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Capacity, Mutual Information, and Coding 
for F inite-State Markov Channels 
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Abstract- The Finite-State Markov Channel (FSMC) is a 
discrete time-varying channel whose variation is determined by 
a finite-state Markov process. These channels have memory 
due to the Markov channel variation. We obtain the FSMC 
capacity as a function of the conditional channel state proba- 
bility. We also show that for i.i.d. channel inputs, this condi- 
tional probability converges weakly, and the channel’s mutual 
information is then a closed-form continuous function of the 
input distribution. We next consider coding for FSMC’s. In 
general, the complexity of maximum-likelihood decoding grows 
exponentially with the channel memory length. Therefore, in 
practice, interleaving and memoryless channel codes are used. 
This technique results in some performance loss relative to 
the inherent capacity of channels with memory. We propose a 
maximum-likelihood decision-feedback decoder with complexity 
that is independent of the channel memory. We calculate the 
capacity and cutoff rate of our technique, and show that it 
preserves the capacity of certain FSMC’s. We also compare 
the performance of the decision-feedback decoder with that of 
interleaving and memoryless channel coding on a fading channel 
with 4PSK modulation. 

Index Terns-Finite-state Markov channels, capacity, mutual 
information, decision-feedback maximum-likelihood decoding. 

I. INTRODUCTION 

T HIS PAPER extends the capacity and coding results 
of Mushkin and Bar-David [l] for the Gilbert-Elliot 

channel to a more general time-varying channel model. The 
Gilbert-Elliot channel is a stationary two-state Markov chain, 
where each state is a binary-symmetric channel (BSC), as in 
Fig. 1. The transition probabilities between states are g and b, 
respectively, and the crossover probabilities for the “good” and 
“bad” BSC’s are pG and pB, respectively, where PG < pg. 
Let Z, E (0, l}, yn E (0, l}, and Z, = IC, @  yin denote, 
respectively, the channel input, channel output, and channel 
error on the nth transmission. In [l], the capacity of the 
Gilbert-Elliot channel is derived as 

C = Jlrn 1 - E[h(q,)] = 1 - E[h(qm)] (1) 
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where h is the entropy function, qn = p(zn = 1 ) .z~-‘), qn 
converges to qm in distribution, and qm is independent of the 
initial channel state. 

In this paper we derive the capacity of a more general 
finite-state Markov channel, where the channel states are not 
necessarily BSC’s. We model the channel as a Markov chain 
S, which takes values in a finite state space C of memoryless 
channels with finite input and output alphabets. The condi- 
tional input/output probability is thus p(yy, 1 z,, S,), where 
x, and yn denote the channel input and output, respectively. 
The channel transition probabilities are independent of the 
‘input, so our model does not include IS1 channels. We refer to 
the channel model as a finite-state Markov channel (FSMC). 
If the transmitter and receiver have perfect state information, 
then the capacity of the FSMC is just the statistical average 
over all states of the corresponding channel capacity [2]. On 
the other hand, with no information about the channel state 
or its transition structure, capacity is reduced to that of the 
Arbitrarily Varying Channel [3]. We consider the intermediate 
case, where the channel transition structure of the FSMC is 
known. 

The memory of the FSMC comes from the dependence of 
the current channel state on past inputs and outputs. As a 
result, the entropy in the channel output is a function of the 
channel state conditioned on all past outputs. Similarly, the 
conditional output entropy given the input is determined by 
the channel state probability conditioned on all past inputs and 
outputs. We use this fact to obtain a formula for channel ca- 
pacity in terms of these conditional probabilities. Our formula 
can be computed recursively, which significantly reduces its 
computation complexity. We also show that when the channel 
inputs are i.i.d., these conditional state probabilities converge 
in distribution, and their limit distributions are continuous 
functions of the input distribution. Thus for any i.i.d. input 
distribution 0, the mutual information of the FSMC is a closed- 
form continuous function of 8. This continuity allows us to 
find li.i.d> the maximum mutual information relative to all 
i.i.d. input distributions, using straightforward maximization 
techniques. Since 1i.i.d < c, our result provides a simple lower 
bound for the capacity of general FSMC’s. 

The Gilbert-Elliot channel has two features which facilitate 
its capacity analysis: its conditional entropy H(Y” ) Xn) is 
independent of the input distribution, and it is a symmetric 
channel, so a uniform input distribution induces a uniform 
output distribution. We extend these properties to a general 
class of FSMC’s and show that for this class, 1i.i.d equals the 
channel capacity. This class includes channels varying between 
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Fig. 1. Gilbert-Elliot channel. 

any finite number of BSC’s, as well as quantized additive 
white noise (AWN) channels with symmetric PSK inputs and 
time-varying noise statistics or amplitude fading. 

In principle, communication over a finite-state channel is 
possible at any rate below the channel capacity. However, 
good maximum-likelihood (ML) coding strategies for channels 
with memory are difficult to determine, and the decoder 
complexity grows exponentially with memory length. Thus a 
common strategy for channels with memory is to disperse the 
memory using an interleaver: if the span of the interleaver is 
long, then the cascade of the interleaver, channel, and deinter- 
leaver can be considered memoryless, and coding techniques 
for memoryless channels may be used [4]. However, this 
cascaded channel has a lower inherent Shannon capacity than 
the original channel, since coding is restricted to memoryless 
channel codes. 

The complexity of ML decoding can be reduced signif- 
icantly without this capacity degradation by implementing 
a decision-feedback decoder, which consists of a recursive 
estimator for the channel state distribution conditioned on past 
inputs and- outputs, followed by an ML decoder. We will see 
that the estimate 7rn = p(& 1 2,-l, . . . , ~1, yn-l, . . , yi) is 
a sufficient statistic for the ML decoder input, given all past 
inputs and outputs. Thus the ML decoder operates on a memo- 
ryless system. The only additional complexity of this approach 
over the conventional method of interleaving and memoryless 
channel encoding is the recursive calculation of x~. We will 
calculate the capacity penalty of the decision-feedback decoder 
for general FSMC’s (ignoring error propagation), and show 
that this penalty vanishes for a certain class of FSMC’s. 

The most common example of an FSMC is a correlated 
fading channel. In [5], an FSMC model for Rayleigh fading 
is proposed, where the channel state varies over binary- 
symmetric channels with different crossover probabilities. Our 
recursive capacity formula is a generalization of the capacity 
found in [5], and we also prove the convergence of their 
recursive algorithm. Since capacity is generally unachievable 
for any practical coding scheme, the channel cutoff rate 
indicates the practical achievable information rate of a channel 
with coding. The cutoff rate for correlated fading channels 
with MPSK inputs, assuming channel state information at the 
receiver, was obtained in [6]: we obtain the same cutoff rate 
on this channel using decision-feedback decoding. 

Most coding techniques for fading channels rely on built-in 
time diversity in the code to mitigate the fading effect. Code 
designs of this type can be found in [7]-[9] and the references 
therein. These codes use the same time-diversity idea as 
interleaving and memoryless channel encoding, except that the 

diversity is implemented with the code metric instead of the 
interleaver. Thus as with interleaving andmemoryless channel 
encoding, channel correlation information is ignored with these 
coding schemes. Maximum-likelihood sequence estimation for 
fading channels without coding has been examined in [lo], 
[ 1 I]. However, it is difficult to implement coding with these 
schemes due to the code delays. In our scheme, coding delays 
do not result in state decision delays, since the decisions are 
based on estimates of the coded bits. We can introduce coding 
in our decision-feedback scheme with a consequent increase 
in delay and complexity, as we will discuss in Section VI. 

The remainder of the paper is organized as follows. In 
Section II we define the FSMC, and obtain some properties of 
the channel based on this definition. In Section III we derive a 
recursive relationship for the distribution of the channel state 
conditioned on past inputs and outputs, or on past outputs 
alone. We also show these conditional state distributions 
converge to limit distributions for i.i.d. channel inputs. In 
Section IV we obtain the capacity of the FSMC in terms of 
the condition state distributions, and obtain a simple formula 
for 1i.i.d.. Uniformly symmetric variable-noise FSMC’s are 
defined in Section V. For this channel class (which includes the 
Gilbert-Elliot channel), capacity is achieved with uniform i.i.d. 
channel inputs. In Section VI we present the decision-feedback 
decoder, and obtain the capacity and cutoff rate penalties of the 
decision-feedback decoding scheme. These penalties vanish 
for uniformly symmetric variable-noise channels. Numerical 
results for the capacity and cutoff rate of a two-state variable- 
noise channel with 4PSK modulation and decision-feedback 
decoding are presented in Section VII. 

II. CHANNEL MODEL 

Let S, be the state at time n of an irreducible, aperiodic, sta- 
tionary Markov chain with state space C = {cl, . . . , CK}. S, is 
positive recurrent and ergodic. The state space C corresponds 
to K different discrete memoryless channels (DMC’s), with 
common finite input and output alphabets denoted by X and 
y, respectively. Let P be the matrix of transition probabilities 
for S, so 

% m  = p(‘%+l = Cm 1 sn = ck) (2) 

independent of n by stationarity. We denote the input and 
output of the FSMC at time n by 2, and yn, respectively, 
and we assume that the channel inputs are independent of its 
states. We will use the notation 
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Fig. 2. Finite-state Markov channel. 

and 

III. CONDITIONAL STATE DISTRIBUTION 

The conditional channel state distribution is the key to 
. determining the capacity of the FSMC through a recursive 

. algorithm. It is also a sufficient statistic for the input given all 
. past inputs and outputs, thus allowing for the reduced complex- 

ity of the decision-feedback decoder. In this section we show 

a 

that the state distribution conditioned on past input/output pairs 
ck 

P kk can be calculated using a recursive formula. A similar formula 
is derived for the state distribution conditioned on past outputs 
alone, under the assumption of independent channel inputs. We 

. 
Pk(YIX) 

also show that these state distributions converge weakly under 
. 

. 
i.i.d. inputs, and the resulting limit distributions are continuous 
functions of the input distribution. 

We denote these conditional state distributions by the K- 
dimensional random vectors 7rn = (x,(l), . . . , m(K)) and 
pn = (p%(l), . . . , pn(K)), respectively, where 

k%(k) = P(sn = Ck 1 ?/“-I> (9) 

and 

n+m n rm - (rm, . . . , r,+,, \ Tn(k) = p(S, = Ck 1 x+-l, y-l). (10) 

for r = x,y, or S. 
The FSMC is defined by its conditional input/output prob- 

ability at time n, which is determined by the channel state at 
time n 

P(Yn 1 %, sn) = c pk(!/n ( %)l[sn = ck] (3) 
kEK 

where Pkh I ~1 = P(Y I z, S = ck), and I[.] denotes the 
indicator function (I[,!?, = Ck] = 1 if S, = Ck and 0 
otherwise). The memory of the FSMC is due to the Markov 
structure of the state transitions, which leads to a dependence 
of S, on previous values. The FSMC is memoryless if and 
only if 9, = P+ for all k, j, and m. The finite-state Markov 
channel is illustrated in Fig. 2. 

By assumption, the state at time n + 1 is independent of 
previous input/output pairs when conditioned on S, 

d&L+1 I snrxn,Yyn) = d&L+1 I Sn). (4) 

The following recursive formula for r, is derived in Appendix 
I: 

(11) 

where D(z,, yn) is a diagonal K x K matrix with kth diagonal 
term pk(y, ] x,), and 1 = (1, .. . , l)T is a K-dimensional 
vector. Equation (11) defines a recursive relation for 7r, which 
takes values on the state space 

The initial value for 7rn is 

To = (P(s0 = Cl), ’ ’ , P(sO = CK)) 

and its transition probabilities are 

p(7rn+1=a! I7rn=P) = c 1[(%Yn): f(xntYn>P)=4 
X,EX 
Y,EY 
.P(Yn I ~7z=P,Gz)P(%). (12) 

Since the channels in C are memoryless Note that (12) is independent of n for stationary inputs. 
For independent inputs, there is a similar recursive formula 

P(YTx+1 I &+1, %+1, S”, xn, Yy”) = P(Y,+1 I f&+1, %+1). for pn 

If we also assume that the 5,‘s are independent, then 
(5) 

Pm+1 = ;;tg 22 P(YmPn> (13) 
n n 

P(Yn+l,GL+l I &+l,Sn,~n,Yn) =P(Y7L+l,Gl+l I S,+1). where B(yn) is a diagonal K x K matrix with kth diagonal 
(6) term p(gn ) S, = ck),’ The derivation of (13) is similar to that 

From (6) of (11) in Appendix I, using (8) instead of (5) and removing all 
nr z terms. The variable pn also takes values on the state space 

and 

P(YN> xN I sN> = fJ P(Yn,Gl I Sn) 
(7) a, with initial value po = ~a and transition probabilities 

72=1 PbL+1 = o! I Pn = P) = c l[yn: f(YY,,P) = 4 
YnEY 

. P(Yn I Pn = 8. (14) 

Pbn+1 I Sn+l, S”, Y”) = P(Yyn+1 I Sn+l). (8) ‘Note that B(y,) has an implicit dependence on the distribution of zn. 
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As for 7rn, the transition probabilities in (14) are independent 
of n when the inputs are stationary. 

We show in Appendix II that for i.i.d. inputs, 7rn and pn are 
Markov chains that converge in distribution to limits which 
are independent of the initial channel state, under some mild 
constraints on C. These convergence results imply that for any 
bounded continuous function f, the following limits exist and 
are equal for all i: 

and 

(15) 

where 

and 

p; = p(S, 1 yn--l, so = Ci). 

This convergence allows us to obtain a closed-form solution 
for the mutual information under i.i.d. inputs. We also show 
in Lemmas A2.3 and A2.5 of Appendix II that the limit 
distributions for 7r and p are continuous functions of the input 
distribution. 

Lemmas A2.6 and A2.7 of Appendix II show the surprising 
result that rn and pn are not necessarily Markov chains when 
the input distribution is Markov. Since the weak convergence 
of 7rn and pn requires this Markov property, (15) and (16) are 
not valid for general Markov inputs. 

IV. ENTROPY, MUTUAL INFORMATION, AND CAPACITY 

We now derive the capacity of the FSMC based on the 
distributions of 7rn and pn. We also obtain some additional 
properties of the entropy and mutual information when the 
channel inputs are i.i.d. 

By definition, the Markov chain S, is aperiodic and irre- 
ducible over a finite state space, so the effect of its initial state 
dies away exponentially with time [12]. Thus the FSMC is an 
indecomposable channel. The capacity of an indecomposable 
channel is independent of its initial state, and is given by [13, 
Theorem 4.6.41 

C = lim max ll(Xn;Y?L) 
n-03 P(x-) n 

(17) 

where I(.; .) denotes mutual information and P(Xn) denotes 
the set of all input distributions on X”. The mutual informa- 
tion can be written as 

I(Xn;Yn) = H(Y”) - H(Y” I X”) (18) 

where H(Y) = E [-logp(y)] and H(Y 1 X) = E [-logp(y I 
z)]. It is easily shown [ 141 that 

H(Y”) = -&(I: 1 yi-1) (19) 
i=l 

and 

H(Y” I X”) = kH(Y, ( Xg-lJ-l). (20) 
i=l 

The following lemma, proved in Appendix III, allows the 
mutual information to be written in terms of 7r, and pn. 

Lemma 4.1: 

H(Y, I x,, x-1, Y-1) 

= E 
[ 
-1% &(Yn I G, s?l = Ck)Tn(k) 

k=l 1 = H(Y, I &,~iT,) (21) 

and 

H(Y, 1 .,-l) = E -1% -&(7/,, I & = q)&(k) 
k=l 1 = H(y,. I Pn). (22) 

Using this lemma in (19) and (20) and substituting into 
(18) yields the following theorem. 

Theorem 4.1: The capacity of the FSMC is given by 

C = lim max 1 
n-00 7qxn) n 

P(Yi I si = ck)L%(k) 1 Ic;, s i = c,)r;(k) 11 (23) 

where the dependence on 6’ E P(Xn) of the distributions for 
7ri, p;, and yi is implicit. This capacity expression is easier 
to calculate than Gallager’s formula (17), since the 7ri terms 
can be computed recursively. The recursive calculation for pi 
requires independent inputs. However, for many channels of 
interest H(Yi I pi) will be a constant independent of the input 
distribution (such channels are discussed in Section V). For 
these channels, the capacity calculation reduces to minimizing 
the second term in (23) relative to the input distribution, and 
the complexity of this minimization is greatly reduced when 
7ri can be calculated easily. 

Using Lemma 4.1, we can also express the capacity as 

Although [13, Theorem 4.6.41 guarantees the convergence 
of (24), the random vectors 7rn and pn do not necessarily 
converge in distribution for general input distributions. We 
proved this convergence in Section III for i.i.d. inputs. We now 
derive some additional properties of the entropy and mutual 
information under this input restriction. These properties are 
summarized in Lemmas 4.2-4.7 below, which are proved in 
Appendix IV. 
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Lemma 4.2: When the channel inputs are stationary Proof: From (18) 

H(Yn 1 Xn,Xn--l,Yn-l) 2 H(Yn+1 I Xn+l,Xn,yn) I(Y”; X”) = II - H(Y” 1 X”). 

2 H&+1 1 Xn+1, X”, Y”, So) 

> II(Y, I x,, x-1, y-1, So). If we fix 0 E p(x) 

(25) 
II(Y” ( Xn) = -g H(Y; ( x;, yi-1, xi-l) (31) 

Lemma 4.3: For i.i.d. input distributions, the following i=l 

limits exist and are equal: 

lim H(Y, I X,, Xn--l, Y,-l) 7L’CC 

by (20), and the terms of the summation are nonnegative and 
monotonically decreasing in i by Lemma 4.2. Thus 

= JlmH(Yn 1 Xn,Xn-‘,Ynel,So). (26) 
lim 1 2 H(ylz 1 Xi, Yivl, Xi-l) n+oo n 

We now consider the entropy in the output alone. 
i=l 

Lemma 4.4 For stationary inputs, = JlmH(Yn I X,, Xnwl, Ynpl). (32) 

H(Yn I Y-l) 2 H&+1 I Y”) 2 fqYn+1 I Y”,So) Similarly, from (19) 

2 If(Y, ( y-1, So). (27) 
H(Y”) = -&(I$ 1 yi-1) (33) 

Lemma 4.5: For i.i.d. input distributions, the following i=l 

limits exist and are equal: 
and by Lemma 4.4, the terms of this summation are nonneg- 

Jim H(Y, 1 Y+-l) = J$m H(Y, 1 Ynvl, SO). (28) ative and monotonically decreasing in i. Hence 

The next lemma is proved using the convergence results for 7rn 
and pn and a change of variables in the entropy expressions 
(26) and (28). 

Lemma 4.6: For any i.i.d. input distribution 0 E P(X) 

ZX SC pEA 
Y 

Ey(-lwe(Y I P>)PS(Y I Pk%P) 

4 c 
(-l%P(Y I z, F)>P(Y I 5, ~)~(~)dw4 

TrEA YEY 
XEX 

(29) 

where the 0 superscript on pn, rn, and p(y ( p) shows their 
dependence on the input distribution, u’ denotes the limiting 
distribution of p:, and # denotes the limiting distribution of 
lr:. 

We now combine the above lemmas to get a closed form 
expression for the mutual information under i.i.d. inputs. 

Theorem 4.2: For any i.i.d. input distribution 0 E P(X), 
the average mutual information per channel use is given by 

= .Ic  AyEy(logPe(Y I P>)Pe(Y I P>ve(dP> 

lim 12 H(Y, I Yi-l) = Jim H(Y, I Y,-l). (34) n-00 n, 
i=l 

Applying Lemmas 4.1 and 4.6 completes the proof. q 
It is easily shown that since ve and pe are continuous 

functions of 8, 10 is also. Moreover, the calculation of 1s 
is relatively simple, since asymptotic values of b and I/ 
are obtained using the recursive formulas (12) and (14), 
respectively. For the channel described in Section VII, these 
recursive formulas closely approach their final values after 
only 40 iterations. Unfortunately, this simplified formula for 
mutual information under i.i.d. inputs cannot be extended to 
Markov inputs, since 7r, and pn are no longer Markov chains 
under these conditions. 

We now consider the average mutual information maxi- 
mized over all i.i.d. input distributions. Define 

Ii.i.d, e SUP I,g. 
ew(x) 

(35) 

Since P(X) is compact and IO continuous in 8, 1i.i.d. achieves 
its supremum on P(X), and the maximization can be done 
using standard techniques for continuous functions. Moreover, 
it is easily shown that 1i.i.d 5 C. Thus (35) provides a 
relatively simple formula to lower-bound the capacity of 
general FSMC’s. 

The next section will describe a class of channels for which 
uniform i.i.d. channel inputs achieve channel capacity. Thus 
1i.i.d. = c, and the capacity can be found using the formula of 
Theorem 4.2. This channel class includes fading or variable- 
noise channels with symmetric PSK inputs, as well as channels 
which vary over a finite set of BSC’s. 
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V. UNIFORMLY SYMMETRIC VARIABLE-NOISE CHANNELS 

In this section we define two classes of FSMC’s: uniformly 
symmetric channels and variable-noise channels. The mutual 
information and capacity of these channel classes have ad- 
ditional properties which we outline in the lemmas below. 
Moreover, we will show in the next section that the decision- 
feedback decoder achieves capacity for uniformly symmetric 
variable-noise FSMC’s. 

Dejinition: For a DMC, let M denote the matrix of in- 
put/output probabilities 

M&(y=jI.r=i), ~EJ’, VEX. 

A discrete memoryless channel is output-symmetric if the rows 
of M are permutations of each other, and the columns of M 
are permutations of each other.2 

Dejinition: A FSMC is uniformly symmetric if every chan- 
nel Ck E C is output-symmetric. 

The next lemma, proved in Appendix V, shows that for 
uniformly symmetric FSMC’s, the conditional output entropy 
is maximized with uniform i.i.d. inputs. 

Lemma 5.1: For uniformly symmetric FSMC’s and any 
initial state So = c;, H(Y, I p,), H(Y, I p:), H(Y, I 7rn), 
and H(Y, I 7ri) are all maximized for a uniform and i.i.d. 
input distribution, and these maximum values equal log lyl. 

Dejinition: Let X, and Y, denote the input and output, 
respectively, of an FSMC. We say that an FSMC is a variable- 
noise channel if there exists a function 4 such that for 2, = 
4(Xn, Y,), ~(2~ I Xn) = p(P), and 2” is a sufficient 
statistic for S” (so 5’” is independent of X” and Y” given 
P). Typically, 4 is associated with an additive noise channel, 
as we discuss in more detail below. 

If 2” is a sufficient statistic for S”. then 

7rn n p(S, 1 x-1, Y--l) 
= p(S, 1 x+-l, Yn-l,Zn-l) = p(S, I T-l). (36) 

Using (36) and replacing the pairs (Xn, Y,) with 2, in 
the derivation of Appendix I, we can simplify the recursive 
calculation of 7riT, 

where D(zn) is a diagonal K x K matrix with Icth diagonal 
term p(z, I S, = Ck). The transition probabilities are also 
simplified 

P(Kn+1 = a I nn = P) 

= c l[(zn>: f(zn,P) = Q]P(G I =n = P). (38) 
z,EZ 

The next lemma, proved in Appendix V, shows that for 
a uniformly symmetric variable-noise channel, the output 
entropy conditioned on the input is independent of the input 
distribution. 

‘Symmetric channels, defined in [13, p. 941, are a more general class of 
memoryless channels; an output-symmetric channel is a symmetric channel 
with a single output partition. 

Lemma 5.2: For uniformly symmetric variable-noise 
FSMC’s and all i, H(Y, I Xn,rn) and H(Y, I X,, ~6) 
do not depend on the input distribution. 

Consider an FSMC where each ck E C is an AWN channel 
with noise density nk. If we let Z = Y - X, then it is 
easily shown that this is a variable-noise channel. However, 
such channels have an infinite output alphabet. In general, the 
output of an AWN channel is quantized to the nearest symbol 
in a finite output alphabet: we call this the quantized AWN 
(Q-AWN) channel. 

If the Q-AWN channel has a symmetric multiphase input 
alphabet of constant amplitude and output phase quantization 
[4, p. 801, then it is easily checked that pk(y I Z) depends only 
on pk ( I y - z I), which in turn depends only on the noise density 
nk. Thus it is a variable-noise channel3 We show in Appendix 
VI that variable-noise Q-AWN channels with the same input 
and output alphabets are also uniformly symmetric. Uniformly 
symmetric variable-noise channels have the property that 1i.i.d. 
equals the channel capacity, as we show in the following 
theorem. 

Theorem 5.1: Capacity of uniformly symmetric variable- 
noise channels is achieved with an input distribution that is 
uniform and i.i.d. The capacity is given by 

C = 1i.i.d. = log IYI-P -lWP(Y I z, r) 

. P(Y I 2, TiT)P(dT) 1 vx E x (39) 

where p is the limiting distribution for 7rn under uniform i.i.d. 
inputs. Moreover, C = limn+oo C, = limn+m CA for all i, 
where 

G  fi$y&H(Y, I Pn) -ff(Y, I Xn,rn) (40) 

increases with n, and 

c: 5 $lJzm) II(Y, I &) - II(Y, 1 x,, 7rQ) (41) 

decreases with n. 
Proof From Lemmas 5.1 and 5.2, C, , Ci, and C are 

all maximized with uniform i.i.d. inputs. With this input 
distribution 

cn = log IYl - fqyn I Xn,~n) 

and 

c; = log lyl - H(Y, I Xn,7rL). 

Applying Lemmas 4.2 and 4.3, we get that H(Y, I Xn,7rn) 
decreases with n, H(Y, I X,, xi) increases with n, and both 

31f the input alphabet of a Q-AWN channel is not symmetric or the input 
symbols have different amplitudes, then the distribution of 2 = IY - X 
will depend on the input. To see this, consider a Q-AWN channel with a 16. 
QAM input/output alphabet (so the output is quantized to the nearest input 
symbol). There are four different sets of 2 = IY - XI values, depending 
on the amplitude of the input symbol. Thus the distribution of 2 over all 
its possible values (the union of all four sets) will change, depending on the 
amplitude of the input symbol. 
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Fig. 3. System model. 
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Fig. 4. Decision-feedback decoder. 

converge to the same limit. Finally, under uniform i.i.d. inputs 

= log IYI - Jim H(K I X,, 7rn> 

by Lemma 4.1 and (32). Applying Lemma 4.6 to 

(42) 

completes the proof. q 
The BSC is equivalent to a binary-input Q-AWN channel 

with binary quantization [4]. Thus an FSMC where ck indexes 
a set of BSC’s with different crossover probabilities is a 
uniformly symmetric variable-noise channel. Therefore, both 
[ 1, Proposition 41 and the capacity formula obtained in [5] are 
corollaries of Theorem 5.1. 

VI. DECISION-FEEDBACK DECODER 

A block diagram for a system with decision-feedback de- 
coding is depicted in Fig. 3. The system is composed of a 
conventional (block or convolutional) encoder for memory- 
less channels, block interleaver, FSMC, decision-feedback de- 
coder, and deinterleaver. Fig. 4 outlines the decision-feedback 
decoder design, which consists of a channel state estimator 
followed by an ML decoder. We will show in this section 
that if we ignore error propagation, a system employing this 
decision-feedback decoding scheme on uniformly symmetric 
variable-noise channels is information-lossless: it has the same 
capacity as the original FSMC, given by (30) for i.i.d. uniform 
inputs. Moreover, we will see that the output of the state 
estimator is a sufficient statistic for the current output given all 
past inputs and outputs, which reduces the system of Fig. 3 to 
a discrete memoryless channel. Thus the ML input sequence 
is determined on a symbol-by-symbol basis, eliminating the 
complexity and delay of sequence decoders. 

The interleaver works as follows. The output of the encoder 
is stored row by row in a J x L interleaver, and transmitted 
over the channel column by column. The deinterleaver per- 
forms the reverse operation. Because the effect of the initial 

channel state dies away, the received symbols within any 
row of the deinterleaver become independent as J becomes 
infinite. However, the symbols within any column of the 
deinterleaver are received from consecutive channel uses, 
and are thus dependent. This dependence is called the latent 
channel memory, and the state estimator enables the ML 
decoder to make use of .this memory. 

Specifically, the state estimator uses the recursive relation- 
ship of (11) to estimate 7riT,. It will be shown below that the ML 
decoder operates on a memoryless system, and can therefore 
determine the ML input sequence on a per-symbol basis. The 
input to the ML decoder is the channel output yn and the 
state estimate %ir,, and its output is the 2, which maximizes 
logP(Yl,,*n I Gz), assuming equally likely input symbols.4 
The soft-decision decoder uses conventional techniques (e.g., 
Viterbi decoding) with branch metrics 

4YYT) e h%P(Y,~ I xl. (43) 

We now evaluate the information, capacity, and cutoff rates 
of a system using the decision-feedback decoder, assuming 
ii, = 7r, (i.e., ignoring error propagation). We will use the 
notation yjl b yVn to explicitly denote that yn is in the jth 
row and Ith column of the deinterleaver. Similarly, nil e r, 
and ZJ~Z b 2, denote, respectively, the state estimate and 
interleaver input corresponding to yjl. Assume noti that the 
state estimator is reset every J iterations so, for each I, the 
state estimator goes through j recursions of (11) to calculate 
7rjl. By (12), this recursion induces a distribution p(7rjl) on 
7rjl that depends only on p(Xj-l). Thus the system up to the 
output of the state estimator is equivalent to a set of parallel 
r-output channels, where the x-output channel is defined, for 
a given j, by the input zjl, the output pair (vjl, 7rjl), and the 
input/output probability 

P(Y.wv I “9) = )+(YjZ I zjz)~jz(k)p(njz). (44) 
k 

41f the zn are not equally likely, then logp(z,) must be added to the 
decoder metric. 
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For each j, the n-output channel is the same for 2 = 
1,2,. . , L, and therefore there are J different x-output 
channels, each used L times. We thus drop the I subscript 
of ~jl, yjl, and njl in the decoder block diagram of Fig. 4. 
The first r-output channel (j = 1) is equivalent to the FSMC 
with interleaving and memoryless channel encoding, since the 
estimator is reset and therefore ~11 = xc,1 < 1 < L. 

The jth n-output channel is discrete, since ~jl and yj~jl are 
taken from finite alphabets, and since 7rjl can have at most 
IX Ij ]JJlj different values. It is also asymptotically memoryless 
with deep interleaving (large J), which we prove in Appendix 
VII. Finally, we show in Appendix VIII that for a fixed input 
distribution, the J r-output channels are independent, and the 
average mutual information of the parallel channels is 

IJ = fI(YJ, 7fJ; X”) 

= f &(Yj ( 7rj) - H(Yj I Xj,7rj). 
3=1 

Let 

CJ e mm& f -gH(Yj I 7rj) - H(Yj 1 Xj,7rj) 
J=l 

l -&cj = max - 
WXJ) J j=l 

where 

c.j fi H(Yj 1 7rj) - H(Yj I Xj,7rj) (47) 

for the maximizing distribution p(XJ). The capacity of the 
decision-feedback decoding system is then 

(45) 

(46) 

Comparing (48) to (24), we see that the capacity penalty of 
the decision-feedback decoder is given by 

C-Cd,= lim 
L i 

max IkH(Y, I pj)-H(Yj I Xj,7rj) 
n-00 Fyx-) 72 3=1 ) 

-p;x, A -g H(k; I 7rj) -H(q I Xj,7rj) . (49) n 
i J=l 11 

For uniformly symmetric variable-noise channels, uniform 
i.i.d. inputs achieve both C and Cdr, and with this input 
C - Cdr = 0. Thus the decision-feedback decoder preserves 
the inherent capacity of such channels. 

Although capacity gives the maximum data rate for any 
ML encoding scheme, established coding techniques generally 
operate at or below the channel cutoff rate [4]. Since the 7r- 
output channels are independent for a fixed input distribution 
p(XJ), the random coding exponent for the parallel set is 

-@o(l,~(X~)) = 2 Rj (50) 
j=l 

where 

The cutoff rate of the decision-feedback decoding system is 

J 

Rdfb lim max ‘CRj. 
J+OOP(XJ) J J=l 

We show in Appendix IX that for uniformly symmetric 
variable-noise channels, the maximizing input distribution 
in (52) is uniform and i.i.d., the resulting value of Rj is 
increasing in j, and the cutoff rate Rdf becomes 

where ,u is the invariant distribution for 7r under i.i.d. uniform 
inputs. 

Our calculations throughout this section have ignored the 
impact of error propagation. Referring to Fig. 4, error propa- 
gation occurs when the decision-feedback decoder output for 
the maximum-likelihood input symbol Zj is in error, which 
will then cause the estimate of +j to be in error. Since xj 
is the value of the coded symbol, the error probability for 
Sj does not benefit from any coding gain. Unfortunately, 
since block or convolutional decoding introduces delay, the 
post-decoding decisions cannot be fed back to the decision- 
feedback decoder to update the ?j value. This is exactly the 
difficulty faced by an adaptive decision-feedback equalizer 
(DFE), where decoding decisions are used to update the DFE 
tap coefficients [ 161. New methods to combine DFE’s and 
coding have recently been proposed, and several of these 
methods can be used to obtain some coding gain in the estimate 
of xj fed back through our decision-feedback decoder. In 
particular, the structure of our decision-feedback decoder 
already includes the interleaver/deinterleaver pair proposed by 
Eyuboglu for DFE’s with coding [17]. In his method, this 
pair introduced a periodic delay in the received bits such that 
delayed reliable decisions can be used for feedback. Applying 
this idea to our system effectively combines the decision- 
feedback decoder, deinterleaver, and decoder. Specifically, the 
symbols transmitted over each n-output channel are decoded 
together, and the symbol decisions output from the decoder are 
then used by the decision-feedback decoder to update the r 
values of the subsequent r-output channel. The complexity and 
delay of this design increases linearly with the block length 
of the n--output channel code, but it is independent of the 
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TWO-STATE CHANNEL 

Fig. 5. Two-state fading channel. 

channel memory since this memory is captured in the sufficient 
statistic 7r,. Another approach to implement coding gain uses 
soft decisions on the received symbols to update x%, then 
later corrects this initial X, estimate if the decoded symbols 
differ from their initial estimates [ 181. This method truncates 
the number of symbols affected by an incorrect decision, at 
a  cost of increased complexity to recalculate and update the 
rn values. Finally, decision-feedback decoding can be done 
in parallel, where each parallel path corresponds to a different 
estimate of the received symbol. The number of parallel paths 
will grow exponentially in this case, however we may be able 
to apply some of the methods outlined in [19] and [20] to 
reduce the number of paths sustained through the trellis. 

VII. ‘IWO-STATE VARIABLE-NOISE CHANNEL 

We now compute the capacity and cutoff rates of a  two- 
state Q-AWN channel with variable SNR, Gaussian noise, and 
4PSK modulation. The variable SNR can represent different 
fading levels in a multipath channel, or different noise and/or 
interference levels. The model is shown in Fig. 5. The input 
to the channel is a  4PSK symbol, to which noise of variance 
nG or nB is added, depending on whether the channel is 
in state G (good) or B (bad). We  assume that the SNR 
is 10 dB for channel G, and -5 dB for channel B. The 
channel output is quantized to the nearest input symbol and, 
since this is a uniformly symmetric variable-noise channel, 
the capacity and cutoff rates are achieved with uniform i.i.d. 
inputs. The state transition probabilities are depicted in Fig. 5. 
We  assume a stationary initial distribution of the state process, 
so p(Sc = G) = g/(g + b) and p(Su = B) = b/(g + b). 

Fig. 6  shows the iterative calculation of (12) for p(n, (G) = 
a), where 

m(G) = p(S, = G ) xn-‘,yn-l). 

In this example, the difference of subsequent distributions after 
40 recursions is below the quantization level (da = 0.01) 
of the graph. Fig. 7  shows the capacity (Cj) and cutoff rate 
(Rj) of the jth n-output channel, given by (47) and (52), 
respectively. Note that C+l and Rj,l in this figure are the 
capacity and cutoff rate of the FSMC with interleaving and 
memoryless channel encoding. Thus the difference between 
the initial and final values of Cj and Rj indicate the per- 
formance improvement of the decision-feedback decoder over 
conventional techniques. 
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For this two-state model, the channel memory can be 
quantified by the parameter p 4 1 -g-b, since for g  E {G, B} 
111 

p(S, = 0  1  so = a) -p(S, = 0  I so #  0) = pn. (54) 
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Fig. 9. Decoder performance versus g. 

In Fig. 8 we show the decision-feedback decoder’s capacity 
and cutoff rates (Cdr and Rdf, respectively) as functions 
of 1-1. We expect these performance measures to increase 
as p increases, since more latency in the channel should 
improve the accuracy of the state estimator; Fig. 8 confirms 
this hypothesis. Finally, in Fig. 9 we show the decision- 
feedback decoder’s capacity and cutoff rates as functions of 
g. The parameter g is inversely proportional to the average 
number of consecutive B channel states (which corresponds to 
a 15 dB fade), thus Fig. 9 can be interpreted as the relationship 
between the maximum transmission rate and the average fade 
duration. 

VIII. SUMMARY 

We have derived the Shannon capacity of an FSMC as a 
function of the conditional probabilities 

P,(k) = P(& = Ck I Y-l) 

and 

Tn(k) = p(s, = ck 1 $+‘,f-l). 

We also showed that with i.i.d. inputs, these conditional proba- 
bilities converge weakly, and the channel’s mutual information 
under this input constraint is then a closed-form continuous 
function of the input distribution. This continuity allows 1i.i.d.) 
the maximum mutual information of the FSMC over all i.i.d. 
inputs, to be found using standard maximization techniques. 
Additional properties of the entropy and capacity for uniformly 
symmetric variable-noise channels were also derived. 

We then proposed an ML decision-feedback decoder, which 
calculates recursive estimates of 7r, from the channel output 
and the decision-feedback decoder output. We showed that 
for asymptotically deep interleaving, a system employing 
the decision-feedback decoder is equivalent to a discrete 
memoryless channel with input Z, and output (vun, K,). Thus 
the ML sequence decoding can be done on a symbol-by- 
symbol basis. Moreover, the decision-feedback decoder pre- 
serves the inherent capacity of uniformly symmetric variable- 
noise channels, assuming the effect of error propagation is 
negligible. This class of FSMC’s includes fading or variable- 
noise channels with symmetric PSK inputs as well as channels 
which vary over a finite set of BSC’s. For general FSMC’s, 
we obtained the capacity and cutoff rate penalties of the 
decision-feedback decoding scheme. 

We also presented numerical results for the performance of 
the decision-feedback decoder on a two-state variable-noise 
channel with 4PSK modulation. These results demonstrate 
significant improvement over conventional schemes which 
use interleaving and memoryless channel encoding, and the 
improvement is most pronounced on quasistatic channels. 
This result is intuitive, since the longer the FSMC stays 
in a given state, the more accurately the state estimator 
will predict that state. Finally, we present results for the 
decoder performance relative to the average fade duration; 
as expected, the performance improves as the average fade 
duration decreases. 

APPENDIX I 

In this Appendix, we derive the recursive formula (11) for 
7rn. First, we have (5.5) at the top of the following page, where 
a, b, and d follow from Bayes rule, and c follows from (5). 
Moreover 

P(X:” > Yn ) =~P(Zn,Y’L,sn =clc) 
kEK 

= c p(%,yn 1 sn = Ck,xn-l,yn-l) 

kEK 

.p(& = Ck$-‘,y-‘) 

= c &thx 1 ‘%  = Ck,%Zn-l>yn-l) 

kGK 

.p(L& 1 &,5n-1,yn-1)p(s, = Ck,Zn--l,yn-‘) 

= c p(t!/n 1 sn = ck,%)p(% 1 xn-l) 

kEK 

. p(,!$ = ck I ?-‘, yn--l)p(d--l, y-l). (56) 
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where we again use Bayes rule and the last equality follows To obtain the weak convergence of 7rn and pn, we also 
from (5). Substituting (56) in the denominator of (55), and assume that the channel inputs are i.i.d., since we can then ap- 
canceling the common terms p(lc, ) 9-l) and p(z”-‘, y”-I) ply convergence results for partially observed Markov chains 
yields [21]. Consider the new stochastic process U, i (S,, yn, s,) 

P(Sn I xn, Y”) defined on the state space U = C x Y x X. Since S, is 

P(YY, I %%)P(Sn I xn-l,yn-9 stationary and ergodic and x, is i.i.d., U, is stationary and 

= kgKP(Yn I s?l = ck, xn)p(Sn = ck ( xn-‘, yn-‘) 
ergodic. It is easily checked that U, is Markov. 

Let (S, y, x)j denote the jth element of U, and J b 124 1. To 
(57) specify its individual components, we use the notation 

which, for a particular value of S,, becomes (s(j); Y(j), “c(j)) i (S> Ydj. 
p(Sn = C l I xn,Yn) 

= P(Yn I sn = C l,Xn)P(& = cz I xn--l,yn-l) 
c P(Y, 1 ST, = ck,xn)p(sn = Ck 1 sn-‘,yn-‘) 

kEK 

(58) 

Finally, from (4) 

p(S,+1 = Cl 1 xn,yn)= =yP(s, = cj I CYTjl. (59) 
jEK 

The J x J probability transition matrix for U, PU, is 

G$ =P[(Sn+l,Yn+l,%+l) = (f%Y,X)j l(Sn,YYn,GL) 

= (s, Y> x)k)] (61) 

independent of 72. The initial distribution of U, #, is given by 

P(so = ck,Yo = Y,xo = x) = rO(k)pk(yO ( xo)p(xo). (62) 

Let gy+: M -+ Y x X and gy : l4 -+ Y be the projections 
Substituting this into (58) yields the desired result. 

APPENDIX II and 

In this Appendix we show that for i.i.d. inputs, rn and sy&, Yn,%) = (Yn). 

pn are Markov chains that converge in distribution to a limit These projections form the new processes IV, = gy,z[Un] and 
which is independent of the initial channel state, and that the V, = gy [Un]. We regard IV, and V, as partial observations 
resulting limit distributions are continuous functions of the of the Markov chain U,; the pairs (U,,W,) and (Un, Vn) 
input distribution p(z). We also show that the Markov property are referred to as partially observed Markov chains. The 
does not hold for Markov inputs. distribution of U, conditioned on W, and V,, respectively, is 

We begin by showing the Markov property for independent 
inputs. 

Lemma A2.1: For independent inputs, 7rm is a Markov and 
chain. 

Proof: 
where 

(60) 
Note that 

. . 

7r” = @Z(l), . . . Jr,u(J)) n 

P,” = (Pm,. . . , Pm) 

r:(j) = P(UTl = (8 Y> xc)j I W”) (63) 

PL-3) = P(Un = (8 Y> XL I V”). (64) 

where the second equality follows from (11) and (6). Thus 7rn 
is Markov. A similar argument using (13) and (8) shows that 
pn is also Markov for independent inputs. 

c (d = P(Un = (8 Y, “)j I W”) 
= P(Sn = S(j) I xn, Y”>l[Xn = X(j), Yn = Y(j)1 
= 7rn(k)1[x n = X(j), Yn = Y(j)1 (65) 
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where Scj) = ck. Thus if r,” converges in distribution, 7rn 
must also converge in distribution. Similarly, pn converges in 
distribution if pz does. 

We will use the following definition for subrectangular 
matrices in the subsequent theorem. 

De$nition: Let D = (D;j) denote a d x d matrix. If 
Dil,j, # 0 and Di2,jZ # 0 implies that also Dil,j, # 0 and 
D;,,j, # 0, then D is called a subrectangular matrix. 

We can now state the convergence theorem, due to Kaijser 
[21], for the distribution of a Markov chain conditioned on 
partial observations. 

Theorem A2.1: Let U, be a stationary and ergodic Markov 
chain with transition matrix P” and state space Z4. Let g be 
a function with domain M and range 2. Define a new process 
2, = g(Un). For z E 2 and U(j) the jth element of U, define 
matrix A&(Z) by 

M,j(X> = 

,C 

Pi:, if g[Ucj)] = z 
o otherwise. (66) 

> 

Suppose that P” and g are such that there exists a finite 
sequence x1, . , Z, of elements in 2 that yield a nonzero sub- 
rectangular matrix for the matrix product &f(~i) . . n/r(z,). 
Then p(U, 1 Zn) converges in distribution and moreover the 
limit distribution is independent of the initial distribution of U. 

We first apply this theorem to ?r,“. 
Assumption I: Assume that there exists a finite sequence 

(yn,xn),n = l,...,m, such that the matrix product 
~(Yl,Xl)~~~~(Y,, z,) is nonzero and subrectangular, 
where 

M,j(Y,X) = 
4y1 if skz[(S,y,~)jl = (Y,x:) 
0 otherwise. (67) 

i 

Then by Theorem A2.1, 7r,” converges in distribution to a limit 
which is independent of the initial distribution. By (65), this 
implies that rr% also converges in distribution, and its limit 
distribution is independent of ~0. We thus get the following 
lemma, which was stated in (15). 

Lemma A2.2: For any bounded continuous function f, the 
following limits exist and are equal for all i 

(68) 

The subrectangularity condition on n/r is satisfied if for some 
input IC E X there exists a y E Y such that pk(y 1 Z) > 0 
for all i?. It is also satisfied if all the elements of the matrix 
P are nonzero. 

From (11) and (12), the limit distribution of QT, is a function 
of the i.i.d. input distribution. Let P(X) denote the set of 
all possible distributions on X. The following lemma, proved 
below, shows that the limit distribution of 7riT, is continuous 
on P(X). 

Lemma A2.3: Let pe denote the limit distribution of 7r/r, as 
a function of the i.i.d. distribution Q  E P(X). Then ,LL’ is a 
continuous function of 0, i.e., 0, + 6’ implies that I-L’” -+ #. 

We now consider the convergence and continuity of the 
distribution for pn. Define the matrix N by 

Ni,j(Y) = 
47, if s,[(S, y, x:)jl = Y 
o otherwise. (69) 5A sequence of probability measures { vm } is tight if for all E > 0 there 

> exists a compact set Ii such that v(K) > 1 - t for all I/ E { vm}. 

and note that for any y E JJ and x E X 

Mi,j(Y, x) = N,j(YNX(j) = x). (70) 

To apply Theorem A2.1 to &, we must find a sequence 
yr , . . . , yr which yields a nonzero and subrectangular matrix 
for the product N(yi) . . . N(yr). Consider the projection onto 
Y of the sequence (y,, x,), n = 1, . . . , m, from Assumption 
1. Let yn,n = l,... , m denote this projection. Using (70) 
and the fact that all the elements of iVt are nonnegative, it 
is easily shown that for M e n/T(yl, x1) . . M(ym, x,) and 
N fi N(yr) . N(y,), if for any i and j, iV& is nonnegative, 
then iVi,j is nonnegative also. From this we deduce that if M 
is nonzero and subrectangular, then N must also be nonzero 
and subrectangular. 

We can now apply Theorem A2.1 to p:, which yields the 
convergence in distribution of & and thus pn. Moreover, the 
limit distributions of these random vectors are independent of 
their initial states. Thus we get the following result, which 
was stated in (16). 

Lemma A2.4: For any bounded continuous function f, the 
following limits exist and are equal for all i: 

From (13) and (14), the limit distribution of pn is also a 
function of the input distribution. The following lemma shows 
that the limit distribution of pn is continuous on P(X). 

Lemma A2.5: Let u’ denote the limit distribution of pn as 
a function of the i.i.d. distribution 0 E P(X). Then vB is a 
continuous function of 0, so 0, --+ B implies that uBm --+ u’. 

Proof of Lemmas A2.3 and A2.5: We must show that for 
all 8,,Q E P(X), if 8, + 8, then #m + b’ and yam -+ Y’. 
We first show the convergence of vem. From [12, p. 3461, 
in order to show that v’” --f v8, it suffices to show that 
{v’,} is a tight sequence of probability measures5 and that 
any subsequence of v8m which converges weakly converges 
to 1/B. 

Tightness of the sequence {v’,} follows from the fact that 
A is a compact set. Now suppose there is a subsequence 
vernk b v8k which converges weakly to $. We must show that 
$ = 2, where V’ is the unique invariant distribution for p 
under the transformation (14) with input distribution p(z) = 8. 
Thus it suffices to show that for every bounded, continuous, 
real-valued function 4 on A, 

(72) 

where #(a! ] /3) e p(p,+~ = LI 1 pn = p) is given by (14) 
under the i.i.d. input distribution 0, and is thus independent of 
n. Applying the triangle inequality we get that for any k 

I/ 4(aM(da) - L .I, 4WJWG+@~ I 8,1 
A 

(73) 
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+ 
is 

A d++sk (da) 

.IJ  A 4k4ve” (W#‘k (da I P) - A 
+ 

1J.I 
A A dG)uek (@)p”l” (da: I P> 

f are linear functions of 8, and the denominator is nonzero. 
Similarly, 19k --f B implies that for fixed y and ,/3, pek (y 1 ,/?) + 

(74) 
ps(y I p), since pe(y 1 p) is linear in 8. Since 4 is continuous, 
this implies that for fixed y and p 

4(fek (Y> mek (Y I PI -+ 4(f0(Y1 P))P8(Y I P). 

/s A A 4(~)ti(dLMda I PI . (75) 
Thus for any E we can find k sufficiently large such that - 

Since this inequality holds for all k, in order to show J Mfek (Y, P)hf” (Y I P> - 4(fe(y, P)>P”(Y I IWek Cd@) A 
(72), we need only show that the three terms (73)-(75) all 
converge to zero as Ic --f 03. But (73) converges to zero 
since ~‘k converges weakly to 11. Moreover, (74) equals zero 

Ic 
s 

uek(d/3) = t. (81) 
A 

for all Ic, since vek is the invariant p distribution under the So (79) converges to zero. Finally, for fixed y and 8, fe(y, p) 
transformation (14) with input distribution 
(14) for pe(, I p) in (75) yields 

l/J  A A 4(4~ek (dP)pek (da I P) 

- 
ss A A 4k+NdP)pe(d~ I P 

ZZ 
cl’ 4(fek (Y> Ph+‘” (Y I Pbuk Cd,@  
YE-Y A 

3k. Substituting and pe(y ( ,D) are linear in p, so $(fe(y,p))pe(y I ,D) is a 
bounded continuous function of p. Thus (80) converges to zero 
by the weak convergence of vok to rj [ 12, Theorem 25.81. 0 

Since the {pe-} sequence is also tight, the proof that 
pe- -+ p0 follows if the limit of any convergent subsequence 
of {PO,} is the invariant distribution for v under (12). This 
is shown with essentially the same argument as above for 
IP” ---t l/e , u$ng, (12) instead of (14) for P(QJ I P), P’(Y I x, P) 
instead of p’(y ( p), and summations over X x Y instead of 
Y. The details are omitted. 

- 4(fs(~>P))~e(~ I PN(dP) (76) 

where fe is given by (13) with p(z) = 19, and 

PS(Y I PI = c &Y I 2, s = cJc)P(kMz). 
XEX k=l 

(77) 

Since y is a finite set, (76) converges to zero if for every y E y 

II n $(fek (YY, 8)~‘” (Y I Bbek (40) 

Lemma A2.6: In general, the Markov property does not 
hold for 7rn under Markov inputs. 

Proof We show this using a counterexample. Let C = 
{cl, cg, es} be the state space for S,, with transition proba- 
bilities 

P = (%I ;g, ;I$) (82) 

and initial distribution ~0 = (l/3,1/3,1/3). This Markov 
chain is irreducible, aperiodic, and stationary. Each of the 
states correspond to a memoryless channel, where the input 

(0, 1) and the output alphabet is (0, 1,2}. The 
channels ( 

IJA 

- s A 4(fe(y> P)>P’(Y I PM@) 

Fix an arbitrary y E Y. Then applying the triangle inequality 

i Is ddfek (Y, L9bek (Y I bkek (W 

to (78) yields 

A 

- 

II 

J’ A 4(fe(y, P)>P’(Y I Pksk Cd8 

4(fSk (Y, P))P~” (Y I Phek (d/8 

(79) 

The stochastic process {n,};?a then takes values on the 
three points QO = (l/3,1/3,1/3), CV~ = (2/3,0,1/3), and 
c~l~ = (0,2/3,1/3). 

cl : Pl(O I 
c2 : Pz(l I 

c3 : Pa(2 I 
P3(0 I 

0) = Pl(2 

0) = P2(2 
0) = 1, 
1) = Pa(l I 

, cz, and cs are defined as follows: 

1) = 1, otherwise pr(y 1 X) = 0. 
1) = 1, otherwise ps(y ( x) = 0. 

1) = l/2, otherwise ps(y I x) = 0. 

Let the Markov input distribution be given by p(xa = 0) = 
p(za = 1) = l/2 and p(~~ = x,-i) = 1 for n > 0. Then 

p(7r3 = Qo ) 7r2 = ao,7r1 = al) = l/3 

+ Is 4(fe(y, P))P’(Y I @be’ (@I 
A 

- .I A ~(~“(Y>P))P~(Y I PM(@) . (80) 

But for any fixed y and p, 01, + 8 implies that f ‘1; (y, ,@ 4 
fe (y , p), since from (13), the numerator and denominator of 

while 

p(7r3 = a0 I 7r2 = ao) = 5/6. 

So {T,}:=, is not a Markov process. 
Lemma A2.7: In general, the Markov property does not 

hold for pn under Markov inputs. 
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Proof We prove this using a counterexample similar to The second inequality in (25) results from the fact that 
that of Lemma A2.6. Let the FSMC be as in Lemma A2.6 conditioning on an additional random variable, in this case the 
with the following change in the definition of the memoryless initial state SO, always reduces the entropy [ 141. The proof of 
channels cl, es, and cs: the third inequality in (25) is similar to that of the first 

cl : Pl(l IO) =p1(l I 1) = 1, otherwise pr(y I z) = 0. 
c2 : p2(2 I O)=p2(2 I 1) = 1, otherwise pa(y I zr) = 0. Ef (P[Yn+1 I x,+1, xn> lJn, Sol) 
c3 : p3(0 I 0) = p3(2 1 0) = l/2, ” Ef (-e[Yn+1 I x7x+1> xn, lJn> $1 I x7%+1, xn, Yn, So)) 

P3(0 I 1) = l/4, 
Ps(2 I 1) = 3/4, otherwise ps(y I x) = 0. 

It is easily shown that the state space for the stochastic process 
{p,)Fzo includes th e points QO and ~1 defined in Lemma 
A2.6. Using the same Markov input distribution defined there, 
we have 

1 I GL+l,xn; Yn> so)) 
I) I xn+l,xn,Yn, so) 

Jk Ef (E(P[Yn+l I GL+l,~;,Y;,Js 

5 qf(P[Yn+l I %+l,G,Y;,& 

2 Ef (P[Yn+l I Gl+l,x;,Y;, Sll) 
” Ef (P[Yn I ~n,~n-l,Yn--l,~o]) (85) 

14~3 = ao I ~2 = 010, PI = ~1) = s/36 

while 

p(p3 = tug I p2 = ao) = 8/57. 

So {P~},“,~ is not a Markov process. 

APPENDIX III 

where a and d follow from properties of conditional expec- 
tation, b follows from (4) and (5), c follows from Jensen’s 
inequality, and e follows from the channel and input station- 
arity. 0 

Proof of Lemma 4.3: From Lemma 4.1 

lim H(Y, I Xn,Xn--l,YR-‘) n-00 

In this Appendix, we prove Lemma 4.1. Consider first 
= &nm E 

[ 
-log c ~(9 I x,s = ck)xn(k) . (86) 

H(Y, 1 Xn,Xnpl,Ynpl). We have k=l 1 
H(Y, 1 x,, x+-l, Y--l) Similarly 

= E[-l%P(Y?z I Xn,xn--l,Yn--l)] 

= E 
[ 
-1% &(Y. I 

JlmH(Yn I Xn,Xn-‘,Ynwl,SO) 

xn, sn = ck) = 
k=l 

p&E 
[ 
-1% &Y I 5, s  = Ck)7rZ(k) 1 (87) 

’ p(s, = Ck I xn-l,yn-l)] 
k=l 

= E 

[ 

-1% &‘k(yn ) xn)Tn(k) 
k=l 1 

A 
where ~2 = rd for some i. Applying (15) to (86) and (87) 
completes the proof. 0 

Proof of Lemma 4.4: The proof of this lemma is similar 
to that of Lemma 4.2 above. For the first inequality in (27), 

(83) we have 

The argument that H(Y, I Y”-‘)) = H(Y, I pn) is the same, 
with all the x terms removed and 7rn replaced by pn. 0 

APPENDIX IV 

In this Appendix, we prove Lemmas 4.24.6. 
Proof of Lemma 4.2: We first note that the conditional 

entropy H(W I V) = E logp(w 1 w), where the log function 
is concave on [0, I]. To show the first inequality in (25), let f 
denote any concave function. Then 

Ef (PLY, I xn, x+-l, Y?) 
” Ef (P[Yn+l I xn+l,GY;l) 

JL Ef W(P[Yn+l I x,+1> xn, Y”] I GL+1> x;, Y3) 

5 EE(f (P[Yn+1 I %+l,cYn]) I xn+lA,Y;) 

Ai Ef (P[Yn+1 I Gh+l,xn,Yn]) (84) 

where a follows from the stationarity of the channel and 
the inputs, b and d follow from properties of conditional 
expectation [12], and c is a consequence of Jensen’s inequality. 

Ef (P[Yn I y-l]) g Ef (P[Yn+1 I Y2nl) 

b Ef bqP[Yn+1 I Y”1 I Y2n)) 

f J=(f (P[Yn+1 I Y”]) I Yzn) 

2 Ef (P[Yn+1 I Y”]) w9 

where a follows from the stationarity of the inputs and channel, 
b and d follow from properties of conditional expectation [ 121, 
and c is a consequence of Jensen’s inequality. 

The second inequality results from the fact that conditioning 
on an additional random variable reduces entropy. Finally, for 
the third inequality, we have 

Ef (P[Yn+l I Yn, so]) z Ef (E(P[Yn+l I lJn, Sl] I Yn, so)) 
4 Ef (E(P[Yn+l I YT, Sl] I Yn> so)) 
5 EE(f (P[Yn+1 I Y;, Sl]) I Yn, so) 
d Ef (P[Yn+l I Yz”, 51) 

4 Ef (P[Yn I Y? so]) (89) 
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where a and. d follow from properties of conditional expecta- 
tion, b follows from (6), c follows from Jensen’s inequality, 
and e follows from the channel and input stationarity. 0 

Proof of Lemma 4.5: Following a similar argument as in 
the proof of Lemma 4.3, we have that 

-log ~P(Y I S = ck)pn(k) 1 (90) 
k=l 

and 

ZZ ;;lE -log -&I(?/ 1 s = ck)&(k) 1 (91) 
k=l 

where p: 6 pi for some i. Applying (16) to (90) and (91) 
completes the proof. q 

Proof of Lemma 4.6: We first consider the limiting con- 
ditional entropy H(Y, ( pi) as n + oo. Let I$ denote the 
distribution of pi and u6 denote the corresponding limit dis- 
tribution. Also, let p~(y ( .) explicitly denote the dependence 
of the (conditional) output probability on 0. Then 

Z lim n-+co c -wm(Yn I PfL(P))Pe(Yn) 
Y”EYn 

= lim 
n+co c -bm(YYn I pE(yl”-l)) 

YnEY- 

. Pe (Yn I Yn-l)Pe (y-l> 

= lim 
n-+cc 

= ix 
-km (Yn I pQy”-l)) 

yn-lEyn-l YIZEY 

.Pe(Yn I PfJYy”-l)) 
J  

Ps(Y”-l) 

c  -1ogmbln I ~:be(~n I P:) ddp:) 
YTLEY 1 

= lim J[ n--too A c -1omb I PMY I P> z&dp) 
YEY 1 = J[ c -hm(y 1 P)PO(Y I P) I’. 1 (92) 

A YEY 

The second and fourth equalities in (92) follow from the fact 
that pn is a function of ynP1. We also use this in the fifth 
equality to take expectations relative to pn instead of yn-l. 
The sixth equality follows from the definition of V, and the 
stationarity of the channel inputs. The last equality follows 
from the weak convergence of pf, and the fact that the entropy 

is continuous in p and is bounded by log 1 y 1 [12, Theorem 
25.81. 

The limiting conditional entropy H(Y, I X,, r,) is ob- 
tained with a similar argument. Let p: denote the distribution 
of 7ri and # denote the corresponding limit distribution. Then 

= lim J n-00 A 

= lim J 71-00 A 

= lim /I ?z’cc A c - l%P(Y I 2, T)P(Y I z> rP(z) 
YEY 
XEX 

&W 

(93) 
where we use the fact that 7r, is a function of xnel and yn-l, 
and the last equality follows from the weak convergence of 
IT; to 7P. q 
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APPENDIX V 
In this Appendix, we prove Lemmas 5.1 and 5.2. 

Proof of Lemma 5. I: From [ 141, 

H(K I Pn) 5 H(K) 5 1% I Y I 

and similarly 

H(K I Pi) i H(K) I log I Y I 

for any i. But since each Ck E c is output symmetric, for each 
k the columns of A&” 6 {A$ = pk(j I 1),1 E X,j E Y} 
are permutations of each other. Thus, if the marginal p(x,) 
is uniform, then p(yn ( S, = ck) is also uniform, i.e., 
p(yn I S, = Ck) = l/ I y 1. Hence for any pn E A 

K 

P(!h I Pn) = cd?/n I sn = ck)pn(k) 
k=l 

(94) 

and similarly p(yn I pi) = l/ ) Y I for any i. Thus 

HCrn I pn) = inEAgy P(Pn)P(Yn I Pn)[-lwp(yn I pn)] 
n 

=I p 
73. 

tAJ+J c P(Yn lPn)[-l%dY, I Pm)] 
YnEY 

= J PIlEA 
P(Pn) c  Ilog IY I 

Y,EY 1 y 1 
= log I Y I (95) 

and similarly 

H(K I Pk) = leg I Y I 

for any i. Since (95) only requires that p(x:,) is uniform 
for each n, an i.i.d. uniform input distribution achieves this 
maximum. Substituting 7r for p in the above argument yields 
the result for H(Y, I r,) and H(Y, ( 7rh). 0 

Proof of Lemma 5.2: We consider only H(Y, I X,, TV), 
since the same argument applies for H(Y, I Xn,7rA). By the 
output symmetry of each Ck E c, the sets 

{Pk(Y I x): ?d E Y)zeX 

are permutations of each other. Thus 

k _I 

\k / 

(96) 

So H(Y, 1 X,, x,) depends only on the distribution of TV. 
But by (38), this distribution depends only on the distribution 
of Z-l. The proof then follows from the fact that ~(2~ ( 
xn> = p(P). q 

APPENDIX VI 

We consider a Q-AWN channel where the output is quan- 
tized to the nearest input symbol and the input alphabet 
consists of symmetric PSK symbols. We want to show that 
for any k Pfi b pk(y = j 1 x = i) has rows which are per- 
mutations of each other and columns which are permutations 
of each other. The input/output symbols are given by 

Y - ~~%mlM m=x,- > m = 1,.,.,&l. (97) 

Define the M x M matrix 2 by Zij = Iy; - x~j] and let 
qk (Z;j) denote the distribution of the quantized noise, which 
is determined by the noise density nk and the values of A and 
M from (97). By symmetry of the input/output symbols and 
the noise, the rows of 2 are permutations of each other, and 
the columns are also permutations of each other. 

If M is odd, then 

and if M is even 

Pk(Y I x) = 
{ 

;;j/; 1 ;i1;2 > 
lfl, xl = 0 or Iy - xl = 2A 

(99) 

Thus P$ depends only on the value of Z;j; the rows of P$ are 
therefore permutations of each other, and so are the columns. 

APPENDIX VII 

We will show that the r-output channel is asymptotically 
memoryless as J t 00. Indeed, since the FSMC is indecom- 
posable and stationary 

jFmdS,+J, &> = j@adS,+J)dS,) 

for any n, and thus also 

(100) 

j$mp(~n+J,~n) = j~md~n+J)z4an). (101) 

Therefore, since 7rjl and 7rj(~-~) are J iterations apart, rjl and 
7rjclp1) are asymptotically independent as J + 00. 

In order to show that the r-output channel is memoryless, 
we must show that for any j and L 

p(yjL, 7rjL I xjL) = fjP(Yjl7jl I XjZ). (102) 
l=l 

We can decompose p(yjL,7rjL I xjL) as follows: 

p(yjL, 7JL 1 xjL) 

= fip(yji, 7rjl 1 xjl, yj(l-l), 7d--1)xj(l--1)). (103) 
1=1 
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Thus we need only show that the Zth factor in the right-hand 
side of (103) equals p(yjl, 7rjl 1 xjl) in the limit as J -+ 03. 
This result is proved in the following lemma. 

Lemma A% I: For asymptotically large J 

P(Yjljl, 7rjja ) Xjl, yj(l-l), 78-y xj(l-l)) = P(Yjljl, 7rjjl ) Xjl). 

(104) 

Proof 

P(Yj1, njjl I xjz, Y AW, ,A-l), ,s-1) > 
=P(Yjz I “jl,xjl,y~(~-l),~~(l-l),x~~~-~~ > 

. P(njl ) xjl,yw), ,Wl),-&-1)) 

= p(yjl ( Tjl, Xjl)P(TTjl 1 y+l), 7@-l), xj(-) 

= P(Yjl I Tjl, “jZ)P(Tjl I X(j+l)(l-1)) 

= P(Yjl I njz 7 XjZMjd 
= P(Yjz, Tjl I XGjl) (105) 

where the second equality follows from (4) and (5), the third 
equality follows from (4) and (1 l), and the fourth equality 
follows from (101) in the asymptotic limit of deep interleaving. 

q 

APPENDIX VIII 

The n-output channels are independent if 

(106) 
j=l 

This is shown in the following string of equalities: 

P(YJI 78 I 4 
= fip(yj,Ti (xj,yj--1,7r-l,xj--l) 

j=l 

= fip(?/, 1 ~j,xj,yj-l,~j-l,xj-l) 

j=l 

. P(7rj 1 xj, y+l, 7r-l, xj-1) 

= fi p(Yj ( 7rj, XJP(7rj 1 xj, yj-1, G-1, xj-1) 

where the third equality follows from (5) and the last equality 
follows from the fact that we ignore error propagation, so 
xj-1 , yj-l, and ,+-l are all known constants at time j. 

We now determine the average mutual information of the 
parallel r-output channels for a fixed input distribution p(XJ). 
The average mutual information of the parallel set is 

I, = fI(Y$ 7rJ; XJ). (1’38) 

From above, the parallel channels are independent, and each 
channel is memoryless with asymptotically deep interleaving. 

Thus we obtain (45) as follows: 

fl(YJ, 7rJ; X”) 

= H(YJ,d) - H(YJ,d I XJ) 
= H(YJ 1 d) + H(d) 
- (H(YJ I d, XJ) + H(nJ I XJ)) 

= H(YJ ) d) - H(YJ I d,XJ) 

=kH(y, Iq)-H(Yj Ixj,Xj) (10% 
j=l 

where the third equality follows from the fact that 

p(72 ) xJ) = p(7rJ 1 x-y = p(7r-q 

by definition of 7rJ and by the memoryless property of the n-j 
channels. The last inequality follows from the fact that 

H(Yj ) Yj-‘,d) = H(Yj 1 pj,.rrJ) = H(Yj ) 7rJ) (110) 

since the 7rj channels are memoryless and pj = E,, - I TT~. 

APPENDIX IX 
In this Appendix we examine the cutoff rate for uniformly 

symmetric variable-noise channels. The first three lemmas 
show that for these channels, the maximizing distribution of 
(52) is uniform and i.i.d. We then determine that Rj, as given 
by (52), is monotonically increasing in j, and use this to get a 
simplified formula for Rdr in terms of the limiting value of Rj. 

Lemma A9.1: For all j, Rj depends only on p(xj). 
Proof: From the proof of Lemma 5.2, n-j is a function of 

Zj-l, and is independent of Xj-l. So p(7rj) does not depend 
on the input distribution. The result then follows from the 
definition of Rj. q 

Corollary: An independent input distribution achieves the 
maximum of Rdf. 

Lemma A9.2: For a fixed input distribution p(XJ), the J 
corresponding n-output channels are all symmetric [13, p. 941. 

Proof We must show that for any j < J, the set of 
outputs for the jth r-output channel can be partitioned into 
subsets such that the corresponding submatrices of transition 
probabilities have rows which are permutations of each other 
and columns which are permutations of each other. We will 
call such a matrix row/column-permutable. 

Let nj < lXljly\j be the number of points 6 E A with 
p(~j = 6) > 0, and let {&}~~i explicitly denote this set. 
Then we can partition the output into nj sets, where the ith 
set consists of the pairs {(y , Si): y E Y}. We want to show 
that the transition probability matrix associated with each of 
these output partitions is row/column-permutable, i.e., that for 
all i, 1 5 i 5 nj, the 1x1 x IYI matrix 

Pinp(y~=y,~~=fi,Ixj=x), xEX,yEY (111) 

has rows which are permutations of each other, and columns 
which are permutations of each other. 
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Since the FSMC is a variable-noise channel, there is a Following an argument similar to that of Lemma 4.2, we have 
function f such that pk(y 1 Z) depends only on z f2 f(~, y) 
for all k, 1 5 Ic 5 K. Therefore, if for some L’, pk/(y 1 Z) = Ef(xj) 
pk/(y ) z’), then f(z, y) = f(l~‘, y’). But since z = f(z, y) 
is the same for all lo, this implies that 

P~C(Y I x> = P~(Y’ I x’) v’k, 1 i k I K. (112) 

=z [,jG12 

r IK 1" 
Fix k’. Then by definition of uniform symmetry, pk/ (y ( Z) is 
row/column-permutable. Using (112), we get that the 1x1 x lyl 
matrix 

PC = &k(1/ Ix), XEX,YEY (113) 
k=l 

is also row/column-permutable. Moreover, multiplying a ma- --L 
YEY 

trix by any constant will not change the permutability of its 
rows and columns, hence the matrix 

p; = &k(?4 1 x) &P(rj = ai), [ 1 xEX,yeY (114) 
k=l 

is also row/column-permutable. But this completes the proof, 
since 

p(yj = y, 7rj = 6; 1 xj = 22) 
K 

Lemma A9.3: For i.i.d. uniform inputs, Rj is monotonically 
increasing in j. 

Proof: For uniform i.i.d. inputs 

Then 

4 = -log (&W)l). 

We want to show that 

x)p(sj = Ck ( x-l, 9-l) 

1 
2 

+‘(sj+l = cl, I x;>!$) 

. c 

I J 

ePk(Y 1 +[@,+I = ck I 2n>yn I %Y?)] 

XEX k=l 

r 1 K l2 
&)k(Y I z)P(sj+l = ck I Xn,Yn) 

= Ef(x~~j+l) (118) 

where a follows from stationarity and b follows from Jensen’s 
inequality. cl 

Lemma A9.4: For uniformly symmetric variable-noise 
channels, a uniform i.i.d. input distribution maximizes Rdf. 
Moreover 

Rdf = lim Rj. 
j--cc (119) 

’ / Proof: From Lemma A9.2, the maximizing distribution 
(116) for Rdf is independent. Moreover, from Lemma A9.2, each 

of the r-output channels are symmetric, therefore from [13, 
p. 1441, a uniform distribution for p(Xj) maximizes Rj for 

2 all j, and therefore it maximizes Rdf. By Lemma A9.3, Rj is 
monotonically increasing in j for i.i.d. uniform inputs. Finally, 

’ (‘17) by Lemma A2.2, for f(7rj) as defined in (117), Ef(rj) 
converges to a limit which is independent of the initial channel 
state, and thus so does Rj = -log (&Ef (rj)). Therefore 
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