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A Rate-Splitting Approach to the 
Gaussian Multiple-Access Channel 

Bixio Rimoldi, Member, IEEE, and Riidiger Urbanke 

Abstract-It is shown that any point in the capacity region of 
a Gaussian multiple-access channel is achievable by single-user 
coding without requiring synchronization among users, provided 
that each user “splits” data and signal into two parts. Based on 
this result, a new multiple-access technique called rate-splitting 
multiple accessing (RSMA) is proposed. RSMA is a code-division 
multiple-access scheme for the A&-user Gaussian multiple-access 
channel for which the effort of finding the codes for the M users, 
of encoding, and of decoding is that of at most 21M- 1 independent 
point-to-point Gaussian channels. The effects of bursty sources, 
multipath fading, and inter-cell interference are discussed and 
directions for further research are indicated. 

Index Terms- Asynchronous Gaussian multiple-access chan- 
nel, rate-splitting multiple accessing, successive cancellation, 
stripping. 

I. INTRODUCTION 

T HE purpose of this paper is to shed new light on the 
structure of the capacity regions of Gaussian multiple- 

access channels and to suggest a new and promising strategy 
for implementing practical systems. 

We suppose at first that the channel is discrete-time and 
frame-synchronous, with power constraint P = (PI, . . . , PM), 
where Pi is the power constraint for user i, and noise variance 
g2 (see Fig. 1). Its capacity region [l]-[8] is the subset of RM 
containing the rate &f-tuples (RI, . . , RM) with nonnegative 
components satisfying 

v’s s {l,...,M}. (1) 

There are points’ in this capacity region that are known to be 
achievable with an implementation complexity substantially 
less than a general point. These are the points which, after a 

Manuscript received September 9, 1993; revised October 10, 1995. This 
work was supported by the National Science Foundation under Grants NCR- 
9357689 and NCR-9304763. The material in this paper was presented in part 
at the International Symposium on Information Theory, Trondheim, Norway, 
June 27-Julyl, 1994. 

B. E. Rimoldi is with the Department of Electrical Engineering, Electronics 
Systems and Signals Research Laboratory, Washington University, St. Louis, 
M O  63130 USA. 

R. Urbanke was with the Department of Electrical Engineering, Electronics 
Systems and Signals Research Laboratory, Washington University, St. Louis, 
M O  63130 USA. He is now with AT&T Bell Laboratories, Murray Hill, NJ 
07974 USA. 

Publisher Item Identifier S 0018-9448(96)01349-l. 
‘Throughout this paper, the terms “points” and “rate tuples” are used 

interchangeably. 

xf \ 
Xf + 

3- 

Y” 

xh 2” 

Fi . 1. Gaussian multi le-access channel: The received signal at time lc is 
Y & P = Czi Xzk + 2 , where the noise samples 2’” are i.i.d. zero-mean 
Gaussian random variables with variance u2, and Xs E R is the symbol 
transmitted by sender i. 

possible re-indexing, satisfy 

Rj 5 f log, ) j=l,...,M. (2) 

For these points, one can design the multiple-access code 
by constructing one single-user code for each user j, 1 5 
j < M, assuming that user j has power constraint Pj 
and noise variance g2 + C. z < j Pi on his single-user channel. 
Unless stated otherwise, we will use the term “code” to 
mean an ideal random code so that the code for user i is 
obtained by selecting its [2”Ri] codewords by choosing each 
codeword independently as an i.i.d. sequence of Gaussian 
random variables with zero mean and variance P;. Thus the 
codewords of other users look like Gaussian noise to any given 
user. Hence, the decoder of user n/r can decode considering 
the codewords of user 1, . . . , M - 1 as noise. The contribution 
of user M can then be removed from the received word, 
and the procedure can be repeated until each codeword has 
been decoded. This idea is due to Bergmans and Cover [9] 
and to Wyner [6], who observed that the vertices of the 
capacity region satisfy (2) with equality (see the Appendix for 
a proof of this fact). Another account of this idea was given 
in [4]. The decoding procedure described above is known 
variously as onion peeling, stripping, successive cancellation, 
and superposition coding. In the communication-engineering 
community, the term interference cancellation has been used to 
describe the same decoding process, but the motivation there 
has been to alleviate the near/far effect in spread-spectrum 
multiple accessing rather than trying to achieve capacity at 
lower complexity. In the sequel, we will use the term single- 
user coding to describe the procedure of constructing and 
assigning a single-user code to each user combined with a 
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Fig. 2. A multiple-access system based on rate-splitting multiple accessing 

successive cancellation decoder at the receiver. When focusing 
on the actual decoding procedure, we will use the term single- 
user decoding. 

The rate tuples contained in the capacity region but not 
of the type described above were previously known to be 
attainable only by one of two methods. These “difficult” rate 
tuples include the important case where all users have the 
same power constraint and the same rate. The first method to 
achieve these difficult rate tuples is joint encoding/decoding 
of all users. This is very difficult to implement in practice 
(even for the synchronous case) since random codes have a 
decoding complexity of the order of 2nRsum, where R,,, = 
RI + ... + RM is the sum rate and n is the block length, 
and since the construction of (joint) codes in such a way 
as to approach the achievable rate region seems to be a 
formidable task. To our knowledge, the only channel model 
with a nontrivial capacity region for which explicit codes have 
been constructed to achieve all rate points in the capacity 
region is the collision channel without feedback studied by 
Massey and Mathys [IO]. For the M-user synchronous binary- 
input real-adder channel (which is noiseless), a family of 
asymptotically optimal codes with two codewords per user 
has been constructed [ 111. For a survey on codes for specific 
multiple-access channels see the introduction in [12]. The 
second approach to achieving the difficult rate tuples is time- 
sharing between vertices. This approach can require as many as 
M multiple-access codes, each multiple-access code requiring 
M individual codes for each user. Thus this scheme requires 
on the order of M2 individual codes. Moreover, time sharing 
requires synchronization among users, which can be difficult 
to achieve in practice.2 

Quite possibly as a result of the difficulties in achieving 
general points in the capacity region, the throughput of prac- 
tical systems is presently far from the ultimate limits. What 
is generally viewed as the practical approach to CDMA is 
decoding each user while treating all other users as noise. 
This decreases the achievable rates considerably, especially 
when bandwidth is limited. Because a Fourier bandwidth of B 

*We have omitted frequency-division multiple accessing (FDMA) from this 
discussion since the corresponding discrete-time channel model does not fall 
under the general model shown in Fig. 1. FDMA will be discussed in Section 
V. 
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hertz accommodates 2B uses per second of the corresponding 
discrete-time channel, a sum rate R,,, in bits per use of the 
discrete-time channel is equivalent to a bandwidth efficiency of 
2Rsurn bits per second per hertz (b/s/Hz). Thus the bandwidth 
efficiency of such a practical system with M users, each having 
the same power P, satisfies 

2R,,, I $ya M log, 1+ 
P 

g2 + (M - 1)P > 
= l/log, ! [b/s/Hz]. 

There is no such upper bound for an ideal system. Indeed, the 
bandwidth efficiency may be as high as 

2&um = log, (1 + F) [bMHzl 
which tends to infinity as the number of users increases, even if 
each user has very limited power. Thus there is a considerable 
gap between current practice and the theoretical limits. 

The situation used to be similar for point-to-point additive 
white Gaussian noise (AWGN) channels, but advances in the 
past decade have removed much of the gap between theory and 
practice. At low rates (fractions of 1 b/s/Hz), “turbo codes” 
allow one to approach capacity closely with binary codes 
and antipodal modulation (see also [14] for an information- 
theoretic treatment of turbo codes). At high signal-to-noise 
ratios (SNR), the gap reduction has been obtained by a process 
triggered by Ungerbiick [ 151, and refined by many researchers 
[15]-[26] (see also [27] and the comprehensive bibliography 
therein for constant-energy codes). As ti tangible, result of 
this evolution, there are commercially available modems that 
operate close to capacity on telephone lines. 

The practical implication of this paper is that the tasks of 
constructing good codes for an M-user Gaussian multiple- 
access channel, of encoding, and of decoding can be reduced to 
those corresponding to a set of up to 2M - 1 independent (and 
asynchronous) point-to-point AWGN channels. Hence, all of 
the above mentioned breakthroughs for point-to-point channels 
can be used to achieve significant performance improvements 
on multiple-access channels. More precisely, we prove that 
any point in the capacity region of a Gaussian multiple- 
access channel can be achieved in the manner shown by the 
general block diagram in Fig. 2. From the original M-input 
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channel we create a “virtual channel” with up to 2M - 1 
inputs as shown. Power constraints are assigned to “virtual 
inputs” so as to satisfy the original constraints. Accordingly, 
the M original sources are split into 2M - 1 “virtual sources.” 
Virtual sources are interfaced to virtual inputs via usual 
point-to-point error-control codes for AWGN channels. The 
receiver performs single-user decoding. Proving that the rate 
tuple R = (RI, .. . , RM) can be achieved as shown in 
Fig. 2 is equivalent to showing that the rate tuple T = 
(Tl,... , r2M-1) ‘is a vertex of the capacity region described 
by p = (pi, . . ,pa~-~) and ff2. A by-product of this result 
is that the capacity of (discrete-time or continuous-time) 
Gaussian multiple-access channels is not affected by the lack 
of synchronism among users. Time-division multiple accessing 
(TDMA) and frequency-division multiple accessing (FDMA) 
are based on breaking time and frequency, respectively, into 
disjoint intervals, one for each user. Our proposed multiple- 
access technique relies rather on splitting the rate (and power) 
of single users. For this reason, we will refer to it as rate- 
splitting multiple accessing (RSMA). For the Gaussian case 
considered in this paper, an equally good name would be 
power-splitting multiple accessing. However, we prefer the 
former terminology since our technique can be used on arbi- 
trary discrete memoryless channels [28], in particular on those 
that do not have power constraints. 

This paper is organized as follows: In Section II we prove 
that single-user coding can indeed achieve the vertices of the 
capacity region. Section III is the core of the paper. There 
we show that it is always possible to split as shown in Fig. 2 
in such a way that T = (r-1, .. . , ~a~-i) is a vertex of the 
capacity region described by p =, (pi, . . . , p2~-1) and c2. In 
Section IV we generalize the results of the previous sections 
to the frame-asynchronous case as well as to continuous- 
time Gaussian multiple-access channels. It is shown that 
the capacity region of the (discrete-time or continuous-time) 
Gaussian multiple-access channel is unaffected by the lack of 
synchronization among transmitters. 

II. VERTEX ACHIEVABILITY BY SINGLE-USER CODING 

In this brief section we argue that vertices of the capacity 
region are indeed achievable via single-user coding. We do 
this, since the intuitive and elegant arguments used in the 
past to prove achievability of vertices by means of single- 
user coding are based on the assumption that, when previous 
cancellations were successful, the noise is Gaussian. This is 
true for the first step in the decoding process, but in the event 
that the first decoding step was successful, the noise must be in 
the successful decoding region of this decoder and, hence, will 
no longer be Gaussian-distributed for the following decoding 
steps. This creates difficulties in bounding the probability of 
error of the second (and all subsequent) decoders. In this 
section we show that it is nevertheless easy to bound the 
overall probability of error (as opposed to the probability of 
error of each decoder.) 

For clarity, we first treat the case shown in Fig. 3(a) of 
single-user decoding for a two-user multiple-access system. 
In this figure, X; and Di, i = 1,2, represent the transmitted 

x2 

Xl 

(a) . 

(b) 
Fig. 3. (a) Single-user decoder. (b) Genie-aided decoder. 

codeword and the decoder of user i, respectively, and Z repre- 
sents the noise. We next consider the model shown in Fig. 3(b) 
for which X2 is always removed from the input to Dl, but 
everything else is identical in both models. Conceptually, we 
follow the lead of Wozencraft and Jacobs [29, p. 4191 and 
postulate a genie who always knows the codeword of user 2 
and who assists Dl. In this case, the standard argument [l, 
p. 2421 can be applied to show that Pr {E;} goes to zero as 
the block length goes to infinity, where Ei, i = 1,2, is the 
event that decoder i is producing a wrong estimate. By the 
union bound 

Pr{El UE2) 5 Pr{Er} +Pr{E2}. (3) 

Hence, the overall probability of error Pr {El U E2) for the 
model of Fig. 3(b) goes to zero. But the overall probability of 
error is the same for both models. This is true, since when 02 
fails, El U E2 occurs regardless of whether El occurs or not. 
Hence, somewhat surprisingly, the genie does not affect the 
overall probability of error. The argument easily generalizes 
to an M-user situation. 

The following technical subtlety is worth pointing out. The 
code of a single user with small average error probability 
can be converted into a code with small maximum error 
probability (and nearly the same rate) by the standard pro- 
cedure of deleting the worst half of all codewords [l, p. 2021. 
For the present case, we can apply the same procedure to 
transform the code of each user to one having small maximum 
error probability, where the error probability of a particular 
codeword is defined to be the error probability averaged over 
all noise samples and averaged over all combinations of yet 
undecoded codewords (with a uniform distribution on these 
combinations). Nevertheless, for a particular choice of as yet 
uncanceled codewords, the error probability (now averaged 
over the noise samples alone) might be large. We note that, 
for practical purposes, this is not an issue, since in a well- 
designed system there will be source coding which ensures an 
approximately uniform distribution over codewords. 

III. RATE-SPLITTING MULTIPLE ACCESSING 
ACHIEVES ANY POINT IN THE CAPACITY REGION 

In the previous section, we saw that vertices of a capacity 
region have the desirable property of being single-user cod- 
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Fig. 4. Geometric relationship between R = (RI, Rz) and T = (T, . ~2, ~3) for fixed power constraint P and u2 and various points on the dominant 
face of the capacity region. Note that ~1 + ~-3 = RI. 

able. First note that any point in a capacity region is dominated 
(i.e., is smaller with respect to the natural partial order on R”) 
by some point on the dominantface which is defined as the set 
of points that fulfill (1) with equality when S = { 1, . . . , M}. 
Hence, we can restrict our attention to such points, and we 
will call them dominant face points. In this section, we will 
show that any point in the capacity region of a synchronous 
discrete-time Gaussian multiple-access channel is achievable 
by rate-splitting multiple accessing. 

Define C(P, g2) as the capacity of a white Gaussian noise 
channel with power P and noise 02, i.e. 

c(P,+;log, 1+; . 
( > 

One can easily verify that 

C(P, c2) = C(PI, 0”) + C(P2, o2 + PI) (chain rule) 

is valid for all nonnegative numbers PI, P2, and g2 such that 
P = PI + P2. The chain rule says that the rate R of a single 
user transmitting at capacity can be seen as a vertex 

(RI, R2) = (C(Pl, 0~1, C(P 2F2 + Pl)) 

of a two-user virtual channel described by (PI, P2) and 02, 
where PI + P2 = P and RI + R2 = R. While the usefulness 
of splitting the user of a point-to-point channel into two virtual 
users may be limited to suggesting that a higher rate code can 

” be obtained from two lower rate codes, this observation is the 
seed of our main result. 

More illustrative of the idea behind rate-splitting multiple 
accessing is the two-user case, which we now consider. Let 
the noise power o2 and power constraint (PI, P2) be arbitrary, 
and consider any rate tuple (RI, R2) in the dominant face, 
i.e., such that 

RI < C(Pl, 0”) 
R2 < C(P2,o”) 

RI + R2 =C(Pl+ P2,02). (4) 

Let 6 > 0 be the unique number which satisfies3 

Rz = C(P2,a2 + 6). (5) 

Now we define a new Gaussian multiple-access channel with 
noise power ~7’ and three virtual inputs. Let the power con- 
straint (pi, pa, ps) for this channel be given by 

Pl =6 
P2 =p2 

p3 =P1--6 

and define the rate tuple (~1, r-2, rs) by 

Tl = C(Pl, a2) 

0 =qP2,(72 +p1) 

T3 =qP3,u2+Pl fP2). 

By definition (see (2)), the above rate tuple is a vertex of 
the capacity region of the new channel and, therefore, is 
achievable via single-user coding. Also, virtual user 2 has the 
same rate and power constraint as the original user 2. Moreover 

7-1 + r2 + 7-3 = C(Pl + ~2 + p3,~“) 

= C(PI + P2, c2) = RI + Rz (6) 

where the first equality follows from the chain rule (used 
twice). Subtracting 7-a = R2 from both sides, we obtain 
~1 + 73 = RI. Since also p1 + ps = PI, we see that we 
may think of the original user 1, with rate RI and power 
PI, as being split into two independent virtual users with 
rates (~1,~s) and powers (pr , p3). The geometric relationship 
between R = (RI, R2) and T = (~1, 7-2,~) is illustrated in 
Fig. 4 for various dominant face points R. 

To consider the general case, let the quadruple (M, P, R, a2) 
denote the point R = (RI, . . , RM) in the capacity region 
of the M-user Gaussian multiple-access channel with power 
constraint P = (PI, . . . , PM) and noise variance g2. Given 

3Alternatively, we could have chosen 6 to fulfill with equality the first 
inequality in (4). 
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Fig. 5. Convenient representation: (a) represents user i. The bottom (bold) box represents the noise and its height is proportional to the noise power 0’. The 
user is represented by the white rectangle whose height and position are proportional to the power constraint P and to 5, respectively. The nonzero widths of 
rectangles and their horizontal positions (as in (b)) are chosen for convenience and bear no information; (b)-(d) represent several (three) users in a similar way. 

the quadruple (M, P, R, 0’) we define S;,i = l,...,M, as 
the unique nonnegative number that satisfies 

Ri = C(P;, 6; + 2). 

In words, 6; + c2 is the maximum variance of a Gaussian 
noise that a user with power P; and rate R; can tolerate on a 
single-user channel. We see that for a given power Pi, the rate 
Ri determines & and vice versa. To each user i we associate 
a representation as shown in Fig. 5(a). In general, labels can 
and will be omitted since they are implicitly determined by the 
height and vertical position of the rectangles. Fig. 5(b)-(d) 
shows several possible scenarios for M = 3. To emphasize 
the underlying graphic representation, we will speak of the 
conjguration (M, P, R, c”). 

Using (2) we see that the configuration (n/r, P, R, 0”) is 
single-user codable if, after a possible re-indexing 

hi+1 2 si + Pi, i=O,l,...,M-1 

where we defined 60 = 0 and PO = n2. 
As mentioned at the beginning of this section, we need 

only consider rate tuples on the dominant face of the capacity 
region. The corresponding configurations will be called tight. 
For instance, the configuration in Fig. 5(b) is not single-user- 
codable but could be tight (it depends on the actual values), the 
configuration in Fig. 5(d) is both single-user-codable and tight, 
whereas the configuration in Fig. 5(c) is single-usericodable 
but not tight. We give a formal proof of this last fact since it 
is a crucial point in the following theorem. What we prove is 
that for a tight configuration there are at least two users that 
are either “adjacent” (as in Fig. 5(d)) or “overlap” (as the two 
“top” users in Fig. 5(b)). 

Lemma 1: For a tight configuration (M, P, R, c2), after a 
possible re-indexing, there exists at least one index i for which 

Proof: We re-index so that 0 = Su 2 61 5 62, . 
and assume that the claim is false, i.e., that 

Si+l > Si + Pi, i = O,l, . . . ) (M - 1). 

It follows that 

M M  
CR” = CC(P~,O~+~,) 
i=l i=l 

which contradicts the assumption that the configuration is tight, 
i.e., that the point is on the dominant face of the capacity 
region. In the above chain of equations (a) follows from (8) 
and the strict monotonicity of C( ., .) with respect to the second 
parameter, and (b) follows from a repeated application of the 
chain rule. II 

The following lemma will also be useful in the proof of our 
main result. 

Lemma 2: Consider a quadruple (M, P, R, a2) and assume 
that 

Sj 2 6; + Pi (9) 

for some i, j E { 1,2, . , M}. Let 6 be the unique nonnegative 
number such that Ri + Rj = C(Pi + Pj, 6). Then 

Si 5 6 5 Sj - Pi. (10) 

In words, if two “nonoverlapping” users (like the “top” and 
the “bottom” user in Fig. 5(b)) are combined by putting their 
power together, in order to keep their sum rate constant, the 
bottom user has to “move up” (first inequality in (10)) and the 
top user has to move “down” (second inequality in (10)). 

Proofi The first inequality in (10) follows from 

C(Pi + Pj, 6) = Ri + Rj = C(Pi, Si) + C(Pj, Sj) 

5 C(p;, 6;) + C(Pj, 6; + P;) 

(7) 
=C(Pi + Pj,Si). 

Note that strict inequality in (9) implies strict inequality in 
(10). The second inequality in (10) follows from 

,< SM, 

(8) 

C(Pi+Pj,S)=Ri+Rj=C(Pi,Si)+C(Pj,Sj) 
2 C(Pi, sj - Pi) + C(Pj, Sj) 
=C(Pi + Pj,Sj -Pi). 0 
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The notion of splitting users into virtual users and channel 
inputs into virtual channel inputs in a meaningful way is 
formalized by the following definition. 

Dejinition I: The quadruple (m,p, I-, CT”) is a spinoff 
of (M, P, R, g”) if there exists a surjective mapping 
4: {l;..,m} ---f {l,...,M} suchthatforalli E {l,...,M} 
we have 

and 

where 4-‘(i) is the set of all j E (1,. . . , m} that map into 
i by means of 4. 

Theorem I: For every M-user configuration (M, P, R, CT’), 
there exists a spinoff (m,p, T, 0”) which is single-user- 
codable. Moreover, one can guarantee that one user is un-split 
and that no user is split into more than two virtual users. 
Hence m 5 2M - 1. 

Fig. 6. Situation after the induction step. Boundaries are shown only for the 
users of interest. 

Proof Without loss of generality we may assume that 
(M, P, R, g”) is tight. The proof is by induction on M. For 
M = 1 the claim is trivially true and for M = 2 it was proved 
earlier in this section. We now assume that it is true for an 
arbitrary positive M and consider the case of M + 1 users. 

After a possible re-indexing, from Lemma 1 we may assume 
that 

SM <an/r+1 (11) 

bM+l 5 SM + PM (12) 

i.e., that users M and (M + 1) overlap. We reduce the original 
(M + 1)-user configuration (M + 1, P, R, a2) to an M-user 
configuration (M, P, k, a2) by defining 

which, for clarity, all but the two virtual users of interest have 
been omitted. In each frame of each sequence, gray represents 
the virtual user(s) associated with original user M and, for 
ease of reference, it (they) will be called the offspring(s) of 
user M. The offspring(s) of original user (M + 1) is (are) 
shown in white. Nowhere in these sequences there are more 
than two offspriiigs for each of the two original users. In each 
frame the sum power over the offsprings of the original user 
i, i = M, M + 1, is constant, however the sum rate, hereafter 
called pi, is not. For each of the four cases, when going from 
the constellation (a) to the constellation (b), PM decreases 
continuously from its maximum to its minimum value. 

li; = Pi, i = 1,2;..,M - 1 
n 

PM = PM + h’+l 

I&, = Ri, i=l,2,...,M-1 
n 

RM=RM-I-RM+~. 

We now argue that for the constellations (a) in Fig. 7, 
pi 1 RM . We need only distinguish the two cases p, 2 PM, 
and P, 5 PM. We start with the case pa > PM. For 
convenience Fig.7ii(a) has been redrawn in Fig. S(a). Assume 
that the claim is false, i.e., that for the situation in Fig. 8(a), 
PM < RM and thus that p~+l > RM+~. Equivalent conditions 
are 

By the induction hypothesis, there exists a spinoff (m, p, T, CT”) 
of (M, P, R, g2) with m 5 2M - 1 and with the property that 
one user is un-split and no user is split into more than two 
virtual users. Assume first that combined user M with power 
FM now consists of two virtual users with powers p, > 0 and 
pb 2 0, respectively, where &J = p, + pb. The situation is 
depicted in Fig. 6. It remains to be shown that it is possible to 
split these two virtual users into (at most) four parts so as to 
create (at most) two virtual users for each of the original users 
M and M + 1. By the chain rule for any such split, the sum 
power and the sum rate, taken over a71 four parts, are constant 
and equal to PM + PM+~ and RM + RM+~, respectively. 
Hence, it is enough to show that for one original user, say 
user M, the split leads to (at most) two virtual users whose 
sum power is PM and whose sum rate is RM. 

AM>~M (13) 
AM+I < bM+l (14) 

where Ai is defined by pi = C(Pi,Ai),i = M, M + 1. 
Combining the two nonoverlapping offsprings of the original 
user (M + 1) (see Fig. S(a) and (b)), we conclude from the first 
inequality in (10) (with Si = AM + PM and S = AM+~) that 

AM+I > AM + PM. 

Thus using (13) and (14) (see Fig. 8(c)) 

sM+l > AM+I 2 AM + PM > S&I’ + PM 

which contradicts (12). The case pa < PM can be handled in 
a similar manner using the second inequality in (10). 

With obvious changes to the above argument, using (11) 
instead of (12), one shows that for the configurations (b) in 
Fig. 7, PM 5 RM. 

Consider the sequences of splits shown in Fig. 7 for the By the previously observed continuity of PM there is a 
four cases (i> Pa 2 PM, Pb 2 PM, (ii> Pa > PM ,Pb < PM, configuration in Fig. 7 for which PM = RM. It follows that 
(iii> Pa 5 PM,T)b > PM, and (iv> Pa < PM,pb 5 PM, in also PM+1 = RM+l. 

369 
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iiiinj iiifb) 

iv(a) iv&i) 

Fig. 7. How to vary the sum rate PM associated to the gray offspring(s) continuously from its minimum to its max imum value without creating more 
than two virtual users for each of the original users M  and M  + 1, for the four cases (i) pa 2 PM, pb 2 PM, (ii) p, 2 PM, pb 5 PM, (iii) 
Pa 5 hf,Pb 2 PM> and 6’) Pa 5 PM>Pb 5 PM. 

(a) (b) Cc) 
Fig. 8. Proof, by contradiction, that in Fig. 7(a) PM 2 RM. 

If, after the induction step, combined user M  is un-split, 
then we need to show that this user can be split into (at most) 
three parts so as to leave one of the original users un-split. 
This situation is subsumed in the last three configurations of 
Fig. 7ii with pb = 0. n  

IV. GENERALIZATIONS 

We have seen that any point in the capacity region of a  
discrete-time synchronous Gaussian multiple-access channel 

is achievable via rate-splitting multiple accessing (RSMA) at 
relatively low coding complexity. A waveform channel may be 
reduced to a discrete-time synchronous channel if transmitters 
have access to a common clock. This is hard to achieve in prac- 
tice. However, the fact that each single-user decoder considers 
yet uncanceled users as noise suggests that the existence of a  
common clock is not necessary, provided that each single-user 
decoder can synchronize with the corresponding transmitter. 
This is a much more realistic assumption. The purpose of 
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this section is to show that the weaker assumption is indeed 
sufficient. 

For discrete (time and alphabet) memoryless channels, the 
lack of (frame) synchronism has been studied in [30] and [31]. 
Under the assumption that the signal waveforms have disjoint 
support (which is a suboptimal situation for band-limited 
channels), the continuous-time Gaussian multiple-access chan- 
nel has been investigated in [32] and [33]. The effect of 
asynchronism on the cutoff rate was studied in [34]. 

We consider only the two-user case since the M-user 
case is a straightforward generalization. The discrete-time 
case is considered first. Here asynchronism means frame 
asynchronism. More precisely, it means that there is a fixed but 
arbitrary relative shift among the codewords corresponding to 
the two users. This shift is assumed to be known to the receiver 
but unknown to the transmitters. There are two technical 
details that need to be considered when the codewords are 
not aligned. First, a specific codeword of the “top” user will 
in general overlap with two codewords of the “bottom” user. 
This introduces some “memory.” Second, we will show the 
existence of a code which has low error probability for all 
possible shifts. 

Assume that R = (RI, R z ) is a vertex of the capacity region 
of the two-user Gaussian multiple-access channel with power 
constraint P = (PI, Pz) and noise variance 02. To be specific, 
assume 

RI = C(Pl, cr2) 
R2 =C(P2,02 + PI). 

User 2 transmits “on top” of user 1. Let YZ be the codeword 
length and 7 E (0, . . , n - l} be the relative delay between 
the two users.4 We model 7 as a discrete random variable 
uniformly distributed on (0, . . . , n - l}. Let Xi, Xi-l be 
two consecutive codewords of user 2 and let Xi be the 
first codeword of user 1 that does not precede Xk (Fig. 9). 
Let Ef be the event that an error occurs in decoding X,“, 
i = 1,2. We consider again the two models of Fig. 3 with 
the obvious modifications. In particular, we now define the 
overall probability of error to be Pr {E: U Eh U Ea-‘}. This 
probability is the same for both models since, when Ei U Ek-’ 
occurs, then E: U Ei U Ei-l occurs and, when (Eh U Ei-‘)’ 
occurs, then Ei occurs in either both models or in neither. For 
the genie-aided model we can bound the overall probability of 
error using the union bound, and the proof will be completed 
if we can show that given t > 0 there exists codes Ci and Cz 
such that for any shift 7 E (0, . . . , n - l} and n sufficiently 
large Pr {Ej} < E, i = 1,2, and 1 E Z. This can be shown using 
standard arguments which we now outline. For details see [ 1, 
ch. lo]. For every n = 1,2,. . . , consider the following random 
coding experiment (for notational simplicity the dependence 
on n is suppressed): 

1) Generate codes Cl and C2 of size 2nR1 and 2nR2, 
respectively, choosing each component of each code- 
word independently and identically distributed (i.i.d.) 

4For the purpose of single-user coding, delays which are equal modulo R 
are equivalent. 

Fig. 9. Relative offset of codewords. 

x2 

Xl Xl, 

Fig. 10. Random coding experiment. 

according to Gaussian distributions with variance PI 
and P2, respectively. 

2) Choose a delay r in the range (0, . . . , n - l} according 
to a uniform distribution. 

3) Pick one codeword Xz for user 2 and two codewords 
Xi and Xi, for user 1. 

4) Transmit these codewords as shown in Fig. 10. 
5) Assuming the genie-aided decoder, decode Xi and X2 

by means of a typical sequence decoder, where the 
second user views the first user as noise. 

Let !? {Ei}, i = 1,2, be the incurred error probability, 
where the double bar indicates the averaging over all codes 
as well as over all shifts. Observe that, although Xz will in 
general overlap with Xi as well as Xi,, and we may have 
Xi = Xi,, the “noise” experienced by X2 is still Gaussian 
and each component is independent of all others, since no 
component of Xi will appear twice in the window covered 
by X2. 

Since at each level the noise is Gaussian, we can invoke the 
single-user coding theorem, [l, ch. lo] to conclude that, by 
choosing the block length n large enough, the average error 
probability E {E;} , i = 1,2, can be made as small as desired. 
By the usual argument [l, ch. lo], there exists at least one 
code pair Ci , Cz such that E { Ei}, i = 1,2, is upper-bounded 
by t, where the bar indicates the average over all shifts. 

Instead of the average error probability over all shifts being 
small we would like each code to have small error probability 
for any shift. For any particular shift (for the codes Cl, C2 at 
hand) we must have 

Pr {Ei} 5 nE{E;}. 

But %  {Ei} and E {E;} decrease exponentially with the 
length n and, hence, so does Pr {E;} (with the same exponent 
to the first order). 

We will now generalize this idea to continuous-time band- 
limited (low- or bandpass) asynchronous Gaussian multiple- 
access channels. We concentrate on the two-user case. Fig. 11 
shows the situation for low-pass channels. Let Xi, i = 1,2, 
be the transmitted codeword of user i. The channel is band- 
limited to IwI < W. Hence, the impulse response of the ideal 
transmit filter is given by p(t) = m(sin (Wt)/Wt) and 
the corresponding symbol interval is T = n/IV. The channel 
introduces some relative shift 7 between the codewords of 
user 1 and 2 as well as additive white Gaussian noise n(t) 
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1 TRANSMIT FILTER 

d- w P(f) 
7T 

-~ 
xi n/ AIW 

t 

TqANSMIT FILTER n(t) 

DECODER 2 

Fig. 11. The continuous-time band-limited asynchronous two-user Gaussian multiple-access channel. 

with two-sided power spectral density Na/2. The receiver for 
user 2 first band-limits the received signal to w E [- W, W] 
and then applies Nyquist sampling, taking one sample every T 
seconds. By assumption, the receiver of each user knows of the 
corresponding time shift and, hence, can choose the sampling 
times accordingly. Therefore, we can assume that the receiver 
of user 2 samples at times t = ZT,Z = . . ..-l.O,l,.... This 
yields Xi>’ + Xi + Z1, where Xi is the transmitted codeword 
of user 2, Z1 is an n-tuple of i.i.d. Gaussian random variables 
with variance NO/~,, and Xi>’ is the n-tuple stemming from 
the codeword of user 1. Let Xi be the estimate of decoder 2. 
Then the estimated contribution of user 2 can be subtracted 
from the received signal and the result is fed into decoder 1. 
Note that now each component of Xi” depends on all symbols 
transmitted by user 1. From this we conclude that selecting a 
code randomly and then using the same code repeatedly (so 
that each codeword is used repeatedly) will result in (slightly) 
dependent components of Xi)‘. The mathematical solution 
to this problem is to select a new code randomly for each 
new transmission. In this case the “noise” caused by X:>T 
will be i.i.d. according to -N(O, PI). Arguments similar to 
the ones outlined for the discrete-time case can be applied 
to prove that for any given positive S and E there exists 
a (time-varying) code which results in an error probability 
upper-bounded by t for all but a fraction 6 of all shifts in the 
range [0, nT). From an engineering point of view the above 
mentioned lack of independence, when using time-invariant 
codes, is negligible. Also, with real rather than ideal filters 
and with fixed rather than random codes, one has to deal with 
engineering judgement anyway. 

The same idea applies to the bandpass case. Here each 
transmitter has an in-phase as well as a quadrature component 
which are modulated and added. The two transmitters are 
neither time- nor phase-synchronized. Nevertheless, the same 
analysis applies if we assume that each receiver can achieve 
phase synchronization with its corresponding transmitter. 

V. CONCLUDING REMARKS 

We have suggested a new multiple-access technique for 
M-user Gaussian multiple-access channels. This technique, 
called rate-splitting multiple accessing (RSMA), allows one to 
achieve any rate tuple in the capacity region at comparatively 
low implementation complexity and without the need for 
synchronization among users. 

The key idea behind RSMA is to split some of the original 
channel inputs so as to create up to 2M - 1 virtual inputs, 
as shown in Fig. 2. Accordingly, sources and their rates 
are also split to form virtual sources. Hence the name rate- 
splitting multiple accessing. It turns out that the degree of 
freedom gained by so doing allows one to reduce the tasks 
of constructing good codes for the given M-user channel, 
of encoding, and of decoding to essentially the same tasks 
but for a set of 2M - 1 independent (and asynchronous) 
point-to-point AWGN channels. While the former task seemed 
to be formidable, very satisfactory solutions exist for the 
latter. 

In the introductory section we pointed out that for the 
discrete-time Gaussian multiple-access channel one can 
achieve the “difficult” rate tuples via “time-sharing between 
vertices.” For the continuous-time channel one can also do 
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“frequency-sharing between vertices.” While both techniques 
require in general M2 individual codes, frequency sharing 
does not require synchronization among users. 

It should be pointed out that there is one point in the 
dominant face of a Gaussian multiple-access channel that 
can be achieved via frequency-division multiple accessing 
(FDMA) at low complexity and without requiring a common 
clock for all transmitters [l, p. 4061. More specifically, if user 
i has a fraction a; of the sum power P,,, = C Pi and one 
assigns him a fraction ai of the total bandwidth B, then his 
achievable rate is the same fraction ai of the “sum capacity” 
B log, [l f Pm/(&~)], w h ere Ne is the (one-sided) power 
spectral density of the noise. This is the only point in the 
dominant face of a Gaussian multiple-access channel that 
can be achieved via FDMA. This point corresponds to the 
“important” equal-rate point 

R = (RI,..., RM) 
Ri = (B/M) log, [l + Ps,,/(No13)], i = 1,. . , M 

only for the equal-power distribution 

p= (Pl,...,Ph4), P; = P,,,/M, i = 1, ... , M. 

The flexibility of RSMA in allowing one to approach any point 
on the dominant face may become even more relevant in future 
communication systems since the desire to integrate various 
services (video, voice, data, fax, etc.) and the competitiveness 
created by an increasing number of subscribers will require 
efficient use of the available resources (bandwidth and power 
distribution) over a wide range of rate tuples. 

What is currently considered’as the practical approach to 
code-division multiple accessing (CDMA) is to spread the 
spectrum of each user by means of an individual signature 
and to decode each user viewing all others’ as noise. This 
technique, called spread-spectrum multiple accessing (SSMA), 
decreases achievable rates considerably. As pointed out in the 
Introduction, the resulting spectral efficiency is upper-bounded 
by l/log, 2 (b/s/Hz). There is no such upper bound for RSMA. 

A fundamental difference between SSMA and RSMA is that 
individual signals generated by an SSMA system have large 
Fourier bandwidth and relatively small Shannon bandwidth 
(one-half the number of dimensions of the signal space re- 
quired per second), while the signal generated by a virtual 
user of an RSMA system has large Fourier and Shannon 
bandwidths. Hence, RSMA and SSMA are two instances of 
a CDMA system but, according to Massey’s taxonomy [35], 
RSMA is not a spread-spectrum system. To appreciate the 
fundamental difference between a spread-spectrum system and 
one which is not, and toward a unified and well-defined 
taxonomy, we recommend [35]. 

Implicit in the information-theoretic approach to multiple- 
access channels is the assumption of constant-rate sources. 
Moreover, the Gaussian multiple-access channel is, of course, 
an idealized model for real-world channels, mainly because 
it fails to include the effects of multipath. Finally, in many 
situations of practical interest one has to deal with the presence 
of many cells that create inter-cell interference. Now we briefly 
discuss the impact of these issues on RSMA. 

Like SSMA, RSMA is a broadband technique in the sense 
that each (virtual) user’s signal occupies the entire available 
bandwidth. Broadband systems enjoy a variety of advan- 
tages over narrowband systems. These include: 1) Interference 
reduction resulting from intermittent transmitters [36]. 2) Cel- 
lular reuse factor of 1 [36]. 3) It appears that receivers for 
broadband systems are able to estimate the channel better 
than those for narrowband systems (see, e.g., [37], [38]). 
This is not an issue for the Gaussian multiple-access channel 
but estimating the channel at the receiver is a challenging 
problem for time-varying multipath channels. In [39] it has 
been shown that RSMA allows one to achieve any point 
in the capacity region of a time-varying multipath channel. 
4) Assuming that the channel is known at the receiver (but 
not at the transmitters), Gallager [37] has shown that, for 
multipath channels, broadband systems have a capacity region 
which is strictly larger than that of narrowband systems. (This 
conclusion may reverse if inter-cell interference exceeds a 
given threshold and cells do not cooperate in their decoding 
effort [40] .) 

A nice property of RSMA (shared by any capacity-achieving 
system) is the ability of a user to use his “extra” power for 
the benefit of another user. This can be seen by considering 
a simple two-user situation. If user 1 is willing to increase 
his power to the point that he can achieve his rate viewing 
user 2 as noise, then user 2 can transmit at the same rate as 
if the channel were entirely dedicated to him. This property 
can make a difference in mobile communication where the 
attenuation increases with the fourth power of the distance 
[41] and, therefore, powers measured at the central station 
vary over several orders of magnitude when the transmitted 
powers are constant. In SSMA one controls the transmitted 
power in such a way that all users are received with (roughly) 
the same power. This procedure, which is done to cure a 
weakness of SSMA known as the near/far effect, reduces the 
capacity region of the channel model. It should be pointed 
out, however, that various techniques have been considered 
to eliminate or mitigate the near/far effect (see, e.g., [42], 
[43] and the references therein for recent publications on the 
subject.) 

An additional benefit from not having to ensure that all 
received signals have the same strength at the central station is 
that it avoids a concentration of transmitted power toward the 
boundary of a cell where the contribution to the interference 
of other cells is worst. 

In this paper, all single-user codes were assumed to be 
ideal codes in the usual information-theoretic sense (see, e.g., 
[ 11). How RSMA behaves with practical codes is an important 
question. Another important question is the effect of imperfect 
cancellation at the receiver. This is a subject requiring further 
research. Promising preliminary analytic and simulation results 
can be found in [44]. 

The key ingredient to implementing practical RSMA sys- 
tems is a family of good low-rate codes such as those reported 
in [45] and [46]. The recently discovered turbo-codes have an 
even greater potential. However, further research is needed to 
find an entire family of such codes with rates that vary over 
a broad range. 
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It is interesting to note that the approach discussed in [45, 
sec. IV] is a special case of RSMA in which there is no 
need for splitting, since the desired rate tuple is already a 
vertex of the capacity region. There, pseudonoise signatures 
are used to randomize the output of the convolutional code so 
that the same code can be used for all users. The bandwidth 
expansion is achieved through coding. We expect that the 
idea of randomizing practical codes by means of pseudonoise 
sequences can be successfully applied to general RSMA 
systems. This is also a subject requiring further research. 
To our knowledge, the first to point out that it is preferable 
to “spread” using low-rate codes as opposed to pseudonoise 
sequences was Hui [47]. 

While we were preparing the final version of this paper, Beat 
Keusch brought to our attention a related work. Carleial [48] 
in his unpublished thesis showed that any point in the two-user 
capacity region of the Gaussian multiple-access channel can 
be obtained by splitting either one of the two users into two 
virtual users. Moreover, he stated that any point in the i&f- 
user capacity region can be obtained by similar “superposition 
coding” but, as he gave no proof or further description of this 
scheme, it is unclear whether he had also observed that the 
required number of virtual users increases only linearly with 
the number of original users and, more specifically, that no 
user needs to be split into more than two virtual users, which 
is the main point in this paper. 

As a final note, we point out that RSMA is a fundamental 
technique which is applicable also to all discrete memoryless 
multiple-access channels. This is shown in [28]. 

APPENDIX 
VERTICES AND SINGLE-USER CODABLE POINTS 

In this Appendix we prove that (2) is satisfied with equality 
if and only if R is a vertex of the capacity region, where we 
define a vertex of the capacity region to be a point that fulfills 
with equality &r (out of the 2M - 1) inequalities in (1). Note 
that each inequality corresponds to one of the hyperplanes 
that bound the capacity region. Hence, by definition, a vertex 
lies in the intersection of M such hyperplanes. Let U = 
{1,2,. . . , M}, 5’ C U, and define 

R(S) = CR,, 
iES 

P(S) = c P;. 
iES 

Define the sets 

If (2) is satisfied with equality then 

R; = C(Pi, c2 + P(Si-1)) for i = I .,M. ’ 

M. 

Therefore, for all i E { 1, . . . , M} we have 

R(S;) = 2 Rj 
j=l 

= 2 C(Pj, 2 + P(Sj-1)) 
j=l 

= C(P(Si), 2). 

Hence, according to our definition, R is a vertex. To prove the 
converse, we will need the following lemma. 

Lemma 3: Consider a point R = (RI, . . . , RM) in the M- 
user capacity region given by P = (PI, . . . , PM) and c2. Let 
S, S’ be subsets of U such that R(S) = C(P(S), c2) and 
R(S’) = C(P(S’), c”). Then either S C S’ or S’ G  S. 

Proof: (see also [49, pp. 188-1921) From R(S) = 
C(P(S), 02) and R(S’ U S) 5 C(P(S’ U S), 02) we get 

R(S’ - S) = R(S’ u S) - R(S) 
5 C(P(S’ - S), l72 + P(S)). 

Hence 

C(P(S’ - S), g2 + P(S n S)) 
= C(P(S), 0”) - C(P(S n S), a2) 
= R(S’) - C(P(S’ n S), a2) 
= R(S’ - S) + R(S’ n S) - C(P(S’ n S), CT”) 
5 C(P(S’ - S), fJ2 + P(S)), 

which can just be fulfilled if either S C S’ or S’ C S. 0 
Assume now that R is a vertex. Hence, let Si , i = 1, . . . , M, 

be the sets which fulfill (1) with equality. Then from Lemma 
3 (by finite induction) we must have (after a possible re-index- 
ing) that S; c 5’-1, ]Sr] = 1,s~ = U and 15’; - S;-,l = 1. 
If we define Si - 5’-1 = i then 

R; = R(S;) - R(Si-1) = C(P,, u2 + P(&I)), 
for i = l,...,M 

which proves the claim. 0 
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