W Q  II dj) 
Theorem 6: For every R > 0, S > 0, and P E Dn( X), 

there exists an (n, M) code (f, cp) of constant type P with 
M  2 exp{n(R - S)} such that for every AVC W  and 
Q E R(S) 

sTF; e(s,Tf, d-l) 5  exp {-4%(R, W  P, Q) - 4) (17) 

Pxv=(Pxvjt 
+ I(P, V) - R] 

J(V’, v, P) k - c P(z)V(? I z) 
(Z,S)E‘P 

(19) 

whenever n > na(lY], 1x1, ISI, 6), where E,(R, W , P,Q) is 
as defined in (6). 0  

Remark: The codes of Theorem 6 are universal in the sense 
that the same codes achieve the exponent E, (R, W , P, Q) for 
every AVC W  and every state type Q. These codes consist of 
codewords chosen according to a packing lemma [4, p. 162, 
Lemma 5.11 and an MM1 decoder. These same codes were 
shown by Csiszk, Kiirner, and Marton [4, p. 172, Theorem 
5.81 to achieve the exponent E,(R, V, P) for every DMC 
v: x i y. 

. log 
{ 

c JVYY I X)V’(Y I 2) 
YCY 1 

and (P x V)+(z,Z) a (P x V)(?,z). a  
As before, the constant composition result implies a bound 

on the reliability function for the AVC subject to constraints. 
The proof of the next theorem is similar to Theorem 3 and 
so is omitted. 

Theorem 9: E*(R) > E,(R) for all R > 0, where 

E,(R) k max min E,(R,W,d,P,Q). 0 
PEP,,&D(S) Qcc.2~ 

We  now present the main result of this section. The proof 
is similar to that of Theorem 3 and so is omitted. 

Theorem 7: Theorem 3 holds with E*(R) replacing E(R). 
q 

We  conclude that the simpler class of RM codes can achieve 
the same capacity and random coding exponent ET(R) as 
the class of random codes with no structural restrictions. In 
particular, for fi 5  R _< C (see remark following Theorem 3), 
RM codes achieve the random code reliability function E(R) . 

Remark: Since E(R) 2 E*(R), it follows that E,(R) is 
also a lower bound to the random code reliability function. 
We  conjecture that if C > 0 then E,(R) > ET(R) for R 
sufficiently small, but we have not succeeded in proving this 
in general. This is true, however, for all examples we have 
calculated, including the one presented in Section IV. 

III. PROOFS 

A potential weakness of Theorems 6 and 7 concerns the 
size of the ensemble of T, namely n!, which grows su- 
perexponentially with rz. However, one can apply Ericson’s 
approach [7, Theorem l] to choose a random mapping T’ with 
a smaller ensemble, albeit at the cost of losing the universality 
of Theorem 6. 

D. An Application: The Expurgated Bound 

As yet, no analog of the expurgated bound has appeared 
in the literature for the AVC, with or without constraints. 
Moreover, the methods used in deriving the expurgated error 
exponent do not appear to extend readily to the AVC. As a 
final application of Theorem 5, we now present an expurgated 
bound for RM codes (and hence also for random codes). To 

Throughout this section and in the Appendix, we use the 
elementary type identities and estimates given in [4, pp. 29-321 
without further reference. Before proceeding to the proof of 
Theorem 1, we need the following lemma. We  omit the proof, 
which is a straightforward variation of [4, p. 162, Lemma 5.11. 

Lemma 1: For any R > 0, S > 0, P E Dn(X), and 
M  5 exp {n(R - S)}, let the random variables 21, . . . ,ZM 
be independent and uniformly distributed on 7;. Then for all 
z E X”, s ES”, and all stochastic matrices U: X x S --f Y 
and V: X t y 

E ?;i(x,s) n 6 Iv&) 
j=l 

5 Pi& s)I exp { -MP, V) - RI+} 

for all n  2 ns(]XI, S). 0  
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Proof of Theorem 1: Consider first a  fixed code (f, cp) of 1  with M’ 2 M  - 1 5 exp {n(R - a)}, we obtain for 
constant type P where cp is an MMI decoder. When message i n 2 % (lxlIs) 
is sent and the state sequence is s E 75, observe that Y E yn 
is decoded incorrectly only if Ew”(A(zi,s) n U 574.q) I zi, 4  

(Y, f(i)> s) E 7UYXS > Y E Iv W)) F  $q gi’ ,%,xs(x>~), 
and G5J,,s(4 

qp, V) 2 qp, UYX) x exp { -@WY 1 xs II W  I UXS) 

for some j #  i, some joint type UYXS on Y x X x S satisfying +H(U~~xslUxs) + IMP, V) - RI+]} 
UX = P and Us = Q, and some conditional type V: X -+ Y. 
Let 5 I%;; i”” ev { -@(UY 1 xs II W  I UXS) 

P 

J&s) b  {y E Yn: (TAX, 3) E fiyxs}. +II(P, VI - RI’]} 
5 (n + l)lx’ exp { -@WY 1 xs II W  I UXS) + H(P) 

Now let R > 0, S > 0, P E Dn(X), M  = [exp{n(R - 
S)}l, and let (F, a) be an (n, M) random code such that 

-fW x js I Q) + NJ’, V> - RI+]} 
F(i) k Zi, i E M, are independent and uniform on 7~ and = (n + l)lKl exp {-n[D(Uyxs 1) W  x P x Q) 

@  is an MM1 decoder for F. For all Q E Dn(S) and s E IQ, +II(P, VI - RI+]} (21) 
the error probability of (F, (D) is bounded by where the last step follows from 

Ee;(s, F, @ I H(P) - H(Uxls I Q) = D(Uxs II P x Q> 
2 EW”({y: CD(~) # i} I Z&s) 

5 c EWn(A(Zi, s) 
and the chain rule for divergence. Substituting (21) into (20) 
and observing that I(P, V) > I(P, Uylx) implies 

Uyxs: lJx=P,Us=Q 
v: qP,v)>~(p,uYIx) lI(P, V) - RI+ 2 II(P, UYIX) - RI + 

f- u  7v(Zj) I Z i,S> we obtain 
j#i 

5 (n + 1) I~llYlwl+l) Eei(s, F, @) 2 (n, + l)lxl(ls ‘1 yl+lyl+l) 

X max 
UYXS: Ux=P,Us=Q 

EWn(A(Zi, s) x exp {-nE,(R, W , P, Q)). 

v: r(P,v)2I(p,uYlx) 
Since the bound holds for all i E M  and s E I$, Theorem 

n u Iv(&) I Zi,S) (20) 
1 is proved for 

j#i w(lYI, 1x1, PI, 6) A min{n > n5(lXI,S):exp{-nS} 

where the second inequality follows by observing that there 
x (n + l)lW  II Yl+lYl+l) <  I}. 0  

are at most (n + 1) lx 11 yll sl types Uyxs and (n + l)jx 11 yl Proof of Theorem 2: For any Q E Vo,(S), define the chan- 
types V. nel 

Note that A(z,s) = 7uyIxs(z, 8) when z E lu,,,(s) and 
otherwise A(%, s) = 0; hence 

EW” A(Z;,s) n U ?;(Z j) I Z i,s 
j#i 

=- 
I:,1 c EWvJ,,s (X> s) 

XElLJ x,s(s) 
n U 5X-W 1~) 

j#i 

ZI- 
A c E % ,xs (~4 n IJ 7d-9 

2E7u x,s(s) j#i 

x exp +@(UY 1 xs II W  I UXS) 

+ HRJY I xs I Uxs)l> 

which follows by observing that Wn(y ) 2, s) equals the last 
exponent above for all (y, z, s) E 7uvxs. Applying Lemma 

so that the middle expression in (7) can be written as 
max, em(Wn,&, F, (a). The following lemma is proved in 
the Appendix. 

Lemma 2: Let UYXS be any joint type in Vo,(Y x X x S) 
satisfying US = Q and UX = P. Then for all x E 7~ 

@qQ(7Uy,x (z) 1 X) 2 (n + l)-(l+‘y’)~x~~s~ 

x exp{-~WJ~~sllW x P x Q)). 

The first inequality in (7) is immediate. To prove the 
second, fix 6 > 0 and let (F, @) be any (n, M) random 
code of constant type P with M  > exp {n(R + 6)). By the 
usual argument made in passing from a random code to a 
deterministic code, there exists a deterministic (n, M/2) code 
(f, ‘p) of constant type P such that 
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Let lJyxs be any joint type in Do,(Y x X x S) satisfying 
UX = P, Us = Q, and I(P, lJyp) < R + s/2. For all rz 
sufficiently large, we must have 

KY,,, (f(m )> n  c~-Ym)l < $u,,, (f(m ))l 
for some m, since otherwise 

~XPWWYH 2 I%4 2 U%~~,~(f(~rr)) m-lb) 

> (n + l)-“‘x’ exp {n(R $ S)} - 4  

which contradicts the assumption I(P, UNIX) 5 R + S/2 for 
all n  such that 

exp {nS/2} > 4(n + l)lYllxl. 

Thus 

IZJ~,~ (f(nz)) n 1~: 54~) f m>l > fl?;iy,x (f(m)>1 

for some m. Since H&0(. 1 Z) is constant on 7~,,,(2), it 
follows from Lemma 2 that for this m  

tin ,~({y: p(y) #  m} 1  f(m)) > (n + l)p(~‘y’)s”s’ 

x exp {-~WJYXSIIW x P x Q)}. 
Combining this with (23), we conclude that 

EEa; emPQn,Q, F, @ I 

2 exp {-Q(ulux~llW x p x Q) + V21) (24) 

holds for all nonempty types Uyxs such that UX = P, 
US = Q, and I(P, U y I X) 5 R + s/2, and for sufficiently 
large n. 

The proof is now completed with an approximation ar- 
gument: Let U$,, achieve the minimum in (8) so that 
I( P, L&) 5 R. It is easily shown that, for each n, there is an 

approximation U$i, to this probability such that Ug’ = P, 
Ug’ = Q, 7upi s # 0, and 

II u&L -U&,,(( a~-lXIIYIIwn 
where I( . 11 denotes the variational distance. Using this and 
[4, p. 33, Lemma 2.71, we can show for 0, _< l/2 

I(8 u$i,, 5  I(& uL,x> + g(k) 

~(U$~,.JJW x P x Q) I -&JR, W  P, Q) f d&t> 

where 

and y is the smallest nonzero value of IV. Taking n large 
enough to ensure g(0,) 5  S/2, we obtain I(P, U$L) 5 

R+S/2 and hence (24) holds for UYXS = U$i,. Substituting 
the second inequality above into (24), we obtain (7) thereby 
completing the proof. 0  

Proof of Theorem 3: Throughout this proof, let P, and Qn 
denote generic elements in Dn(X) and Dn(S), respectively. 
For fixed blocklength n, a random code of constant type P, 
satisfies the input constraint l? if and only if P, E I+; a 
channel sequence s E 7~~ satisfies the channel constraint A if 
and only if Qn E QA. From Theorem 1, it follows immediately 
that 

EL(R) 4  ,-~~Pm~~~Qm;'~,E,(R,W,P,,Q,) 
n  n  

is an achievable error exponent at rate R; hence EL(R) 5 
E(R). 

Conversely, corresponding to any (n, M) random code 
(F, @) there is an (n, M/2) deterministic code (f, cp) which 
satisfies (23), where I/iin,o is as defined in (22). Moreover, 
since (F, @) satisfies the input constraint I?, (f, cp) can be 
chosen to satisfy it as well. Since IDn(X)\ 5  (n + l)iXl, 
(f, cp) contains a subcode (f’, cp’) of constant type P,, for 
some P, E Pr, which has at least M(n+l)-IX~/2 codewords, 
so that 

m~xp.m(@n,2), F, a) 2 + m~xem(@n,Q, f’, cp’). 

Using Theorem 2 to bound the error probability of (f’, cp’), 
we obtain E(R) 5 Eu(R) where 

and R, 1 R - ([Xl/n) log(n + 1) - l/n. The following 
lemma, which is proved in the Appendix, completes the proof 
of Theorem 3. 

Lemma 3: For all R > 0, 
a> ET(R) I EL(R), and 
b) &I(R) 5 Es,(R) except possibly at R = R,(W). 

Proof of Theorem 4: For any Q E V(S), let VCJ be the 
set of all V: X 4 J’ achieving the minimum in (11) for 
I@ k QW. We  say that Q satisfies the eqtiivalence condition 
if there exists a V* E V, such that for every s E S 

c 
p(X)v*(Y 1  X)w(Y 1  x,s)Q(s) = Q(s),  c25j 

X>Y QW(Y I x> 
Theorem 4 will follow if we prove the two assertions: 
a) E, (R, W , P, Q) 2 &(R, QW, P) with equality if and 

only if Q satisfies the equivalence condition. 
b) 

if and only if Q satisfies the equivalence condition. 
To prove a), it is convenient to replace Uylx by V and 

Usl,x by U in (6) to obtain 

G(R, W  P, Q) 
= min 

v: x-y 
D(VxPxUI]W.xPxQ) 

U: XxY+S,(PxV)U=Q 

+ II(P, V) - RI+ 
= v+y [W II Q W  I P) + II(P) VI - RI+ 
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+ u: p$+ D(U II P x Q)lQW I P x VI] and 

(PxV)U=Q 

2 J% CR, Q W  P) 6’6) 

where the second equality follows from the chain rule for 
divergence. Observe that equality is achieved if and only if 
for some V* E VQ there exists a U: X x y + S such that 
(P x V*)U = Q and 

and minimizing the resulting bound over all Q satisfying 
Q K Q. 

It only remains to prove the second equality in (16). To this 
end, let 

D(U (I (W x Q)/QW 1 P x V*) = 0. 

Since the latter condition occurs if and only if 

UC. I X,Y) = W (Y I 2, .)&(.)/&W (Y I x) 

D1 a min 
Uyxs: Uyx=PxV,Us=Q 

WYXS II W  x P x Q) 

02 A ,;;;aW  II &’ I PI - D(Q II @ I. (29) 

whenever (P x V*)(y,x) > 0, the requirement (P x V*)U = 
Q is equivalent to (25). This completes the proof of a). 

Now consider b). By interchanging the order of minimiza- 
tion over Q’ and V (see (ll)), it is easily shown that 

For any UYXS satisfying UYX = P x V and US = Q, the 
chain rule for divergence yields 

-%(R, Q W  P) = min 
Q/ED(S): Q’<Q 

&(R, Q’W  P) 

holds if and only if 

D(V* II Q W  I P) = Q,&;&Q D(V* II Q’W  I PI 

for some V* E VQ. By the Kuhn-Tucker Theorem [8, p. 3141, 
Q minimizes the convex functional 

XP(Q’) a D(V* II Q’W  1 P) 

subject to the constraints Q’(s) > 0, C, Q’(S) = 1, and 
Q’ << Q, if and only if there exists a real number X such that 

aQ,(Q’) -~ =c aQ’(s) Q’=Q “,y 
p(x)v*(Y I X)W(Y I Z>S) = x 

&W(Y I ~1 ’ 
for all s: Q(S) > 0. 

Averaging over Q, we find X = 1. Since this is equivalent to 
(29, the proof is complete. 0 

Proof of Theorem 5: First, observe that for any s E IQ 

EW”(Ty I TX, s) = EW”(y I x,T-‘s) 

= *n,Q(!/ I x) (27) 

where fin,Q is as defined in (22). The first step holds because 
applying the same permutation (namely T-l) to the input, 
output, and state sequences leaves W ” unchanged. The second 
follows by observing that T-‘s is uniformly distributed on IQ. 

For any Q E ‘Dn(S) and Q E D(S), we can write 

(QW)y4 I x) = c pys’) Wn(d 1 x,s’) 
S’EP 

2% c W ”(A/x,s’) 
S’ElQ 

= @(lQ) T/ii,,Q(d IX). (28) 

This completes the proof of (14). 
Equation (15) follows immediately from (14) by substituting 

the elementary type estimates 

(&VT%(x) I 2) I exp {--72D(V II Q W  I PI> 

@ (7$) > (n + l)-ls’ exp {-nD(Q II 011 

W V  II @  I PI - D(Q II o,, 
= D(~Yx II G W  x P) - WJs  II 0, 
5 D(~YXS II W  x P x @ ,, - D(us II @ ,, 
= D(UYXS 11 W  x P x Q) 

from which follows D1 2 D2. This completes the proof if 
W IIQ W IP)=+ cm, since D1 > D2 > D(V II Q W  I P). 
Now we prove the converse inequality for D(V II Q W  I P) < 
fee. Let Q’ achieve the maximum of 

V@ A W V  II djw I PI - D(Q II cj, 
subject to the constraints Q(s) > 0, Q < Q, c, Q(s) = 1. 
By the Kuhn-Tucker theorem [8, p. 3141, there is a X such that 

av-2) -- =c P(x)V(Y I ~)W(Y I GS) 
a&) k=0 z,y dj'WY I x) 

Q(S) =., 
ow ’ 

for all s: Q’(s) > 0. (30) 

Recalling the remarks following Theorem 5, it is easily shown 
that Q’ W(y I X) = 0 implies V(y I X) = 0. Thus averaging 
(30) over Q’, we obtain X = 0. Now define 

ULXS(Y> x, s) 45 P(X)V(Y I X)W(Y I z, 4@(4 
ci’W(Y I x) 

for @W(y I X) > 0 and UGxs f 0  elsewhere. It follows 
from (30) that Uhx = P x V and U& = Q. Hence 

DI 5 D(U&xs II W  x P x Q) 
= D(V II @ W  I P) - D(Q II dj’) 4 D2 

thereby completing the proof. 
Proof of Theorem 6: By (27) 

EWn(Ty I Tx,s) = *n,Q(!/ I x) 

q 

for all s E IQ. Thus it suffices to prove the theorem with 
max, e, ( tin,Q, f, cp) replacing the left side of (17). 

We  may assume R < H(P), since E, (R, W , P, Q) is 
zero otherwise. Fix S > 0 and let {f(m): m  E M} be a 
collection of M  > exp {n(R - S)} codewords chosen as in 
the Packing Lemma [4, p. 162, Lemma 5.11, which is possible 
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for all n  2 nu(]y], IX(,S). Let cp denote the MM1 decoder 
corresponding to f. We  claim that 

mzx%(@n,Ql f, ‘P) 

I (n + 1) 21x”yl+‘s’ exp{-nE,*(R, W , P, Q)} 

where 

E,*(R, w, P, Q) A ,:‘“,‘;, GK W  P, Q> + lI(P, v> - RI+. 
The proof of this claim, which is omitted, is identical to 

the proof of [4, p. 165, Theorem 5.21 with W ” replaced ev- 
erywhere by tin,0 and with exp {-nD(V II W IP)} replaced 
everywhere by (n + l)lsl exp {-nG(V, W , P, Q)}. The latter 
replacement is justified by Theorem 5. From (16), it follows 
that 

TABLE I 
PROBABILITIES USED IN CALCULATION OF G(R,T/V, P, &) 

(Y, 5,s) 

(O,O, 0) 

o,o> 1) 

(LLO) 

(0, 1, 1) 

otherwise 

WxPxQ 

(1 -PIP - 4) 

(1 - Ph 

PC1 - 9) 

Pq 

0  

UYXS 

P I 1-p-P 

1-q-P 

pi-q+@- 1 

-L.-l 
where the last inequality follows by observing that 

J-(&KY P> - D(Q II dj) + 48 V> 

E,“(R, W  P, Q) = Ed& W  P, &I. 

Theorem 6 now follows for ns(/yl, 1x1, IS(, 6) chosen to be 
the smallest n > na(ly(, 1x1, S) such that 

(n + 1) 2lx 11 yl+lsl < exp {ns}. q  

Proof of Theorem 8: We  may assume R < H(P), since 
Ez(R,WQ,P>Q) is zero otherwise. From [4, p. 162, Lemma 
5.11, for all S > 0 and n 2 nu(lYI, IX],S), there exist at least 
exp {n(R - S)} sequences Z, E X” of type P such that for 
every m  and every V: X -+ X the number of xj’s in 7v(x,) 
is not more than exp {n[R - I(P, V)]}. Let (Tf, ‘pT-l) be 
an RM code such that f(m) A x,, m  E M, and cp is the 
ML decoder for the channel OW. Applying Theorem 5 with 
A = {y}, we obtain for all J E 7Q, Q < 0, 

Ee,(s, Tf, @'-'I 

SC c EWYTY I T f(m ),s) 

is convex in V and symmetric in (P x V) and (P x V)t; 
hence, the minimum over (P x V) is always achieved by at 
least one distribution satisfying (P x V) = (P x V)i-. This 
completes the proof of Theorem 8 for n4 (JY I, IX), JSI, S) equal 
to the smallest n 2 no(lyI, 1x1,s) such that (n+l)lSl+lx12 5 
exp (126). q  

IV. AN EXAMPLE 

In this section, the exponents of Section II are calculated 
for a simple example. Consider the discrete AVC defined by 
x = y = s = {O,l} 

W(Y I 5, s) A 
1, y=z+smodulo2 
0, otherwise 

m ’fm Y: Qw~(Ylf(ll~l))LCjWn(Ylf(7n)) 

SC c 
&WY I f(m)) 

m ’fm Y: ljWn(Ylf(m’))L~w”(Ylf(m)) dj(%) 

5 [0(7~)1-l C C &WY I f(m ’)FW% I f(m )). 
m ’fm YE y- 

(31) 

and where the constraint functions in (2) and (3) are g(z) = II: 
and l(s) = s, respectively. This can be interpreted as a 
binary channel where codewords of length n are restricted to 
have Hamming weight at most nr, and where the channel 
can cause any pattern of errors with Hamming weight at 
most nA. It is shown in [6] that the random code capacity 
of this channel is C = h(lY * A) - h(A) for A 5 l/2 
and r 5 l/2, where l? * A f I’(1 - A) + A(1 - l?) and 
h(A) 2 -A log A - (1 - A) log (1 - A). Here we focus on 
the particular case P = l/2. 

We  begin by calculating E,(R, W , P, Q). Let P k (1-p,p) 

For any f(m’) ,E Iv(f(m)), the inner sum can be recognized 
as exp {-nJ(QW, V, P)}. 

Observing that 

dj”(76) L (n + 1)-l” exp {-nD(Q ]I Q)} 

and decomposing the sum over m’ in (31) into all possible 
conditional types V: X --f X, we obtain 

Eem(sr Tf, 4-l) L  @(%)I-’ c 
v: PV=P 

c exp {-nJ(djW V, PI> 

m ’fm: f(m’)E&(f(m)) 

5 C (n + l)lSl exp {-n[J(QW, V, P) 
v: PV=P 

-D(QlI~)+W ’J+fU ’ 
2 (n + l)1S1+1x12 exp {-n&(R, W  dj, P, Q>> 

and Q fi (1 - q, q), and observe that W  x P x Q is nonzero 
for only four values of (y, IC, s), as shown in Table I. Thus the 
distribution Uyxs achieving the minimum in (6) is nonzero 
only for these same four values. Further observe that the 
constraints UX = P, US = Q, Cy,r,s Uyxs(y,s, s) = 1, 
imply that UYXS must take the form given in Table I for 
some PO < p 2 ,& where ,/30 k max{O, 1 - p  - q}, 
,& 2 min{l - p, 1  - q}. Consequently, (6) reduces to 

EAR> W>P>Q) = p $;a D(Pp II Q ,) 
i ID@‘; II Q2~-p-~--2~) - RI+ (32) 

where 

PP~((P,l-p-P,l-q-P,p+q+P-l) 

Q4 ~5 ((1 - ~)(l - d, (1 - P)q>dl - d>Pd. 

This exponent is easily evaluated numerically for any choice 
of p and q. 
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Next we calculate E,(R). For any AVC, observe that 
choosing UYxs = W  x P x Q in (6) gives the upper bound 

&(R, W  P, Q) I lI(P, Q W  - RI+. 

From (5) and (9), it follows that E,(R) < ]C - RI+. 
Conversely, observe that if P = P’ A (l/2,1/2), both 
divergences in (32) are convex in ,8 and symmetric in p and 
1 - 4  - ,LI. Thus the minimum is achieved at p = (1 - 4)/2 
which yields 

Since 

E,(R, W , P’, Q) = II- h(q) - RI+. 

Pr = ((1 - p,p): 0  I P L l/21 

we see that 

E,(R) 2 Q~$ E,(R, W , P’,Q) = IC - RI+ 
A 

where C = 1 - h(R) is the random code capacity. Hence 
E,(R) = IC - RI+. 

This exponent, normalized to capacity, is plotted in Fig. 1. 
Also shown for several values of A is the random coding ex- 
ponent of the binary-symmetric channel (BSC) with crossover 
probability A, which has the same capacity as the AVC with 
input constraint I = l/2 and channel constraint A. Note that 
the AVC exponent is universally larger for R < C than the 
exponent of the BSC with the same capacity. It is perhaps 
somewhat surprising that such a pessimistic model of channel 
interference actually yields a smaller error probability (for the 
best codes) than the BSC. An explanation of this phenomenon 
is given in the remarks following Theorem 4. 

The exponents E,,(R, W , P, Q) and E,,(R) can be calcu- 
lated in a similar manner. Here (8) becomes 

E&C W  P, Q) 

= PolP<h: ~&%cL-p-q--2~)IR 
D(Pp II Q,). (33) 

Observe that 

Es,(R) 2 g&A E,,(R, W  P’, Q) 

where again P’ A (l/2,1/2). For this choice of P, the 
minimum value of D(Pp 11 Qz-~-~--~P) for ,/3a I ,8 5 pi 
is 1 - h(q) which is achieved by ,L? = (1 - 4)/2. Since 
1 - h(q) 2  1  - h(A) f or all 0  5 q  < A, it follows that 
D(Pp ]I Q2--p--q--2p) > R for all pa I ,LI 5  pi and R < C. 
Consequently, there exists no distribution Uyxs such that 
D(Uyxs II W  x P’ x Q) is finite and I(P, UYIX) < R. We  
conclude that Esp( R) = + oc for 0 < R < C and so the 
bound of Theorem 2 is useless. 

Finally, consider the expurgated exponents E, (R, W , 0, 
P, Q) and E,!R) in Th eorems 8 and 9. Setting Q = (1 -i, @), 
we see that Q W  is a BSC with crossover probability 4. For 
P = P’, the condition (P’ x V) = (P’ x V)t implies that V 
is a BSC with crossover probability U, say. Thus 

Ed& W  0, P’, Q) 
= min 

v: h(v)>l-R 
-vlog {2dm} + 1 - h(w) - R 

- D((l - 4 ,4) II (1 - i, 3). 

The minimum above is achieved at 

w = max{h-‘(1 - R), 2dm/(l+ 2dm}. 

To calculate E, (R), we claim 

E,(R) = mrQTi;l E,(R, W , 4, P’, Q). (34) A 

To see this, observe that the right side is clearly a lower 
bound to E, (R). Conversely, we may obtain an upper bound 
to E,(R) by restricting V in the minimization in (19) to be 
a BSC. The resulting upper bound is maximized by P’ and 
reduces to the right side of (34). For each 4, the minimum over 
Q in (34) is always achieved by q  = A or 0. Maximizing over 
6, we obtain E,(R) = + m  for R < R,(W) A 1 - h(2A) 
for A < l/4, and otherwise we must calculate the maximum 
numerically. This value of R,(W) is intuitively reasonable: 
for R < 1 - h(2A), the Gilbert bound [4, p. 1801 guarantees 
the existence of a code (f, cp) with minimum distance greater 
than 2nA. Thus we can achieve a zero error probability even 
with deterministic codes. The exponent Ez( R) is plotted in 
Fig. 2  for several values of A, together with the corresponding 
exponent of the BSC. Again, the AVC exponent is everywhere 
larger than the BSC exponent, and is even unbounded for a 
range of positive rates. 
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V. CONCLUSION 

For many AVC’s of practical interest, random codes can 
achieve a much larger capacity and reliability function than 
deterministic codes. Consequently, random codes are impor- 
tant not only as tools for proving coding theorems, but also as 
models of practical communication systems. In this paper, we 
considered the minimum error probability achievable over the 
AVC through the use of random block codes. Specifically, we 
presented analogs for the AVC of the random coding, sphere 
packing, and expurgated error exponents. 

We  first derived exponents for random codes and state 
sequences of fixed composition. These results were used to 
strengthen Stiglitz’s bound for the AVC without constraints, 
and to refine Csiszk and Narayan’s coding theorem for the 
AVC subject to the input constraint l? and the state constraint 
A. When the state constraint is inactive in a certain sense 
for a given R > 0, the random coding exponent of the AVC 
reduces to the worst DMC exponent among the DMC’s in 
the channel class w A {QW: Q E QA}. This behavior is 
reminiscent of the channel capacity C, which always equals 
the minimum capacity of the DMC’s in l@. However, when the 
state constraint is active, the random coding exponent of the 
AVC is strictly larger than the corresponding DMC exponent 
for all DMC’s in I&‘. 

Coding theorems for AVC’s are typically proved using ran- 
dom codes in which codewords are independent and identically 
distributed. Because of the obvious practical disadvantages of 
such codes, we considered a simpler subclass of random codes 
in which coding and randomization are separate. Specifically, 
an RM code consists of a  deterministic code combined with a 
random permutation mapping. We  proved a theorem relating 
the error probability of RM codes to the error probability of a  
compound DMC, and also a universal coding theorem which 
states that there exist RM codes that achieve the constant 
composition random coding exponent for every AVC and every 

state sequence type. Thus the class of RM codes can achieve 
the same capacity and random coding exponent as the class 
of random codes without structural restrictions. Finally, we 
derived the first available expurgated exponent for the AVC. 

APPENDIX 

Proof of Lemma 2: For any s E 7uislX (x), observe that 
‘GJ~,~~(x,s) c ‘.GI~,~(x). Hence 

%QP& (xl I xl 

x C exp {-nW & lxs II W  I UXS)> 
SETU s,x (I) 

2 (n + 1)- (l+Iyl)lxIlsl exp {-n[H(Q) - H(Uslx 1 P) 

+ WYlXS II w I Uxs)lI 
= (n + l)- (l+Iyl)lx IIs1 exp { -nD(Uyxs 1) W  x P x Q)} 

where the last step follows from the chain rule for divergence. 
This completes the proof. q  

Proof of Lemma 3: Here we prove only b), as the proof of 
a) is very similar. For b), it suffices to show EU (R) < E,,(R) 
for R > R,(W), since the bound is trivial for R < R,(W). 
We  will need the following lemma, whose proof is deferred 
until later in the Appendix. 

Lemma 4: For any nonnegative function 1 defined on S and 
any probability distribution UXS E D(X x S), there exists 
an approximation U$, E D(X x S) such that .U$ = Ux, 
u; E R(S), 

and 11 Uks - UPS II < 2lS(/n. ’ 
Fix S > 0, P E Pr, and Q E &A. By the uniform continuity 

of the mutual information, there exists a TI( 1x1, ISI, 6) such 
that 

implies 

II uxs - uk5 II < Tl W I, ISI, 6) 

Set 

IWS, UXIS) - wJ,&, qq,~l < 6. 

T  f m in{n(W I, ISl,~),n(lXI, lYl,SP)>. 
Let UYXS achieve the minimum in (8) for R’ 2 R - 6, P, 

and Q, and observe that for all Z, s satisfying 

UXS(T s) 2 rl A rl(2lY II JqlSl + 6) 

D(~YJxs(. Ix, s) II W(. I x, s)) 5 Es,(R - 6, W, P, Q)/rl. 
(35) 
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By Lemma 4, for all sufficiently large n there exists an 
approximation Ufcs of UXS such that U$ = P, U& E 
D,(S) n Qh, and II Uxs - Ui, II < 6~. Let U&xs be the 
probability distribution defined by Uk, and 

Gqxsc I GS) e 
1 

UYlXS(. I 5, s) Uxs(x, Y) 2 rl W (. I z,s) Uxs(x, Y) < rl 
and observe that 

II UYXS - u:,s II < 4Yll4l+l+ b = ?-. 

It then readily follows that II UYX - UGx II < 7 and so 

I(&, U:l,, < TX, uyIx) + s/2 5 R - s/2. 

Setting Qi A 17; and observing that Ufi = P and 
I(P, U&lx) 2 R, for sufficiently large n, we obtain from 
(8) 

5 WJ&xs II W  x P x Sk, 
= W$xs II W  I Uxs) + W&s II P x Q;) 

+ c wxqXS(~ I 5,s) II W (. I 2,s)) 
z>s 

5 WJYIXS II W  I uxs) + W&s II P x Sk)’ 
+ II Uxs - ‘&s II Es,(R - 4 W  P, Q)/rl 

5 (1 + S)E,,(R - 6, W , P, Q) + 6. (36) 

Here, the second inequality follows from (35) and the def- 
inition of U&lxs, . the third inequality follows from II UXS - 
Ufis II < ST < r and the definition of r. Thus to every 
Q E &A, there is a QL E D%(S) n QA satisfying (36). We  
have therefore proved that for all R > 0 and all sufficiently 
large n 

pmg Qm& Esp(fL, W , P,, Qn) 5 (1 + WL,(R - 6) + 6. 72 rn 

It follows that 

Eu(R) 5 (1 + 6)E,,(R - S) + S, for all 6  > 0. 

Since E,,(R) is finite and convex on R > Ra(W), it is 
also continuous. Hence Eu(R) < Esp(R) for R > R,(W), 
which is the desired result. 

Proof of Lemma 4: Let s, be such that Z(sO) = min, Z(s). 
For any n and s # so, let Uh (s) be obtained by rounding 
down Us(s) to the nearest multiple of l/n; let U&(sO) be 
chosen so that U& sums to unity. Observe that lJ& E Dn(S), 
11 U,& - US II < 2lSl/n, and 

s s 

Now define for all x E X and s E S 

Gs (X> s) 

A 
u,x4uxls(n: I S)> s # so 
UX(“) - & ~LwUXlS(~ 14, s = s,. 

0 
By direct calculation, it is easily verified that Ulys is nonneg- 
ative and has marginal distributions UX and Uk. Moreover 

II Gs - uxs II = II u& - us II 5 ‘4W~. 

This completes the proof of Lemma 4. 
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