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On the Capacity of Some Channels
with Channel State Information

Giuseppe CaireMember, IEEE and Shlomo Shamai (ShitzFellow, IEEE

Abstract—in this paper we study the capacity of some channels of the discrete channels mentioned above (see, for example,

whose conditional output probability distribution depends on  [12]-[19]). Also, some recent works have been devoted to the

a state process independent of the channel input and where more realistic case of nonperfect CSI [20]-[22]
channel state information (CSI) signals are available both at . . .
the transmitter (CSIT) and at the receiver (CSIR). When the ~ 1he receiver may have some CSI from the insertion of

channel state and the CSI signals are jointly independent and training symbols in the transmitted signal. Moreover, it can
identically distributed (i.i.d.), the channel reduces to a case wait until the end of transmission before decoding, so that
studied by Shannon. In this case, we show that when the CSITis ajt has CSI over the whole received sequence. For the CSI
deterministic function of the CSIR, optimal coding is particularly . L .

simple. When the state process has memory, we provide a generalat the. transmitter, we distinguish betweelj channels where
capacity formula and we give some more restrictive conditions CSIT is causalfrom channels where CSIT isoncausal In
under which the capacity has still a simple single-letter charac- the case of causal CSIT, first introduced by Shannon [1],
terization, allowing simple optimal coding. Finally, we turn to  the transmitter at time: knows only the CSI signal from
the additive white Gaussian noise (AWGN) channel with fading time 1 to n. In the case of noncausal CSIT, introduced by

and we provide a generalization of some results about capacity . . .
with CSI for this channel. In particular, we show that variable- ~ elfand and Pinsker [10], the transmitter knows in advance

rate coding (or multiplexing of several codebooks) is not needed the realization of the state sequence from the start to the end of
to achieve capacity and, even when the CSIT is not perfect, the transmission. Clearly, both the information-theoretic problems

capacity achieving power allocation is of thewaterfilling type.  and the practical applications related to these two classes of
Index Terms—Channel capacity, channel state information, channels are rather different. Causal CSIT is more suited to
fading channels, power allocation. situations where the channel state is measured sequentially.

For example, in a fading channel where measures of the
instantaneous channel attenuation are obtained at the receiver

I. INTRODUCTION ° ! - ]
and sent back to the transmitter via a feedback link, as in

‘ HANNELS whose output conditional probability de-q e control schemes currently implemented in some cellular
pends on a time-varying state have been widely S'[Ud'aﬂandards [23]. Noncausal CSIT is more suited to situations

t?]epend{Tgb.cl?tn th? aﬁsump:t|o?st oq ;he cr:gnnelcsét;a\te tart]k? re the transmitter can sound the channel beforehand over
e availability of channel state information (CSl) a whole transmission span, as in the case of storage of

transmitter (CSIT) and at the receiver (CSIR), a whole rande Qhcoded information in a computer memory with defective
problems arises, each related to some physical situation of Iy

A ) lIs [24], [25].
terest. A partial list includes channels with CSIT only [1]-[3], . . .
the Gilbert—Elliot channel [4], [5] and, more in general In this paper we deal with channels with causal CSIT. In

- . Section Il we consider the case of independent and identically
the finite-state Markov channels without CSI [6], & numbef oy ii.d ) states studied by Salehi [20] and we show
of compound channel_s studied in [7], _the block-_mterferenciﬁat the channel reduces to Shannon’s channel [1]. We show
channel of [8], and various forms of arbitrary-varying Chann?fhat when the CSIT is a deterministic function of the CSIR
[9]-[11]. ’

More recently, driven by the growing interest in mobileopt|mal codes can be constructed directly over the input

wireless communications, numerous works have been devofé@hab?t’ (;Nh'le Iln g((ajneral,lcpdlrkl]g over anf engnded algggpet
to assessing the information-theoretic limits of Gaussian fadig\Erequ're (a related result in the case of a discrete additive

channels, which can be modeled as the continuous counter ﬁnnel can be fOU”Fj in [26]). In Section IIl we consider
the case of states with memory. In the case of no CSIR,

Manuscript received September 30, 1997; revised March 16, 1999. THe capacity was determined by Jelinek [2], [3] for two
work was performed while G. Caire was with the Electrical Engineeringlasses of channels: tHeite-state Markov indecomposable

Department, Princeton University, Princeton, NJ 08544 USA, under C ;
Grant 078484. The material in this paper was presented in part at the I'I;lgEd thestrongly mdecomposablehannels. The general case

International Symposium on Information Theory, MIT, Cambridge, MAWIth arbitrary memory has been recently treated in [27].
Augusct 16-21, ,139'3- bile cations G nstitute E 0690Unfortunately, the capacity formulas in [2], [3], and [27] do
. Caire 1s wit obile Communications Group, Institute Eurecom, . . i . .

Sophia Antipolis, France (e-mail: caire@eurecom.r). Aot provide much intuition on pracncgl good cocy.ng schemes.
S. Shamai is with the Department of Electrical Engineering, Technion—Isrddevertheless, under some more restrictive conditions, a single-

_Ilr)lstitute of Technology, Haifa 32000, Israel (e-mail: sshlomo@ee.technion.gstter characterization of channel capacity is still valid, so that

1). . . . .
Communicated by M. L. Honig, Associate Editor for Communications. codes const.ructed d'reCtIy over the 'n_pUt alphabet are_‘ still O.ptl-
Publisher Item Identifier S 0018-9448(99)05870-8. mal. In Section IV we turn to the additive white Gaussian noise

0018-9448/99$10.001 1999 IEEE



2008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

W*ENC Xn ~ plylz,s) o DEC W ENC Xn | Yo > W,
y y y 'y, vlz, v)
Un S Va U, DEC
p(u) V.
p(s,u,v) L

Fig. 1. Block diagram of the channel with time-varying state, CSIT anBig. 2. Block diagram of the equivalent channel with CSIT only and output
CSIR. (Y, Va).

(AWGN) channel with fading and we provide a generalizatiodnd the CSIR is absent, the capacity of the above channel was
of some results about capacity with CSI for this channel. A@tained by Shannon [1] and it is given by

a b_yproduct of_ thi; analysis, we show that_i) variable-rate C = max I(T;Y) )
coding (or multiplexing of several codebooks) is not needed to a(t

achieve capacity; ii) the capacity-achieving power allocatlovr\}hereT € X151 is a random vector of lengifs] with elements

is of the water-filling ty_pe, _even_wnh nonperfect CSIT; i) X and probability distributior(¢). A code for this channel
constant power allocation is optimal for the case of no CS 15|
IS a set of[W| sequences of lengtiy of vectorst € X'l

and perfect CSIR, even in the case of non-i.i.d. fading (?—Sor a given source message € W, the codewordt (w)
mentioned explicitly in [13]). Finally, in Section V we prowde.ﬁ selected. At each time. the cha{nnel input is gii/en by

. . iy
some numerical examples of the fading AWGN channel Wltxn — t.(w, 5,), Wheret, (w, s) denotes thesth element of
nonperfect CSIT.

14 :
Notation conventions are as follows: random variables jiie vectort,, (w). A codewordty’ (w) defines a sequence of

©S fnctionss — X. Then this encoding rule is a particular case
denoted by upper case letters (e); a lower case lettes is

used to denote a particular value 4f the short-hand notation Pf the general encoding rule given above. The remarkable fact

N . is that, in this case, this is enough to achieve capacity.
A%y indicates a sequence of random varialilds,, - --, Ay ) o , .
N . N, A generalization of Shannon’s result has been provided
and ay, denotes a particular value ofy;; {A,} denotes a

; . ’ . by Salehi [20] in the case whergS,,,U,,V,)} is an i.i.d.
generic sequence of random variablé§;, for any arbitrary s VT T
M and N sequence ovef x U x V, with joint distributionw(s, u, v). In

this case, the channel capacity is given by

Il. CHANNEL MODEL AND RESULTS C= max I(r;y | V) (3)
FOR i.i.d. CHANNEL STATES !
y. Wherel' e Al is a random vector of lengty| with elements

outputy, € Y, and stateS, € S, characterized by a family in X and ¢(¢) is the probability distribution of". The above

of conditional output probability distributiongp(y | z,s) : 'esult is proved directly in [20], but next simple argument
s € S} such that shows that it follows again from Shannon’s result, so that no

proof is actually needed.
NI N N N We can consider the CSIR,, as an additional channel
P |”71 51 ) = Hp(yn | Zns 8n)- 1) output. Then, the channel of Fig. 1 is equivalent to the channel
n=l of Fig. 2, with statel/,, output (¥,,,V,,), and conditional
The transmitter and the receiver are provided with the CSputput probability
signall/,, € U and with the CSIR signdl,, € V, respectively.

Consider the channel of Fig. 1, with discrete inp( €

/ _ . "
After conditioning on X,, and onS,, Y, is statistically Py leu) =3 Pryv|eus)Pr(s|zu)
independent of/,,,, V,,, (for all m) and of S,,,, X,,, (for all >
m # n). Moreover, S,,,U, andV,, are independent of the = ply |z, s)w(s,u,v)/p(u) (4)

past channel inputs (i.e., this model does not take into account

intersymbol interference channels [28]). We say that the CSWherep(u) = >, w(s,u,v). The channel of Fig. 2 is clearly

(respectively, the CSIR) iperfectif U,, (respectively,V,,) is of the type studied by Shannon, with perfect CSIT and no

equal toS,,, and that it isabsentif U, (respectively,V;,) is CSIR. Its capacity is given bynax,) [(1;Y, V), but since

statistically independent of,,. V. is independent fronT,, we havel(T; V) = 0, so that (3)
Encoding and DecodingA block code of lengthV for the follows immediately.

channel of Fig. 1 is defined by a sequenceMfencoding Optimal codes for the channel of Fig. 1 are constructed over

functions f,, : W x U* — X, forn = 1,---, N, such that an extended input alphabéf“!, or equivalently, are codes

xn, = falw,uy), wherew ranges over the set of possibledefined over the alphabet of functiofs — X', designated

source messagad’ and«f is the realization of the CSIT up sometimes asstrategy letters[20]. This might pose some

to timen. The decoding function ig : Y x V¥ — W, such conceptual and practical problems for code construction, espe-

that the decoded messagedis= ¢(y]¥,v)). cially for large (infinite in the limit)|Z{|. Nevertheless, optimal
Channel Capacity:In the case where{S,} is an i.i.d. codes can be constructed directly over the input alphabet

sequencey’, YV, ands are finite alphabets, the CSIT is perfectin the following special case.
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Proposition 1: Let U,, = g(V,,), whereg(-) is a determin- state obtained from the received signal. Then, the receiver
istic functionV — U. Then, the channel capacity is giverinstructs the transmitter by sending a commdnd= ¢(V,,),

by where ¢g(-) is some quantization function in order to reduce
the rate of the feedback link.
CIZP(U) ;&?5) I(X5Y | Vw). (5) A very interesting related problem is to maximize the

capacity (5) under a constraint on the entropy of the feedback
Proof: In order to prove (5) it is sufficient to show thatsignal, namely, undel (U) < Ry, whereR; is the rate of the
feedback link. We leave this problem for future investigation,
max I(TY | V)<Y plu) max I(X;Y | V,u). (6) andinExample 1 of Section V we show that by restrictiig
u to belong to some particular class of functions, the maximum
Since the right-hand side (RHS) of (6) corresponds to of@pacity may not correspond to the maximumipfU).
possible assignment of the probability 6f (namely, where

the wth component off,, is distributed independently of the lll. STATES WITH MEMORY
other components according @Qa: | w)), (5) follows. In general, the state, CSIT and CSIR procedsgs, {Uy.},
In order to show (6), we write {V,,} are defined by a sequence of finite-dimensional joint
IT;Y | V)= ZPr (u, ) (T3 Y | v) distributions
R R CARTARAD ) o
= ZPr (u, V) I{T5Y | v, (v)) with the only requirement thats,,. U,, V,,) is independent of
o the past channel input¥”~*.
=Y p(w) > Pr(v|wI(T;Y | v,u) The case of states with memory encompasses also
u v information-unstable channels. Then it should be treated in
% Zp(“) max Pr(v | w)I(X;Y |v,u) the general framework of [29]. By following again Shannon’s
= (=lu) approach, we can consider a new channel without CSIT,
_ Zp(“) max I(X;Y | V1) (7y Whosenth input symbol is the random vectd, € X'”"j’
— q(z|w) and nth output symbol is the paifY,,,V,,). A code for this

channel is a set
where (a) follows from the fact that:,, = ¢,(u,,), so that if

U, = u, is given, any probability distribution df;, induces {t:{v(w) = (t(w), - tn(w)) s w e W, to(w) € X|u|”}

a probability distribution 0fX.. O of [W| codewords, each formed by concatenati¥igvectors

Comment: It is easy to show that the capacity of Proposiever X’ such that the:th vector of each codeword has length
tion 1 can be achieved by a multiplexed multiple codebodi/|™. For a given source message € »V, the codeword
scheme [17], [22]. For each value € U, a codebook of ti' (w) is selected. At each time, the channel input is given
length p(x)N and rate slightly less thad(X;Y | V,u) by =z, = t,(w,ul), i.e., by theuith component of the vector
is generated i.i.d. according to the probability distributiof.(w).?

q(z | ). For the messages, a set of |i/| codewords is Clearly, the original channel and the new channel are
selected, one for each codebook. At timeif U,, = « the completely equivalent both in terms of capacity and in terms of
transmitter sends the first not yet transmitted symbol of tigtimal encoding and decoding schemes. Sifig}, {4, },

uth codeword. Then the codewords are multiplexed accordifiy»} are independent ofZ’, }, the Nth-order channel transi-
to the CSIT sequendé;". If g(-) is deterministic, the receiver tion probability of the new channel is immediately obtained
can demultiplex the received sequence before decoding sidée

it can perfectly recovet/}¥ from VV. After demultiplexing,

. PN N [
the /| codewords are independently decoded. (v’ w1 ; )
If S, — V,, — U, is a Markov chain but/,, is a random ‘ NN N N
n n n n o _ n (]\) N N Y
function of V,,, the derivation above is no longer valid and — VE:V li[lp(yn | = ta(ut),sn) |0 (517, 0 0.
the general coding technique based on vectors X! e
must be considered. Intuitively, we see thatgif-) is not (8)

deterministic, the decoder is not able to demultiplex correctja(n input process for the new channel is defined by a sequence
the received sequence and the multiplexed multiple COdebOcS%inite-dimensional distributions

scheme cannot be applied in a straightforward way. -
The case wherd/, is a deterministic function o¥,, has T={n"Mt)} ot

an interesting practical application. Namely, it describes a

situation where the CSIT is obtained via an error-free low:St ¥+ V' denote the sequence of finite-dimensional output

rate feedback channel from the receiver to the transngritte?.'StrIbUtlons induced byI" and by the channel transition

For example,Vn might be an accurate measure of the channelThere is an obvious one-to-one correspondence between sequénees
U™ and the integers frorh to |¢/|™. Then, with a slight abuse of terminology,
1Low-rate feedback links are already implemented in many standards fee indicate as the} th component of the vectay, € X1U1™ the component
cellular wireless systems [23]. whose index is the integer correspondingutp.
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probability. The inf-information ratd(T;Y, V) is defined as has a product form

the lim-inf in probability [29] for N — oo of the normalized N
information density Pr(yd |s0) = > [ 2Wn|2n = ta(ul), s.) i (t0)
PN N 1 PYN VN|TN tyy n=l1
'L‘N(le\‘;yrl]\‘vvl‘) = Nlog 1(31‘1(YA} VNl) ) N
) Lo _1 = HZp(yn |-Tn :tn(urf)asn)nr(f\)(tn)
Then, from the general capacity formula given of [29], we n=1 tn
can write N
= n | TnySn Tpn | Un ). 15
O = supIT:Y, V). o) L[l;p(y | Ya(@n | ) (15)
T n
o . . Then, the normalized information density (11) is given by
By summingP(y, vV [t)) over all ¥ € YV, we notice that LN VXS
the outputV,V does not depend on the inpi}Y. Therefore, in (TN Y |V = ~ Zlogw (16)
we can also write [27] el (Y | Sn)
C =supI(T;Y | V) (10) and, because of the joint ergodicity ¢f,,} and {U,}, the
T above sample mean converges in probabilityMas- oo, to
whereI(T’;Y|V) is the lim-inf in probability of the normalized the €xpectation
conditional information density (XY | S,U) = Elo Y| X,S)
T N 7 Pl‘ (Y | S)
. (TN Y T V r) 1 10 PI‘(Yi Tl aVvl ) (11) h
TN N = — 2
N\t1 s 141 1 N g PI‘(YVIN Vl r) where

XY, ~ P .

The above formula does not tell much in terms of practical (. X5 U) ~ ply |2 s)alw | u) Pr (_S’u) o
coding and decoding schemes. However, by adding sof% choosingg(z | u) such that, for allu € &/, it maximizes
constr_aunts on the state _and CSl signals, a simple single-letter I(X;Y | S,u) = E|log p(Y | X,S) Ueu
capacity formula can still be found. Pr(Y | S)
we obtain that (12) is achievable.

Proposition 2: Assume i) perfect CSIRV,, = S,); ii . . .
P ) P R )i 1) For the converse, from Fano’s inequality [28] we can write

deterministic CSIT (i.e.l/, = ¢.(S7") with g, : " - U )
deterministic); iii) thatPr (S, | U7") = Pr (S, | U,.); iv) that HW | W) < Plog|W|+h(P.)=Ney  (17)
{S»} and{U,} are jointly stationary and ergodic. Then  \whereW andW are the transmitted and the decoded messages
and whereP, = Pr (W # W). The decoder with perfect CSlI

C= ax I(X;Y | S 12 A o
;p(u) 32?53 (X5 Y] S u) (12) is a mappingp : (YN, SN) — W, then we have
wherep(v) is the first-order distribution of/,,. HW |W)=H(W|¢(Y]",5)))
Proof: The achievability of (12) is easily established by >HW|Y{,s))
appropriately choosing the input procefs For all v, we =H(W|sN) - 1(w; Y™ | sY)
consider product input distributions _ NR— I(W;Yl r Slf). (18)
N .. .
77(N) (tf) _ H 777(1/N)(tn). (13) By combining (17) alnd (18) we obtain
=t R< NI(W§Y1 |SY) +ew (19)
Moreover, we choosey"’ (t,) such that itsuf'th marginal, whereen — 0 as N — oo. Then we have
given by Pl aN
, LWy | 87)
Pr(Ta(uwt) =)= 3 o) (19
t,ex i = Z I(W9Yn | Y Sl‘)
tn (u} )= el
N
. n—1 r _ T
plepends only ony,, and is independent of and of u{™ ", _ ZH(Yn | len—lﬂgi\‘) _ H(Yn | Y 1,5{\,W)
ie., Pr(T,(u?) = z) = g(z | w,), whereg(- | -) does not =
depend onn. LN
Under the hypotheses of perfect CSIR and deterministic < ZH(Y" | S, UT) — H(Y, | Yol sN unw, 1)
CSIT, we have n=1
N
N b
NN N <N H(Y, | 8., U) — H(Y, | Sy, UM, X, = T, (U?
u (o | #5) = [T om0 =t () 50) < 2 A S0 U) — B | 50U (v1)
n=1
N
Moreover, for the product input distributions defined by (13) = Z I(Xn; Y | 50, UT) (20)

and (14), we have that also the conditional output distribution =1
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where(a) follows from the deterministic CSIT assumption anadonditions which guarantee the convergence of the finite
(b) follows from the fact that, for giverl/7* = w7}, any alphabet result when the alphabet cardinality is taken to
probability distribution ofZ}, induces a probability distribution infinity, another interesting case is wheh, is a Gaussian

gz, | ul) of X,,. process and,, = g,,(S7™%) is its minimum mean-square error
Now, we letU,, = U7~ and write (MMSE) estimate, based on the past measuremghts’. In
this case we can writé,, = U,, + F,,, where the prediction
I(Xpn; Y | S0, UT) error E,, is orthogonal to all functions o$7'~¢. Then,S,, is in
=I(X.; Y, | Sn,Un,Uy) fact independent oUl"_1 given U,,, as required by Proposi-
= 3 Prsn | unun) Pr(u, | w)p(u,) tion 2.
Ugy ;89 ,Un
X I(X0n; Yo | Spytn, Un) IV. AWGN CHANNEL WITH FADING
= Z p(upn) Prs, | un) ZPr (w, | up) In this section we consider the case of a real scalar AWGN
U s80, u, channel with fading given by
X I(Xnyyn | Snaunaun)
b ~ Y, =VS5.X,+2Z, (22)
< Z P(un) Pr(sp | un)I(Xn; Yo | Snytin)
Uns8n, where S,, € R, is assumed to be stationary and ergodic and
- Zp(un)I(Xn;Yn | S, (1) Zn ~N(0,1) iid.. The CSITU, is a noisy estimate of.,.

We assume that,, is independent oU{“1 givenl,, and that

the receiver has perfect knowledge of the conditioratived
where (a) follows from hypothesis iii) andb) follows from average signal-to-noise ratio (SNR)

the concavity of mutual information with respect to the in-

u ki3

put distribution, and whereX,, denotes an input distributed V.= E |E[Y, | X, Sill? g un
according tog(z,, | u,), defined by T var(Y, | X, S,) |7
= S.E[|X,. 2| U7] (23)

q(@n | un) = Z(I(xn | i, %) P (0 | up).
U for all n (notice that, in general, the conditional second-order

Since U, is stationary and ergodic, the last line of (21) dog@oment of the iNpute| X,,|* | UT'] depends om because
not depend om. of the CSIT sequenc&?). As before,{S,} and {U,,} are

The mutual information in the last line of (21) can be max@ssumed jointly asymptotically erg;)dic and stationary. An
imized by choosing, for each,, € i, the input distribution 2Verage input power constraibif|.X,, |°] < 7 is imposed: _
q(z | «) maximizing I(X;Y | S,). Then, by using (21) and This channel is a particular case of the model of Fig. 1

(20) in (19), we obtain the converse as desired. g (provided that, under mild regularity conditions, it can be
' extended to the case of continuous alphabets), where the

Comment: The above proposition has some interesting pagiependence of the CSIR sign&l, on S, and onU? is
ticular cases. With perfect transmitter and receiver CSI (i.@xplicitly given by (23). This model applies, for example, to

U, = gn(ST") = S»), the capacity is given by the case of time-division duplex (TDD) [23], with frequency
nonselective block fading [13], [14], assumed to be constant
C=> ps) max I(X;Y | s) over each time-division multiple access (TDMA) slot. The

transmitter estimates the fading state on the current slot from

which is the same expression given in [7] for a compouri#€ measurements in the previous slots of a pilot signal inserted
channel with memoryless state. Then, as it is well knowH! the reverse link. Then, the CSIT is a sequencereflicted
perfect CSI makes the cases of i.i.d. states and of states Wading states. The receiver measures the received SNR over the
memory equivalert.Also, with perfect CSI, interleaving doescurrent frame directly from the received signal. Itis reasonable
not incur any loss of optimality. I/, is a d-step delayed t0 assume that the CSIR quality is very good (almost perfect),

version of S,,, namely, since no prediction is needed.
In generallU,, is not known explicitly by the receiver. Then,
U, =g (S") _ {0, fori<n<d error-free demultiplexing of the received sequence as required
" AL Sn_d. forn>d+1 by the multiplexed multiple codebook scheme of [17] is not

. ] ) possible. Also, sincd/,, is not in general a deterministic
and {5,} is Markov, we find the result of [22]. Given thefynction of V;,, Propositions 1 and 2 cannot be extended

similarity of (5) and (12), it is immediate to show that gjjrectly to this case. Nevertheless, we have the following.
multiplexed multiple codebook scheme can achieve (12) (see

the achievability part of [22]). Finally, under mild regularity “#The results for this real model can be immediately translated into results
for the circularly symmetric complex model with average energy per complex
3This conclusion does not hold if a constraint on the transmission delayiigut symbol E, and one-sided noise power spectral density by letting
taken into account. In this case, the so-called delay-limited capacity [30]-[32] = E./Ny and by doubling the information rates (expressed in nat per
and/or the information outage probability [13] should be considered, sincemplex symbol). The input power constraint should be regarded as an average
ergodicity or, more in general, information stability cannot be used. transmitsignal-to-noise ratio (SNR) constraint.
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Proposition 3: The AWGN channel with fading describedwhereeyy, — 0 as N — oo. Then we have
by (22), with stateS,,, CSIT U,, and CSIRV,, = S,,E[| X ,|* |

U7, with the assumption thatr(S,, |U7) = Pr(S,|U,) and I(W;i{ )
subject to the input power constraid#[|.X,|?] < P, has : _ N oonel
capacity given by = Zlf(WvYn | Vi Yy )
! = Eh(Y VYY) = h (Y | VY, YL W)
C=max E Qlog(l—i—Sfy(U)) (24) n| VeI n|l Vit 5
8l

where expectation is with respect to the first-order joint <> (Y | Vi) = h(Yn | VN, Y7L W, X, S)
distribution of S,, and l/,,, and the maximization is over the
power allocation functions : 2/ — R such thatE[y(U)] < P.
Proof: We cannot use the multiplexed multiple codebook = Z h(Yo [ Vi) = h(Y | X, Si)

scheme since the decoder does not kridgyexactly. In order n=1
to show achievability, we construct a new channel and we a
show that it has at least the same capacity of the original one. < Z [ log(1 +Va )}
The new channel is again a real scalar AWGN channel with n=t
fadingV,, € R, inputT, and outputy;, = /V, T, +Z,, with Where (a) follows from the fact that
Zy, ~ N(0,1). The fading is defined by,, = S,,v(U,,) where
~v(-) is a given time-invariant deterministic function— R, WY | Xn, 5n) = M(Zy) = 5 log Zem
such thatE[y(U,)] < P. The new channel has no CSIT,gnd that
perfect CSIR (i.e.\V,, is known to the receiver), and input 1
power constraintE[|1,|?] = 1. h(Y, | Vi) < E[—log(ZeW(l + Vn))}

For this channel, we consider a conventional (i.e., constant- 2
rate and constant-power) encoder, with codebook of ratée above upper bound to mutual information is achieved
R generated with i.i.d. components according a distributidh X{ is a sequence with zero-mean Gaussian components
¢(t) such thatE[T,] = 0 and E[|T,|?] = 1. By letting X, statistically independent conditionally ofi{'. Since a
q(t) = N(0,1) and by conditioning onV,, we have that Gaussian distribution is determined only by its mean and
Y,V is Gaussian with conditionally independent componentsvariance, and the mean is fixed to zero, without loss of
Y,, ~ N(0,1+V,). The corresponding normalized conditionagenerality we can write
information density is given by

(27)

,) whereT,, is i.i.d. ~ A(0,1). Then, we need only to prove that
N under the assumption th&j, is independent olfff‘l givenlU,,

Z log (1+V,) — |Za)? + Yol . (25)
1+V,

N
1 1
= — E|-log(1l 'ngn (U7
v [2 081+ Sug (Ul))}
Both {V,,} and {Y¥,,} are stationary and ergodic, because
the joint stationarity and ergodicity ofS,} and {U,,} and
since~(-) is time-invariant and7,, } is i.i.d.. Then, the above

sample mean converges in probability, &s — oo, to the 1 "
expectation E| 5 log (14 S.9,(U7))

1 . ' '
N'LN(TlA Yy

qg maximized byg,, (U7*) = (U, ), a time-invariant function
of U,, only. We have

S ) -
) _E E{ilog(l—i—Sngn(Ul ) ‘ S0, Us }
E 5 log(1+ V) L .
1
< B|5log(1+ E[Sugn(UT) | Sn, Un])
(notice thatE[|Z,|2] = E[|Ya|?/(1 + V,,)] = 1). By substi- 1 . T
tuting V = S+(U) and by maximizing over all functions(-) =E 5 log(1 + S, E[gn (UT) | S5, Un])
such thatE[y(U)] < P, we get that (24) is achievable. r1 i
For the converse, we go back to the original channel. From =F 3 log (1+ SnE[g.(UT) | Un])}
Fano's inequality, by recalling that the decoder with GSI -
is a mappings : (Y;¥,V,¥) — W and by repeating the steps - E llog(l + Sn’Yn(Un)):| (28)
in (18), we obtain L2

where we have used Jensen’s inequality, the fact that

R< —I(W YV | V) +en (26)

=N Pr (UM S,,U,) =Pr (UMY | UL)
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and we have defined A. Optimal Power Allocation

n(Un) = Elgn(UTY | Uy, For simplicity, we assumé{ discrete andp(u) > 0 for
e et " all v € U. The generalization td{ continuous is rather
Now, since{S,,} and{l/,} are jointly ergodic and stationary, straightforward and is based on standard continuity arguments.

they have a stationary first-order joint distributipfs, ). By It is immediate to see that the optimal power-allocation
using the upper bound (28) into (27) we get function v(«) must satisfy the power constraint with equality.
N Then, from the Lagrange multipliers and the Kuhn—Tucker
1 ; ; 1 1 conditions [28] we get tha(u) is the solution of (24) if and
- . < _ _ -
LWy V) < N;E[Zloguw%w))} only if
N - s
1 1 -_ <
< 510g<1+5NZ%(U>> /0 et CIIOLIES) (30)
n=l1 for all 4 € U, with equality for allu such thaty(u) > 0,
_ EFlog(l + SW(U))} (29) where X is a given positive constgnt W_hose val_ue is fixed in
2 order to satisfy the power constraint with equality. lfgty)

denote the left-hand side (LHS) of (30) as a function/gf 0,
N parameterized by. For giveny, f,(v) is a positive decreasing
(1) = 1 Z (o function of v with maximum values(u) = E[S | U = v,
K N Lo T\ attained aty = 0. For eachy, s(u) is assumed to be finite since
. ] =t ] ] it is physically reasonable to assume that an infinite conditional
The above bound 1S ach|eved-for every meeby chc_)osmg average channel gain occurs only with zero probability (the
7n(-) to be independent of. Finally, by using (29) in (26) assumptiorp(x) > 0 rules out this case). Then, the solution

where we have defined

and letting V' — oo we get ~v(u) is found in general as
1 —1(N), if 0 <X <s(u
R< B[ log (14 $+(1) s ={ir P IS e
where the RHS can be maximized over all the power-allocatidite actual value of\ is determined by solving
functions~(-) such thatE[y(U)] < P. O ZP(U)’Y(U) —P.

Comment: The above proof applies immediately to the ) , .
cases of no CSIT and of perfect CSIT. In the first cadf practical computations we can parameterize both the av-

(S, statistically independent df,.), by using again Jensen’s€'29¢ transmitted power i‘[‘d the solutiony(v) in terms of
inequality it is immediate to show that the constant functiof € [0 max, s(u)]. Sincef,/*(A) is decreasing i\, 7 is also
+(U,) = P is the capacity-achieving power allocation, a& 9ecreasing function of. For a giveni (i.e., for a givenp),

argued in [13]. In the case of perfect CS(B, = [/,) positive power is allocated only to the values ¢/ such that
we obtain the result of [17] (see Section IV-A). In [17]’s(u) > A. In this sense, the optimal power allocatipfu) has

achievability is proved by using the multiplexed multipie® water-filling nature, similar to the o.ptimal power aIIoca.tion
codebook scheme, assuming that the CSIRjs= 5,.. Our in the case of perfect CS_IT,_ found_ in [17]. It is |mmed_|ate
result shows that this scheme (or, more in general, variab?g_-see_ thah(?b) in (31) coincides with the power allocation
rate variable-power schemes [33]) is not needed in order Y€ N [17] in the case(s | u) = 6(s — u), i.e., for perfect
achieve capacity. On the contrary, a simple conventional (i.g.,SIT' In this case we have

constant-rate constant-power) Gaussian codebook is sufficient, Ypert. (1) = [l _ 1}

provided that the code symbols are dynamically scaled by A u]y

the appropriate power-allocation function before transmissionhere[-], denotes the positive part.

We refer to this scheme asingle codebook with dynamic

power allocation From a practical implementation point of V. EXAMPLES

view, we argue that the single codebook scheme with dynamic . . .
. . . . In this section we consider some examples of AWGN
power allocation might be a simpler way to achieve th

same capacity. without requiring multiole codebooks an%]annel with fading. Under the assumptions of the previous
pactty, d g P section, the determination of the channel capacity reduces

vanaple—rate coding. Moreover, this scheme achieves ca.pa%ythe computation of the solution (31) of the constrained
also in the case of nonperfect CSIT, under the conditions

of Proposition 3, while the multiplexed multiple codeboolzn":lx'mIzanon problem given by Proposition 3.
scheme is inherently hard to implement, because the receivéExample 1:AssumeS,, i.i.d. uniformly distributed or{0, A]
is not able to demultiplex exactly the received sequence. and letl,, be the 1-bit quantization feedback information

Results along this line are shown in [31], [32] and in the 0 it S <a
multiuser case in [34], [30], [35]. Nevertheless, for finite- U, :{ ’ o o

. = . L 1 if S, >a

complexity and limited decoding delay a combination of
dynamic power allocation and variable coding schemes majere 0 < « < A is a suitable quantization threshold.
be very effective, as demonstrated in [33]. Moreover, assume that the receiver knows exactly the received

7
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Uniformly distributed fading, A=2, a=1
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Fig. 3. Functionsf|(y) and fo(y) of Example 1.

Uniformly distributed fading, A=2, a=1
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Fig. 4. Solutionsy(1) and~(0) of the constrained maximization problem of Example 1, plotted versus the average transmittefFhower

SNR YV, = S, E[|X,|? | U], so that Proposition 3 applies.a/2 < XA < (A +a)/2 only v(1) is positive andy(0) is zero.

From (30) we find The value of) is obtained by solving the constraint equation
av(0)/A+ (A — a)y(1)/A =P. If a =0, the first inequality
foly) = 1 [ a__ log(1l+av(0)) becomes irrelevant, while i = A, the second inequality has
a [ ~(0) 7(0)? always a positive solution, but the probability of transmitting
1 [A—a log(1+4 Ay(1)) —log(1+av(1))] with powery(1) is zero, so that the value ef1) is irrelevant.
£0) A—- a{ (1) ~(1)? Both these extreme cases correspond to the constant power

(32) transmission case, where in the formgil) = P and in the
latter v(0) = P. This agrees with the fact that for both= 0
Fig. 3 shows fo() and fi(v) for @ = 1 and A = 2. anda = A, the CSIT does not provide any information. Fig. 4
For 0 < A < a/2 both 4(0) and (1) are positive. For shows~(0) and~(1) versusP in the casez =1 and A = 2.
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Uniformly distributed fading, A=2, a=1
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Fig. 5. Capacity versug of Example 1, forA = 2 anda = 1.
The resulting average capacity can be written as Fig. 6 shows capacity versus the quantization threshold
1 [log (1 + ay(0)) for different SNR’S andd = 2 Itis clearly V|S|ble_ that for low
Cesi(P) = o7 | ——F7— SNR the optimal threshold is close tband for high SNR the

24 17(9) log optimal threshold moves closer €0 This has a nice intuitive
+a(log (1+ av(0)) —log (1 + ay(1)) explanation: for low SNR, the transmitter cannot waste power,
+ log (1 + Ay(1)) —log (1 +av(1)) so that it must know when the channel is good to transmit.
(1) Then, the optimal threshold should be large, in order to reveal
] _ when the channel is “exceptionally” good. For large SNR, the
+ Alog(1+ Ay(1)) A}' transmitter has a lot of power and can compensate for poor
Iggannel gains, so that the threshold should be small, in order to
reveal when the channel is “exceptionally” bad and needs to be
compensated for. In general, both for high and low SNR, the
1 [log(l+ A itv i imi i i
Coonn(P) = = og(1+ AP) + Alog(1 + AP) — A} capacity is maximized _qu(U) <1 b_|t. Then,_ this example
24 P shows that by constraining(-) to be in a particular class of
and with the capacity with perfect CSIT (i.e., whEh = S,.). functions, the solution to the capacity maximization problem

This is obtained from the general solution of [17] as under an entropy constraint fé& may not be reached when
the constraint is satisfied with equality, in general.

1
Cpert(P) = Q(bg(A/pO) +po/A=1) Example 2: Consider a low-Earth-orbit satellite system and

wherepy is the solution of the constraint equation, that it, thi§ MPile terminal in urban environment. Due to the terminal
case can be written as motion, the line-of-sight (LOS) path between the terminal and

1TA— A the satellite may be either present or blocked. A simplified

_[ Po _ log _} =P. channel state model is a proce$s which can be either con-
AL po Po stant (LOS present) or exponentially distributed (LOS blocked)
Finally, the capacity of an AWGN channel without fading anfB6], so that the channel is AWGN or Rayleigh, respectively.
with the same average channel gain and transmitted pow&sume that/, = S, E[|X,,|? | U] is known to the receiver
is given by Coywen(P) = Slog(l + AP/2). Fig. 5 shows and thatS,, = |U,, + (1 — U,)G,|?, whereU,, is an ergodic
capacity versus? for Example 1, withA = 2 anda = 1. process that takes on valu@sor 1 with given first-order
For this fading statistics, the 1-bit CSIT provides almogirobability p(x) andG,, is a complex white Gaussian process
optimal performance; in fac.; and Cp.,+ are very close. with i.i.d. real and imaginary parts- N(0,A?/2). Clearly,
In general, CSIT provides a performance improvement ové}, is independent of/7~* given U,,, so that Proposition 3
constant power transmission only in the low-SNR region (i.eapplies. Before entering the details of the calculation, we
for low rates). In this example, faR = 0.1 bit/symbol the would like to point out that this case models the realistic
gain over constant power transmission is about 1.7 dB whieenario where the receiver has a very accurate (perfect) CSI
for higher rates it disappears. while the transmitter knows only the statistics of the channel

This can be compared with the capacity in the case of
CSIT (constant power)
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Uniformly distributed fading, A=2, a=1
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Fig. 6. Capacity versug for Example 1, forA = 2 and SNR= 0,—10 and — 20 dB.

(AWGN or Rayleigh), which vary slowly due to the terminalwhere p, is the solution of the constraint equation

motion, but ignores the actual value of the channel gain. Since poJa

he channel statistics changing rate is usually much slower tha 1 e 1 -

the channe ! : ()| ——1| +p(0) - ZEi(Lpo/A) =P

the signaling rate, a low-rate feedback link that instructs the po + Po

transmitter about the channel statistics can be implemente
The conditional probability density function (pdf)s | )

is given byp(s | 1) = 6(s—1) andp(s | 0) = exp (—s/A)/A.

%nd the capacity of an AWGN with the same average channel
gain and the same transmitted average power is

The solution of (30) in this case yields 1
(30) y Caven(P) = 5 10g(1 + (p(1) + Ap(0))P),
1

(1) = [X - 1} Figs. 7 and 8 show capacity vers@sfor Example 2, in the

+ caseA = 0.1 with p(0) = 0.5 andp(0) = 0.9, respectively.
and v(0) solution of The average channel gain is 0.55 in the first and 0.19 is the
second case. For this channel model, the knowledge of the

1 /O hannel statistics at the transmitt ides | f

_ Ei(1,1/(Av(0))) = A channel statistics at the transmitter provides large performance

7(0)  Av(0)? gains for low SNR. In the case @f0) = 0.5, the gain with

respect to constant power transmission is 2.5 dBat 0.1
and 1.9 dB atk? = 0.5 hit/symbol. In the case gf{0) = 0.9,
the gain with respect to constant power transmission is 5 dB

for A < A and~(0) = 0 for A(0) > A, whereE;(n,z) =
[ t7mem"t dt [37]. The capacity is given by

1 at R = 0.1 and about 2.0 dB @ = 0.5 bit/symbol.
Cesi(P) = p(1)§ log(1 +~(1)) The intuition behind this result is that higher average rates
L 1/cavoy are achievable if the transmitter sends high-rate and high-
+p(0)§6 TE(L,1/(Av(0))). power “bursts” when the channel is “good” (LOS present),

. L .__.and basically turns transmission off when the channel is “bad”

For comparison, the capacity with constant powertransm|35|8_rbS absent). This effect is more visible in the low-SNR
IS region, since in this case power must be used more efficiently.

1 4 o

Ceonet(P) = p(1)= log (1 + P) This re_su!t may be appe_almg in a TDMA_network for glata
2 transmission, where mobile terminals are likely to experience

+ p(o)lel/(AP)Ei(l’ 1/(AP)) different channel conditions. In this setting, as shown in [35] in

2 the case of perfect CSIT, a protocol that allocates resources ac-

cording to the users’ channel condition may provide substantial

the capacity with perfect CSIT is ‘ : ! OV
improvements in terms of total bandwidth efficiency.

Crert (P) L L . Example 3: Consider a TDD system. Let the channel com-
_ {P(l)—log(l/PO)+P(0)§Ei(17p0/A)v !f po =1 plex amplitude gaine,, be a stationary ergodic complex
p(0)3Ei(1, po/A), if po>1  Gaussian process with independent real and imaginary parts
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AWGN-Rayleigh channel, A=0.1, p(0) = 0.5
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Fig. 7. Capacity versu® for Example 2, with the probability(0) of having a Rayleigh channel equal ©05.

AWGN-Rayleigh channel, A=0.1, p(0) = 0.9
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Fig. 8. Capacity vers® for Example 2, with the probability(0) of having a Rayleigh channel equal to 0.9.

~ N(0,1/2) and assume that the channel gain estimator Bguation (30) in this case becomes
the transmitter(3,,, is the output of an MMSE linear prediction

filter, whose input is the sequence of past noisy measurements 1 {1 _° 11'/F1<7(u)7 M7 1)} <A

of a,. Then, «, is independent of/?—1 given f, and v(u) € € /1"
Proposition 3 applies. We lef,, = |a,|? (exponentially whereZ(a, b, c) is defined as

distributed with mear1) and we letl/,, = |3, |2. Let ¢ denote Y

the estimation mean-square error. Then, it is straightforward I(a,b,c) = /OO 1 Io(by/z)e™°" da. (33)
to show that the joint pdf of,, andU,, is given by (see also o 1+azx

[38, Appendix Al) The conditional average capacity givéh is given by

pls,u) = 6(11_ 6)10<2\i£> exp<—§ - ﬁ) /()Ooélog(l—i—sv(u))%l()(%/c@) exp(—z - %) ds. (34)
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Rayleigh with correlated Gaussian Tx CSI
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Fig. 9. Capacity versu® for Example 3, with channel gain estimation erkoe= 0.1,0.3,0.5,0.7,0.9.

Both these integrals are evaluated in the Appendix. The numerd. states and states with memory. A number of known
ical calculation ofC.;(7) has been carried out by discretizingesults have been obtained as particular cases of this analysis.
the variableu, by solving for~(u) for each discrete value, For the AWGN channel with fading, we found a general
and by averaging the resulting conditional average capacit@mple expression for capacity under some assumptions on
over allw’s. Since the channel is Rayleigh with average gaitme receiver and transmitter CSI. This holds also in the case
1, the capacity with constant power transmission is given lmf states with memory and yields as special cases the results
[12] Coonst(P) = 2e¥/P E;(1,1/P). The capacity with perfect of [17] (for perfect CSI), of [22] (for delayed perfect CSI)
CSIT is Cpert(P) = %Ei(l,po) wherepg is the solution of  and the optimality of constant power transmission [13] (for no
transmitter CSI and perfect receiver CSl). Some more intuition

ie*”ﬂ —E(1,p0)="P on optimal coding strategies for the AWGN fading channel
po have been given. In particular, we showed that variable-rate
and the capacity of the AWGN channel with the same averagariable-power coding schemes are not needed to achieve
gain and transmitted average power is the capacity of this channel, and a simple single codebook
1 scheme with dynamic power allocation may be a more viable

Cawgn(P) = glog(l +P). solution. Finally, a number of examples have been provided

for the AWGN fading channel. These examples show that even

Fig. 9 shows capacity vers@#for Example 3 for estimation with nonperfect CSl, the optimal power allocation is still of
errorse = 0.1,0.3,0.5,0.7, and 0.9. As expectedCe«i(P”) the water-filling type. Hopefully, this can be extended to the
converges t@€;(P) ase — 0 and toCeonst(P) @se — 1. In more interesting case of a multiuser channel where time and
fact,e = 1 corresponds to the case whéfg = |3,|> = 0,i.e., bandwidth are allocated dynamically to the users in order to
no CSIT. The gain with respect to constant power transmissigfaximize their rate sum, as done in [35], [34], and [30] in the
at rateR = 0.1 is 2.0 dB fore = 0.3 and 2.5 dB fore = 0.1. case of perfect transmitter CSI.

By relaxing the assumption that, is independent on‘l
given U,,, we get that the rate given by Proposition 3 is still APPENDIX
aChievable, even if it mlght not be the channel Capacity (|n EVALUATION OF SOME DEFINITE INTEGRALS

fact, the achievability in the proof of Proposition 3 does not i .
make use of the above assumption). Then, calculations like theWe want to evaluaté(a, b, ¢) defined by (33). By using the

example above allow simple comparisons of CSI estimati(fj:%W er sesrlgsgrigresegtla;on £j(z) and t_r:e dse?flmte integral
techniques in terms of achievable mutual information versts'’ €q. . 0 P ], we can rewrite (33) as

estimation mean-square error. 1S 1 /02" ¢
e = 155 (1) < 0(5)
(a,¢,0) akz_ok!<4a> c a

VI. CONCLUSION

In this paper we investigated the capacity of some tim%’e‘fhere L(v,z) = fwoo #~"c'di is the incomplete Gamma
unction. Then, we use the identity

varying channels with transmitter and receiver CSI. Conditions
for simple optimal coding have been derived in the case of T'(—k,z) =2 "E;(k+1,z) (k positive integey
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and the recursion formula [37, p. xxxiii] [11]
Ei(k,x) = . 1((3**‘ —2E;(k—1,2)), k>1 [12]

to obtain (13]
I(a,b,c) = %ec/“J <%)EZ (1, c) [14]
ng) (@) e

The infinite sum above does not seem to be amenable tgi&

closed-form formulation and it can be evaluated by truncation.
The evaluation of integral (34) is carried out in a similaf;,

way. First, we use integration by parts and we rewrite (34) as

1 [~ a b
5/0 —1+a$Q<E,V2C$> dx
where Q(v, 11) is the Marcum@-function [38, Appendix A]

and where we let = v(u), b = 2/u/¢, andc = 1/c. Then we
use the expansion of tig-function given by [38, Appendix A] [20]

) = S ()

k=0

(18]

[19]

[21]

[22]
and we apply the same technique used before to all the terms

of the summation. The final result is

[23]
[ k k

1 _12/4c ¢ c/a % b Np( € 24
5 Z( a) e 2 Ji NG Ez(l,a> [24]
k=0 4 [25]

oo 1 <_b2>[kz+:é( )‘<_a>z

+ - | = 1 — D! —

; E'(k + E)' 4a Pl c [26]
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