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Comments on Broadcast Channels 
Thomas M. Cover, ~dl~w, Ii%!? 

(Invited Paper) 

Abstract-The key ideas in the theory of broadcast channels 
are illustrated by discussing some of the progress toward finding 
the capacity region. The capacity region is still unknown. 

Index Terms -Binning, broadcast channel, capacity, degraded 
broadcast channel, feedback capacity, Slepian-Wolf, superposi- 
tion. 

I. INTRODUCTION 

A broadcast channel has one sender and many receivers. 
The object is to broadcast information to the receivers. 

The information may be independent or nested. We shall treat 
broadcast channels with two receivers as shown in Fig. 1. 
Multiple receiver broadcast channels are defined similarly. 

Definition: A broadcast channel consists of an input alpha- 
bet X and two output alphabets Y1 and JJ2 and a probability 
transition function JJ(ZJ~, 2~2 1~). The broadcast channel is said 
to be memoryless if 

A (pR1, y-& ), n) code for a broadcast channel with 
independent information consists of an encoder 

and two decoders 

w,: y1” + 2nR1 

c2: y; * znR2. 

The probability of error P?) is defined to be the probability 
the decoded message is not equal to the transmitted message, 
i.e., 

PLn) = P(%(y;“) # WI or I;i/2(Yp) # W2) 

where the message (WI, W2) is assumed to be uniformly 
distributed over 2nR1 x 2nR2. 

De$nition: A rate pair (RI, R2) is said to be achiev- Theorem 1: The capacity region for the degraded broadcast 
able for the broadcast channel if there exists a sequence of 

, 2nRz), r~) codes with P,(‘“) + 0. 
channel X + Yl ++ Y2 is the convex hull of the closure of 

((2 nR1 all (RI, R2) satisfying 
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Fig. 1. Broadcast channel. 

Definition: The capacity region of the broadcast channel is 
the closure of the set of achievable rates. 

It is often the case in practice that one received signal is 
a degraded, or corrupted, version of the other. One receiver 
may be farther away or “downstream.” When X, Yl, Y2 forms 
a Markov chain, i.e., when p(yl, y2 Ix) = p(yl Ix)p(y~ 1~1) 
we say that Y2 is a physically degraded version of Yl and 
that p(yl, y2Ix) is a physically degraded broadcast channel. 
We note that the probabilities of error P( @r  # WI) and 
P( r/i/, # W2) depend only on the marginals p( y1 Ix) and 
p(y2 (x) and not on the joint. Thus we define a weaker notion 
of degraded. 

Definition: A broadcast channel p(y1, y2)n:) is said to be 
degraded if there exists a distribution $(y2 1~1) such that 

P(Y2 I4 = c P(Y1 bMY2 lYl>* 
Yl 

II. CAPACITY REGION FOR THE 
DEGRADED BROADCAST CHANNEL 

Achievable rate regions for Gaussian broadcast channels, 
cascades of binary-symmetric channels (a special case of 
degraded broadcast channels), the push-to-talk channel, or- 
thogonal broadcast channels, and product broadcast channels 
were found in Cover [ 161. Surveys of multiuser theory, includ- 
ing broadcast channels, can be found in [19], [22], [23], [26], 
[35], [62], [69], [W, E991, WO], [107], and [108]. 

We first consider sending independent information over a 
degraded broadcast channel (Fig. 2) at rates RI to Yr and R.2 to 
Y2. The capacity region, conjectured in [ 161, was proved to be 
achievable by Bergmans [9], and the converse was established 
by Bergmans [lo] and Gallager [41]. 

R2 < qo’; Y2) - 

Rl L q-c KIU) 

for some joint distribution p(/lf,)p(:r:I’~~)p(y, XIX), where the 
auxiliary random variable u has cardinality bounded by IUI ( 
~iJ+q, 13111, lY2lb 
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Fig. 2. Degraded broadcast channel with auxiliary input U. 

Proof {Outline of Achievability): We first give an 
outline of the basic idea of superposition coding for 
the broadcast channel. The auxiliary random variable 
U will serve as a cloud center distinguishable by 
both receivers Yl and Y2. Each cloud consists of 
2 *% codewords X” distinguishable by receiver Yl. 
The worst receiver Y2 can only see the clouds, while 
the better receiver 
within the clouds. 

can see the individual codewords 

Fix p(u) and p(xlu). 
Random Codebook Generation. Generate 2nR2 indepen- 
dent codewords of length n, u*(w& w2 E { 1, 2, l  l  l  , 
2nRz), according to I-I:=, p(ui). 
For each codeword u* (wz), generate 2nR1 indepen- 
dent codewords x* ( ~1, ~2) according to the conditional 
probability mass function ny=, p( xi 1 ui (~2)). 
Here un (202) plays the role of the cloud center under- 
standable to both Yl and Y2, while x* (WI, ~2) is the 
w1 th satellite codeword in the 202th cloud. The cloud 
center un (~2) is never actually sent. 
Encoding: To transmit the pair (WI, W2), send the 
corresponding codeword x* (WI, W2). h 
Decoding: Receiver Y2 determines the unique I@2 such h 
that (u*(I&), 9;) is jointly typical. If there are none 
such or more than one such, an error is declared. 
Receiver Yl looks for the unique @ I, J@2) such that 
(u* (@2), x* (I&:, $&), yy) is jointly typical. If there 
are none such or more than one such, an error is declared. 
Error Analysis (Outline): The condition 

R2 < I(& Y2) 

guarantees that I@2 = W2 with high probability because 
there are 2 *IV; y2) distinguishable u*‘s as observed 
by Y2. The extra information in x* N p(x* 1~“) is 
viewed as noise by Y2. The condition RI < 1(X; Yl IV) 
guarantees that receiver Yl can decode fil = WI with 
high probability, given that the receiver has already 
decoded W2. cl 

Note that the proof uses a “subtract-off’ or conditioning idea 
for receiver Yl. Let Yl first determine u* (W2). This can be 
done, because the inferior receiver Y2 can also determine W2. 
Then condition on u* (or subtract it from the received signal 
for the Gaussian channel) and decode the refined message WI 
given u* and Y1*. 

This subtract-off method can also be used for the multiple- 
access channel, and its implementation is one of the challenges 
of code-division multiple access (CDMA). A treatment of 
code-division broadcasting (one sender and m receivers) and 
code division multiple access (m senders and one receiver) 
for the bandlimited additive white Gaussian noise channel is 
given in Bergmans and Cover [ 111, where it is proved that 
the CDMA rate region is strictly larger than the rate regions 

Fig. 3. 

21 N N(o, Nl) 2; - N(0, N2 - Nl) 

Gaussian broadcast channel. 

achievable by frequency-division multiple access (FDMA) and 
time-division multiple access (TDMA). 

We now consider the Gaussian broadcast channel 

Yl =x+21 
Y2 =x+22 

where 21 N N(0, lV1) and 22 N N(0, Nz). This is a 
particular example of a degraded broadcast channel because 
the channel can be recharacterized as shown in Fig. 3, where 
26 N N(o, IV2 - A$). 

Let 

cc > 
1 x =- 2 1% (1 + 4 

denote the capacity in 
Gaussian channel with 

bits per transmi 
signal-to-noise 

.ssion of a memoryless 
ratio x. 

Theorem 2: The capacity region for the Gaussian broadcast 
channel, with signal power constraint P, is given by 

Cl!P &CC K ( > 
R2&g$pJ _ _ for 0 < a < 1. 

This region is achieved by the coding scheme described in 
[16]. Choose 2nR2 Gaussian codewords u* (i) independent and 
identically distributed (i.i.d.) N N(0, (1 - a)P). For each of 
these codewords u* (i>, generate 2nR1 satellite Gaussian code- 
words v”(j) of power aP and add them to form codewords 
xn(i, j) = un (i) + v”(j). Thus, the fine information v*(j) 
is “superimposed” on the coarse information u*(i). Bermans 
[9], [lo] proved the converse. 

The achievability of the region in Theorem 1 for general 
degraded 
There fol 

broadcast channels was established by Bergmans 
‘ear of intense activity trying to prove lowed a y 

PI 
the 

converse, i.e., to prove that the natural achievable rate region, 
was indeed the capacity region. Correspondences were ex- 
changed between Aaron Wyner (Bell Labs), Patrick Bergmans 
(then at Cornell), and Robert Gallager (MIT). Finally, one 
day at the end of the year, Wyner received proofs of the 
converse by Bergmans [ 101 and by Gallager [41]. Gallager’s 
proof successfully defined the role of the auxiliary random 
variable U in terms of the collection of all the outputs up to 
the current time. Bergmans’ proof, on the other hand, held for 
the Gaussian channel. Gallager’s proof did not apply to the 
Gaussian channel with a power constraint, nor did Bergmans’ 
proof apply to the general unrestricted broadcast channel. 
Bergmans’ proof, instead, used a conditional entropy power 
inequality, the first use of this inequality since Shannon (1948). 
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So the key ideas in the early papers were superposition cod- 
ing, subtracting off (or conditioning on) message information 
layer by layer, identification of the superposition variable in 
the converse, and the use of the entropy power inequality. 

III. THE DETERMINISTIC BROADCAST CHANNEL 

Van der Meulen [97] and Cover [ 181 established an achiev- 
able rate regiun for sending common information at rate Ro 
to both receivers and conditionally independent information at 
rates RI and R2 to the two receivers. (Jahn [58] considered 
the arbitrarily varying broadcast channel counterpart.) The 
region was soon enlarged by ingenious work by Gelfand [42], 
Pinsker [43], [82], and Marton [74], [75]. Gelfand looked at 
a particular deterministic broadcast channel, known as the 
Blackwell channel, given by 

K= 0 { 

1, x=1 
7 2=2or3 

{ 
1, x=lor2 

vi?= 0 
I 

x = 3. 

Here one sees that one can send at one bit per transmission 
to receiver Yl or to receiver Y2, but not simultaneously to 
both. What, then, is the set of achievable (RI, R2) pairs? 

Gelfand found the capacity region in [42]. Soon thereafter, 
Marton [74] and Pinsker [82] independently established the 
capacity region for general deterministic broadcast channels. 
The extra ingredient in the deterministic broadcast channel 
investigation is the use of the Slepian-Wolf theorem [94] and 
a binning argument [ 171 used in its proof. 

In the Slepian-Wolf theorem, one has two correlated random 
variables U and V, and i.i.d. copies (Ui, Vi) all drawn 
according to p(u, v). How many bits of information RI does 
one need to say about U and how many bits R2 does one need 
to say about V so that the combined description will recover 
U and V with negligible probability of error? 

Theorem 3 (Slepian and Wolf [94]): Let (Ui, V$ = 1,2, l  . l  , 
be i.i.d. discrete random variables. There exist maps . Z*: U” 4 2+ jn: p d 2nR2, l&(*)l = 24, 

]jn(*)l = znR27 and reconstruction functions fin (in, jn), 
6” (i r-c h * ), such that 

Pr{(@, P’“) # (U*, vn>> b 0 

if and only if 

Rl > HpJIV) 
R2 > H(VIU) 

RI --I- R2 >H(U, V). (1) 

One can achieve a rate pair in this region by a random 
binning argument. Suppose that one randomly throws all u* 
sequences into 2n R1 bins. Similarly, one randomly throws the 
vn sequences into 2nR2 bins. Describe Un by its bin number 
i(Un) and Vn by its bin number j(V*), where li()l = 2nRl, 
and lj()I = 2 nR2. Then a common receiver will be given the 
bin numbers of Un and V”. If there is only one jointly typical 

(Un, V*) pair in that bin, the receiver will make no mistake 
in reconstructing U* and V”. So the idea is to form a product 
partition of 2nR1 x 2nR2 bins that is fine enough to isolate the 
typical (U”, Vn) pairs. Rates (RI, R2) satisfying (1) suffice. 

For the proof of the capacity of the deterministic broadcast 
channel, we use a product partition that is coarse enough so 
that with high probability any product bin will contain at least 
one typical (y& yz”> receiver sequence. To see how this is 
done we consider a channel in which y1 = 61 (x), y2 = f2 (x), 
where fl and f2 are deterministic functions. 

Suppose one wishes to send a pair of indices i and j to 
receivers 1 and 2, respectively. Fix a probability distribution 
p(x), thus inducing a joint distribution p(x, ~1, ~2). From 
this we can calculate the marginal distribution p( ~1, ~2). The 
object here is to control Yl and Y2 simultaneously by use of 
X. We first do a product binning of y;” and yy, 2nR1 bins for 
the y? sequences and 2nR2 bins for y;. For what set of rates 
RI and R2 will these bins contain at least one jointly typical 
(y;“: y;)? Once we have answered that question, the problem 
is solved, because y;” and z& are deterministic functions of 
xn, so if there exists a jointly typical (y;” , y?) in bin (i, .j), 
say, one merely looks up the sequence xn which results in y;” 
and yg in order to send information i to Yl and j to Y2. Thus 
rates RI and R2 are achieved. 

The partitioning of y;” x y; is coarse enough so that a given 
(& j) bin contains at least one jointly typical pair (X” , Yn), 
with high probability, if RI < H(Yl), R2 < H (Yz), and 
RI + R2 < H(Yl , Y2). Thus we have the following theorem: 

Theorem 4 [74], [82]: The capacity region of the determin- 
istic memoryless broadcast channel with y1 = fl (x), y2 = 
f2 (x) , is given by the convex closure of the union of the rate 
pairs (RI, R2) satisfying 

R1 < H(Yl) 

R2 <fqv2) 

Rl + R2 < ff(Yl, vi!)* 

Comment: Here RI < H(Yl) ensures that there is at least 
one typical y’;” per bin, and RI + R2 5 H(Yl, Y2) ensures 
there is at least one jointly typical (y;“, y;) per product bin. 
We note the interesting complementary relationship of this rate 
region to the Slepian-Wolf region in Fig. 4. 

Mar-ton [75] then generalized this result to arbitrary broad- 
cast channels by setting up a kind of determinism by selecting 
a subset of distinguishable input sequences. Soon thereafter El 
Gamal and Van der Meulen [36] gave a simpler proof. 

In the following theorem, we outline a proof of a special 
case of Marton’s general result, where it is assumed that the 
information is independent and there is no common message. 
This special case isolates a new coding idea involving a pair of 
auxiliary random variables. This, together with superposition, 
yields Marton’s theorem. Papers referring to Marton’s region 
include Gelfand [43], Hajek [51], Han [52], Heegard [56], and 
Jahn [58], as well as WI, [23], 1351, and [36]. The outline of 
the proof of the following theorem is due to El Gamal and 
Van der Meulen [%I. 
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R2 

WY21 

wwY1) 

Slepian Wolf 

/ Capacity “e/ion 

HWl lY2) H(C) RI 

Fig. 4. The capacity regions for Slepian-Wolf data compression and for 
the deterministic broadcast channel, for the joint probability mass function 
P(YI, ~2) induced by P(Z). 

Theorem 5 (Marton [75]): The rates (RI, R2) are achiev- 
able for the broadcast channel {A’, p(y1, y2 Ix), y1 x yz> 
if 

RI < I(U; K> - 
R2 < I(V; Y2) 

Rl + R2 ; I(U; YI) + I(V; y2) - I(u; v> (2) 

for some p(u, 21, 2) on U x V x X. 

Comment: This achievable region is the capacity region if 
the broadcast channel has one deterministic component [75]. 

Proof (Outline): Fix p(u, v), p(x,lu, v). The channel 
p(y1, y2 Ix) is given. The idea is to send u to y1 and 
v to y2. 
Random Coding: Generate 2nr(u; yl) typical u’s N p(u). 
Generate 2 nl(Vifi) typical v's N p(v). Randomly throw 
the u’s into 2nR1 bins and the v’s into the 2nR2 bins. 
For each product bin, find a jointly typical (u, v) pair. 
This can be done if 

a, + R2 < I(U; YI) + I(V; y2) - I(U; V). 

To see this, recall that independent choices of u* and 
v* result in a jointly typical (u*, v”) with probability 
2-*1(73; v>. N ow there are 2n(1(u;y1)-R1) U*‘S in any 
U bin and 2*(1(“; fi)-R2) v*‘s in any V bio. Thus the 
expecied number of jointly typical (u*, v*) pairs in a 
given product U x V bin is 

The desired jointly typical (u*, v”) pair can be found 
if this expected number is much greater than 1, which 
follows if (RI, R2) satisfies (2). 
Continuing with the coding, for each U x V bin and 
its designated jointly typical (u*) v*) pair, generate 
xn(un, v*) according to the conditional distribution 
n;+l ?@k IUk, vk). 

Encoding: To send i to Yl and j to Y2, send X* (u* , v”), 
where ( un , v*) is the designated pair in the product bin 
( s> i, - . 
Decoding: Receiver Yl, upon receiving y;“, finds the 
U* such that (u*, y;“) is jointly typical. Thus it is 
necessary that Rl < I( U; Yl). He then finds the index 
i of the bin in which U* lies. Receiver Y2 finds the 
v* such that (v”, y;) is jointly typical. Thus we need 
R2 < I(V; Yz). He then finds the index j of the bin in 
which v* lies. cl 

IV. RESULTS FOR SPECIFIC CHANNELS 

El Gamal [30] showed that feedback cannot increase the 
capacity of the physically degraded broadcast channel, i.e., 
broadcast channels for which p(yl, ~212) = p(yl lx)p(y21 yl). 
It was later shown by Dueck [29] and Ozarow [80], [81] that 
feedback can in fact increase the capacity of general broadcast 
channels, in contrast to the single-user channel, where Shannon 
[91] proved that feedback does not increase capacity. 

Ozarow and Leung [81] showed a new way to achieve the 
capacity region for the Gaussian broadcast channel with feed- 
back using the Kailath-Schalkwijk coding scheme, in which 
one uses feedback to attempt to correct the misperceptions of 
(Yl , Y2) as seen by the transmitter. Their method, however, 
does not generalize to more than two receivers. Work on 
feedback capacity for broadcast channels appears in [29]-[31], 
[1341, [711, 1721, cw, wild IIW. 

Poltyrev [84]-[87] looked at the reversely degraded broad- 
cast channel (see also Hughes-Hartogs [57] for the Gaussian 
channel and Ohkubo [75]). Later, El Gamal [33] furnished a 
proof of the converse, thus establishing the Poltyrev region 
for the reversely degraded broadcast channel as the capacity 
region. 

Channels in which one receiver is superior to another 
and channels with nested information were studied by Mar- 
ton, Korner, Csiszar, El Gamal, and others [24], [32], [39], 
[62]-[64]. 

V. AN ALTERNATIVE VIEW OF CAPACITY 

In this section, we illustrate the delicacy of the definition 
of the capacity region for broadcast channels and multiuser 
channels in general. 

We consider a memoryless broadcast channel with m, re- 
ceivers Yl, Y2, l  l  l  , Ym. If we were to ignore the needs of 
all receivers but the kth, the sender could communicate to 
receiver k at capacity 

ck = max I(x; Yk). 
P(X) 

But an optimal code for receiver Yk generally precludes trans- 
mission at capacity to the other receivers. We now argue that 
a single communication strategy can achieve communication 
at capacity ck bits per transmission for all the receivers, 
k = 1, 2, “‘) m. This seems to violate the known results 
bounding the capacity region. Nonetheless there is some truth 
to this assertion. What is going on? 

Suppose, for example, that an advanced civilization wishes 
to transmit its knowledge to other stars. Having little idea of 



2528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998 

which stars are listening, when they started to listen, or the 
noise characteristics of the receivers, it is not clear at first 
what communication strategy to employ. 

But the following process seems reasonable. From time 
to time send a brief beacon signal to get any newcomer’s 
attention. For somewhat longer periods, send a simple descrip- 
tion of the language. Then send several years of information. 
Follow it up with thousands of years of information, in- 
cluding previous information. Then repeat the cycle with 
longer periods and more information. If the time durations are 
appropriately chosen, each star can receive all the information 
at its own capacity from the time it comes on line. 

More precisely, use a (2n;kck, nik) code, for receiver Ic, for 
the kth segment of the ath cycle. Thus n;kCk bits would be 
received by Yk during its segment of nil, transmissions. Let 
the blocklengths n;k increase rapidly enough so that 

where 

is the total communication time up through segment ik. Thus 
even if earlier information is discarded, the information rate 
for receiver k at time i&k iS 

nikCk/Nik + ck- 

So capacity is achieved. 
In fact, these remarks are applicable to time-invariant mem- 

oryless communication networks with, say, nz senders and n 

receivers with arbitrary noise and feedback. Let Cjk be the 
capacity from transmitter j to receiver rF when all the rest 
of the resources of the network are devoted to aiding the 
communication from j to k. The other senders will presumably 
act as facilitators, relays, or simply get out of the way. Then, 
by letting the blocklengths grow as before, the capacities Cjk 
are achieved. 

By now it should be clear that the resolution of the apparent 
discrepancy in capacity regions is that the time at which the 
information becomes available is different for each transmit- 
ter-receiver pair. Capacity is c-achieved at a different subset 
of times for each receiver. 

If, however, we had asked for the set of achievable 
rates {Rjk) for block n-codes with probability of error 
P’“‘(j k) e 3 4 0, we would be confined to the classical 
capacity region. The resolution, then, is that the capacity 
region is the set of rates that can be achieved simultaneously. 

VI. CONCLUDING REMARKS 

One of the coding ideas used in achieving good rate 
regions is superposition, in which one layers, or superim- 
poses, the information intended for each of the receivers. 
The receiver can then peel off the information in layers. 
To achieve superposition, one introduces auxiliary random 
variables that act as virtual signals. These virtual signals 
participate in the construction of the code, but are not actually 
sent. One useful idea used in the proof of capacity for the 

deterministic broadcast channel is random binning of the 
outputs Yl and Y2. Another technique is Marton’s introduction 
of correlated auxiliary random variables. Marton’s region is the 
largest known achievable rate region for the general broadcast 
channel, but the capacity region remains unknown. 
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