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On Channel Capacity per Unit Cost

SERGIO VERDU

Abstract —M Yless ication ch Is with arbitrary alpha-
bets where each input symbol is assigned a cost are considered. The
maximum number of bits that can be transmitted reliably through the
channel per unit cost is studied. It is shown that if the input alphabet
contains a zero-cost symbol, then the capacity per unit cost admits a
simple expression as the maximum normalized divergence between two
conditional output distributions. The direct part of this coding theorem
admits a constructive proof via Stein’s lemma on the asymptotic error
probability of binary hypothesis tests. Singl , multiple-access and
interference channels are studied.

I. INTRODUCTION

N THE SHANNON THEORY, channel input con-

straints are usually modeled by a cost function that
associates a nonnegative number b[x] to each element x
of the input alphabet. The maximum number of bits per
symbol that can be transmitted over the channel with
average cost per symbol not exceeding B is the capacity-
cost function, C(B). Thus, the transmission of one bit of
information requires 1/C(B) symbols at cost equal to
B/ C(B). Since the capacity-cost function is concave and
nondecreasing, by varying B we can trade off the number
of symbols and the cost it takes to send every unit of
information through the channel. For example, Fig. 1
depicts the cost-per-bit as a function of the number of
symbols-per-bit for a discrete-time additive white Gauss-
ian channel with noise variance equal to o2 and b[x]= x2,
ie., C(B)=3log(1+ B/c?). In this figure we see that the
cost per bit escalates rapidly with the transmission rate if
more than, say, one bit is to be transmitted per symbol,
whereas the cost per bit is close to its infimum, viz.,
o?n4, for, say, two or more symbols-per-bit. It may
appear at first glance that the penalty for transmitting at
a cost-per-bit close to its minimum value is, invariably,
slow communication. However, exactly the opposite may
be true. For example, consider the case when the dis-
crete-time Gaussian channel arises in the analysis of the
infinite-bandwidth continuous-time white Gaussian chan-
nel with noise power spectral density equal to o2 = N, /2
and input power limited to P energy units per second. In
this context a symbol or channel use can be viewed as a
degree of freedom or brief use of a narrow frequency
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Fig. 1. Cost vs. number of symbols required to transmit one bit of

information through AWGN channel.

band. Using a large number of degrees of freedom per
transmitted bit allows us to spend as little energy as
possible per bit, and thus, as little time as possible be-
cause any waveform whose energy is equal to E can be
transmitted in E /P seconds. Thus, the capacity in bits
per second of the continuous-time channels is simply P
divided by the minimum energy-per-bit o?In4 = N, In2,
i.e., the well-known (P log, e)/ N, bits/s.

The minimum cost incurred by the transmission of one
bit of information through the channel is a fundamental
figure of merit characterizing the most economical way to
communicate reliably. Its reciprocal, the capacity per unit
cost, is defined similarly to the conventional capacity,
except that the ratio of the logarithm of the number of
codewords to their blocklength (rate) is replaced by the
ratio of the logarithm of the number of codewords to
their cost (rate-per-unit cost).

Information-cost ratios have been studied, in various
guises, in the past. Reza [19] considered the case in which
the letters of the input alphabet need not have the same
duration (studied by Shannon [21] in the context of noise-
less source coding). Then the cost function b{x] becomes
the duration of the symbol x in seconds and the rate of
transmission in units per second is just the rate per unit
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cost. Motivated by this generalization, [12] and [16] gave
algorithms for the computation of the capacity per unit
cost of memoryless channels with finite input and output
alphabets, under the restriction that min, b[x]> 0. Pierce
[17] and subsequent works have found the capacity per
unit cost in bits per joule (or in bits per photon) of various
versions of the photon counting channel. The problem of
finding the capacity (in units per second) of continuous-
time channels with unlimited degrees of freedom (such as
infinite-bandwidth Gaussian channels [1] and fading dis-
persive channels [9]) is equivalent, as we have illustrated,
to finding the capacity per unit cost of an equivalent
discrete-time channel. The first observation that in the
Gaussian channel the minimum energy per bit is equal to
N, In2 is apparently due to Golay [11]. In his seminal
contribution [10], Gallager has abstracted the key features
of channels where the main limitation is on the input cost
rather than on the number of degrees of freedom and has
investigated the reliability function of the rate per unit
cost for discrete memoryless channels.

As we show in this paper, the capacity per unit cost can
be computed from the capacity-cost function by finding
supg > o C(B)/ B, or, alternatively, as

co I(X;Y)
P ERIXI

(1)
However, the main contribution of this paper is to show
that in the important case where the input alphabet
contains a zero-cost symbol (which we label as “0”) the
capacity per unit cost is given by

D(PY\X=x”PY|X:0)
C = sup blx]
X

where the supremum is over the input alphabet, Py y_,
denotes the conditional output distribution given that the
input is x, and D(P||Q) is the (Kullback-Leibler) diver-
gence between probability distributions P and Q (e.g., [2],
[6); also known as discrimination, relative entropy, infor-
mation number, etc.). It turns out that (2) is much simpler
to compute not only than (1) but also than the conven-
tional capacity; the reason being twofold: the divergence
between two conditional output distributions is usually
easier to compute than the mutual information, and the
required maximization is over the input alphabet itself
rather than over the set of probability distributions de-
fined on it. We illustrate this fact by several examples
where even though the capacity is unknown, a simple
evaluation of (2) results in a closed-form expression for
the capacity per unit cost.

If the input alphabet is the real line and the cost
function is b[x]= x?, then the capacity per unit cost is
lower bounded by one half of Fisher’s information of the
family of conditional output distributions. This bound is
attained by additive non-Gaussian noise channels where
the noise density function has heavier tails than the
Gaussian. Moreover, using the Cramer—Rao bound we
get an upper bound on the minimum energy required to

(2)
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send one unit of information through the channel in
terms of the minimum variance of an estimate of the
input given the output.

We give a constructive proof of the achievability of (2)
by pulse position modulation codes, via a simple applica-
tion of Stein’s lemma [4], a large-deviations result on the
asymptotic probability of error of binary hypothesis tests,
which is closely related to Shannon’s source coding theo-
rem. Although the definition of achievable rate per unit
cost places no restrictions on the available blocklength, it
turns out that codes whose blocklengths grow logarithmi-
cally with the number of codewords are sufficient to
achieve capacity per unit cost.

We also study the capacity region per unit cost of
memoryless multiple-access and interference channels. If
each input alphabet contains a zero-cost symbol O then
each user can transmit simultaneously at the capacity per
unit cost of the single-user channel that results by having
all other users transmit 0. This results in an easy-to-com-
pute inner bound to the capacity region per unit cost. A
sufficient condition (essentially, that the zero-cost symbol
produces the most benign interference to other users)
guarantees the optimality of that inner bound.

1I. CarpaciTy PER UNIT COST OF
SINGLE-USER CHANNELS

In this section we deal with single-user discrete-time
channels without feedback and with arbitrary input and
output alphabets denoted by 4 and B, respectively. An
(n,M,v,€) code is one in which the blocklength is equal
to n; the number of codewords is equal to M; each
codeword (x,,;," " *, X)), m=1,-++, M, satisfies the con-
straint

Z b[xmi] sv
i=1
where b: A > R* =[0,+) is the function that assigns a
cost to each input symbol; and the average (over the
ensemble of equiprobable messages) probability of decod-
ing the correct message is better than 1—e.
We will adopt the following standard definition [6].
Definition 1: Given 0 <e <1 and B >0, a nonnegative
number R is an e-achievable rate with cost per symbol
not exceeding B if for every y >0 there exists n, such
that if n> n,, then an (n, M,npB,€) code can be found
whose rate satisfies log M > n(R — y). Furthermore, R is
said to be achievable if it is e-achievable for all 0 <e <1.
The maximum achievable rate with cost per symbol not
exceeding B is the channel capacity denoted by C(p).
The function C: R* — R™ is referred to as the capacity-
cost function [15].

In this paper we restrict attention to memoryless
stationary channels. The following is well known [9].

Theorem 1: The capacity-cost function of an input-con-
strained memoryless stationary channel is equal to

c(B)= sup I(X;Y)
E[b[))((]]sﬁ
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where the supremum is taken to be zero if the set of
distributions therein is empty.

As we saw in the introduction, in addition to (or in lieu
of) the maximum number of bits per symbol that can be
transmitted with average cost per symbol not exceeding
B, it is of interest to investigate the maximum number of
bits per unit cost that can be transmitted through the
channel. The inverse of this quantity gives the minimum
cost of sending one bit of information regardless of how
many degrees of freedom it takes to do so. We introduce
the following formal definition of this fundamental limit
of information transmission.

Definition 2: Given 0 < € <1, a nonnegative number! R
is an e-achievable rate per unit cost if for every y >0,
there exists v, € R* such that if »> vy, then an
(n,M,v,€) code can be found with log M > v(R — ).
Similarly to Definition 1, R is achievable per unit cost if it
is e-achievable per unit cost for all 0 <e <1, and the
capacity per cost is the maximum achievable rate per unit
cost.

Note that Definition 2 places no direct penalty or
constraint on the number of symbols (or degrees of free-
dom) used by the code. However, we will see in the
corollary to Theorem 2 that the channel capacity per unit
cost is not reduced if the blocklength is constrained to
grow linearly with the cost, and, thus, logarithmically with
the number of messages. Our first result represents the
capacity per unit cost in terms of the capacity-cost func-
tion.

Theorem 2: The capacity per unit cost of a memoryless
stationary channel is equal to

€ sup S _ o 1OX5Y)
g>0 B x E[b[X]]

Proof: First, we show that for every 8> 0, C(B)/8 is
an achievable rate per unit cost. Fix y > 0; since C(B) is
e-achievable there exists ng such that if n> ng, then an
(n, M, np,e) code can be found with

log M YB
—>C(B) - —.
n 2
Now, Let vy = Bmax{nz,2C(B)/yB}. If v=nB and v >
vy, then that code satisfies
logM> C(B) Y.
v B 2’
if nB <v <np+ B, then the same code is an (n, M, v, €)
code with
logM logM ng

v ng v
>[C(ﬁ)_z] [1+ ¥B ]
B 2 2C(B)
C(B)
5 7 (3)

'Information per symbol and information per unit cost are differenti-
ated by lightface and boldface characters, respectively.
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This shows that C(B)/B is e-achievable per unit cost for
every 0 <e <1. Since the set of achievable rates per unit
cost is closed, sup,. C(B)/B is an achievable rate per
unit cost.

To prove the converse part, we use the Fano inequality,
which implies that every (n, M, v, €) code satisfies

(1-€)log M < I(X";Y") +log2 (4)

where X" is the distribution of the n input symbols when
the messages are equiprobable. Because of the constraint
on the cost of each codeword, X" satisfies E[L7_, b[X,]]
<v, and thus (4) implies

log M 1 |n 1 log2
= - sup —I(X"yyn)_'_
v 1-€elv P n
Bz bl
n n
1L Jn log2
= — sup I(X;Y)+—
1_6 14 X v
ElbX]l <~
n
! 1 log2
= sup - sup  I(X;Y)+—
l1-e B>0 B X v
Elblx1<B

where the intermediate inequality follows from the mem-
orylessness of the channel in the usual way. This implies
that if R is e-achievable per unit cost, then for every
v > 0, there exists v, such that if v > v, then

1 { c(B) logZ}
R-vy< sup +
1-€ B>0 B v

or in other words, for every y > 0,

R — y < liminf

v o

{ C(B) log2 }
su + .
1—€c|poh B ”
Therefore, if R is achievable per unit cost, then

C
R < sup ()

B>0

and the theorem follows. O

Corollary: Rate R is achievable per unit cost if and
only if for every 0 <e <1 and y > 0, there exist s > 0 and
vy, such that if v >, then an (n,M,v,€) code can be
found with log M > v(R —y) and n < sv.

Proof: The condition is stronger than that in Defini-
tion 2; therefore, according to Theorem 2, it suffices to
show that the condition is satisfied for

R = sup C(B)
B>0

if this quantity is finite, and for arbitrary positive R
otherwise. Fix arbitrary 0 <e <1 and y >0, find 8,> 0
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such that C(B,)/B,> R — v, and use the code found in
the proof of the direct part of Theorem 2 particularized
to B =B,. That code is an (n, M,v,€) code, which satis-
fies

logM C
g > (BO)_Y>R_2Y
4 Bo
and
14
n<—. m}

0

It is tempting to conjecture that the restriction to
memoryless channels is superfluous for the validity of
C = sup C(B)/B. However, even though this formula in-
deed holds for many channels with memory, it is not
universally valid. For example, consider a binary channel
with cost function b[0}= 0, b[1]1=1, and such that

Y;=X; OR X; | OR X;_, OR "~

The set of all codewords of blocklength n that contain
only one nonzero bit results in an (n,n,1,0) code (and,
thus, in an (n, n, v, €) code for » > 1,0 < € <1). Therefore,
the capacity per unit cost is infinite (cf. Definition 2)
whereas the capacity-cost function is identically zero be-
cause there are only (n +1) distinct output codewords of
blocklength n.

A generalization of the Arimoto-Blahut algorithm [2]
has been given in [12] for the computation of
sup, I(X;Y)/E[B[X]] in the case when the input and
output alphabets are finite sets and b[x]>0 for every
x € A. The motivation for computing this quantity in {12]
arose from [19] and [16], which considered channels where
the symbol durations need not coincide; hence, the posi-
tively constraint on the cost function (equal to the symbol
duration in this case).

The special case b[x]=1, x € A renders the capacity
per unit cost equal to the conventional capacity of the
unconstrained channel. So unless some added structure is
imposed, our formulation remains a more general prob-
lem then finding the conventional capacity and little more
can be said beyond Theorem 2.

It turns out that the additional structure that makes the
problem amenable to further interesting analysis is the
case when there is a free input symbol, i.e, b[x,]= 0 for
some x, € A. For notational convenience, we label the
free symbol by 0, and we denote A'= A —{0}. (If there
are several free symbols, it is immaterial which one is so
labeled.) In this case, it is no longer necessary to find the
capacity-cost function C(B) in order to find the capacity
per unit cost, and in fact, the problem of computing the
capacity per unit cost is usually far easier than that of
computing C(8). Our main result is the following.

Theorem 3: If there is a free input symbol, i.e., b[0] =0,
then the capacity per unit cost of a memoryless stationary
channel is equal to

D(PY|X=X||PY|X:0)
blx]

C= sup

xe A

(5)
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where Py x_, denotes the output distribution given that
the input is x, and D(P|Q) is the divergence between
two measures defined as

dpP )
D(P||Q) = flog(@)dP, if PxQ (6)

+ o, otherwise.

Proof: The capacity-cost function C(B) is concave on
(B, +) where B, =infb{x] [15]. But B, =0 be-
cause there is a free input symbol, and therefore, the
function C(B)/B is monotone nonincreasing in (0, + %)
and

C
€= sup (8

B>0

C(B)
5

First, consider the case when the free symbol is not
unique, i.e., there exists x, € A such that b{x,]=0 and
D(Pyx . IPy x=0) >0 Gf Py x_ = Py x=o, then x, is
equivalent to 0 for all purposes and it is excluded from
A’). Then, any distribution X such that 0 <P[X =0]=
1- P[X = x,]<1 achieves I(X;Y)>0 and E[p[XT]=0.
Consequently, C(8) is bounded away from zero on [0, + )
and the right sides of both (7) and (5) are equal to +c.

In the case when the free symbol is unique, we will
lower bound C(B) by computing the mutual information
achieved by the input distribution X such that

(7

= lim
BLO

B
P[X=x)]=——3=1-P[X=0 (8)
[ 0] b[xo] [ ]
for an arbitrary x, € A, with b{xy]> 0.
If D(Py x_, ||Pyx=0) =+, then
I(X:Y)  D(Pyjx=ylIPy) )
B - b[x,]

and by the continuity of divergence [18, p. 20] the right
side of (9) grows without bound as B—0 (and Py —
P Y|X=0)'

If D(Py x.,,
representation

|Py x=¢) < +, then we use the general

I(X;Y) = [D(Pyx-IPy) dPy(x)

-/] [log Lrices )

dPY|X=0

dPy x—o

+log 4P ()’)]dan—x(Y) dPy(x)

=ID(PY|X=X|IPY]X=O) dPx(x) _D(PY”PY\X=[))7
(10)

which is meaningful when the second term in the right
side is finite. Particularizing (10) to the choice of input
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distribution in (8) we obtain

1 1 1
EI(X;Y) = b[—%]D(me:x(,)_ ED(PY“PY\X=U)'
(11)

The limit as B — 0 of the second term in the right side of
(11) is given by the following auxiliary result.

Lemma: For any pair of probability measures such that
P, < P, the directional derivative

1
g% ED(BP' +(1=B) PyllPy) = 0.

Proof of Lemma: This result is a special case of
identity (2.13) in [5]. We give a self-contained proof for
the sake of completeness. For notational convenience, let
us introduce the dominating measure u such that P, <
u, Py<p(eg, u=Py+ P), and denote

dP,

= 3 = ’1
i k=0

Py
pg= Bp, +(1- B)Po and 8= é[l’g log(p,g /Po)]‘ Then
1
5D(BP+(1=B)PollPy) = [g5(x) du(). (12)

but

1
8= E[pﬂ log pg — Py log py + pylog py ~ pglog py]

1
=E[PﬁIOgPp_PologP0]+(P0_P1)logpo- (13)

Since pglog p, is convex in B, the chord lemma (e.g., [20,
p. 108)]) implies that the first term in the right side of (13)
is monotone nondecreasing in B. Its limit as 8 | 0 is equal
to

d
EEPB log pglg_o = (py— py)log(epy),
which together with (13) implies that

limg, = — lo
lim g (P~ po)loge

where the convergence is monotone nonincreasing.
Therefore the monotone convergence theorem gives the
desired result upon substitution in (12). m]

The conclusion from (11) and the Lemma is that

C(B) KX:Y) _ D(Pyix-xIPyix-o0)

C = lim
b[x()]

Bi0

> lim
Blo B

and consequently,

D(PY|X=A'”PY\X=0)
bl x]

C > sup
xe A

To prove the reverse inequality, first consider the upper
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I(X;Y) SfD(PYM’:x”PYlX:O)dPX(x); (14)

if D(Py [Py x_y) <o, then (14) follows from (10) and the
nonnegativity of divergence; otherwise the right side of
(14) is equal to +o as a result of the convexity of
divergence in its first argument. Applying (14) and recall-
ing that in this part of the proof the free symbol is
assumed unique, we get that for every g >0
c(p) 1
——=— sup
X

1(X;Y
5 "B (X;Y)

E[b[X)<B

< sup
X

1
Ejb[x]dPX(x)Sl

/A D(PY[XIXHPY|X=0) b[X] dPy(x)

b[x] B

D(PY\X:XHPYI)(:O)
b[x] (15)

concluding the proof of Theorem 3. D

< sup
xe A

We have seen in the foregoing proof that to transmit
information at minimum cost it is enough to restrict
attention to codes which use only one symbol in the in-
put alphabet in addition to 0. We will highlight this fact
with an alternative proof of the achievability of
sup D(Py, x_,|| Py x—o)/ blx] which unlike that in Theo-
rem 3, does not hinge on the result of a conventional
coding theorem (via Theorem 2). This alternative proof of
the direct part of our coding theorem does not follow any
of the approaches known for proving conventional direct
coding theorems, viz., typical sequences, types, random
coding exponent and Feinstein’s lemma. Rather, it is a
direct corollary of Stein’s lemma [4] on the asymptotic
error probability of binary hypothesis tests with i.i.d.
observations. Interestingly, Stein’s lemma can be viewed
as a generalization of Shannon’s first (source coding)
theorem (cf. [6]).

Codebook: Fix x,€ A and integers M >0 and N> 0.

Codeword m {1, - -, M} corresponds to an M X N ma-
trix all whose columns are identical to [r," ',rM]T where
Xq, I=m
r= { 0 .
0, i#m.

Thus the blocklength of this code is » = MN and the cost
of each codeword is v = Nb[x,].

Decoding: Fix 0 < € < 1. The decoder observes the ma-
trix of independent observations (yi,-, 1<i<M,1<j< N}
where y;; has distribution Py y_, if i=m and Py x_,
otherwise, given that codeword m is transmitted. The
decoder is not maximum-likelihood, rather it performs M
independent binary hypothesis tests:

Hyy:r,=0
Hyiri=x,

i=1,"--,M. The conditional error probabilities of those




1024

tests are denoted by
a;y = P[7, = xo|r;=0]
Bin = P[#=0lr;= x,]

and the thresholds are set so that B;, < 5. Then, message
m is declared if
;= {xﬂ’
05

otherwise (i.e., if 7, # 0 for zero or more than one i), an
error is declared.

To evaluate the rate per unit cost that can be achieved
with this code, we need to estimate how large M can be
so that the average probability of error does not exceed e.
Obviously, the probability of error conditioned on mes-
sage m being sent P,, is independent of the value of m
and can be upper bounded by

Py <Bin+t(M—-1)a,y.

By Stein’s lemma (see [2, Theorem 4.4.4]), since B,y <3,
for every y > 0 we can achieve

a;y < exp [ - ND(PY|X=xU”PY|X=O) + N‘Y]
for all sufficiently large N. Consequently, if
log M D(PY|X=XU”PY|X=O) _ 2y
Nb[x,] bl x] bl x,]

then, P, <e for, sufficiently large N, and therefore,?
D(Py, x . IPyx=0)/ blxo] is an achievable rate per unit
cost.

Notice that the dependence of the blocklength of the
foregoing code in the number of messages is superlinear:
O(M log M); however, the corollary to Theorem 2 guar-
antees that even if the blocklength is constrained to grow
logarithmically in the number of miessages, the same rate
per unit cost can be achieved.

The preceding codebook is orthogonal in the sense that
the nonzero components of different codewords do not
overlap (cf. [10). This corresponds to pulse position mod-
ulation (PPM) either in the time or frequency domains.
Interestingly, the realization that PPM can achieve the
maximum number of bits per unit energy in the Gaussian
channel goes back to Golay [11], who used a code essen-
tially equivalent to the foregoing.

The quantity

i=m
i#+m

sup D(PY|X=x”PY|X=O)

x€ A

cx]<pg
can be interpreted as the maximum ratio of transmitted
bits to (nonzero) degrees of freedom used per codeword
subject to a (peak) constraint on the cost of each symbol
dictated by a cost function ¢: A'— R™. To see this, partic-
ularize the result of Theorem 3 to the case: b[x]=1 if
x + 0 and input alphabet equal to {x € A, c[x]< B}.

This only shows existence of the desired codes with cost-per-code-
word v equal to a multiple of b[x,). Intermediate values of v are
handled as in (3).
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As we have mentioned, one of the nice features of the
capacity per unit cost is that it is easier to compute than
the ordinary capacity, for channels with a free input
symbol. We now give several illustrative examples.

Example 1 (Gallager’s energy limited change): In [10],
Gallager considers a discrete-time stationary memoryless
channel with input alphabet {0,1} and real-valued output
with density function p; conditioned on the input being
equal to i=0,1. The energy function is b[0]=0 and
b[1]=1. Using Theorem 3, we get that the capacity per
unit cost is equal to

pi(x)

Po(x) .

C=D(p\lipy) = f:opl(X) log

The reliability function of the rate per unit cost E(R) of
this channel is found exactly in [10], where it is shown that
E(R)>0 if and only if R is smaller than a certain
parameter E(0) defined therein. It can be checked that
E}(0) coincides with the divergence between p, and p,.

The case of a finite (nonbinary) input alphabet
{0,- - -, K} with arbitrary energy function for nonzero in-
puts is also considered in [10]. In this case, the reliability
function of the rate per unit cost is only known exactly
under a certain sufficient condition. Nevertheless, as in
the binary case, the random-coding lower bound and the
sphere-packing upper bound to the reliability func-
tion are equal to zero for rates per unit cost greater
than E}0) that can be shown to coincide with
max, . ; . ¢ D(p;llpo)/ bLil.

Example 2 (Poisson Channel): In the continuous-time
Poisson channel studied in [7], [22], the channel inputs are
functions {A(r), ¢ €[0, T} such that 0 < A(t) < A, and the
channel output is a Poisson point process with rate A(£)+
Ao- The cost of the input waveform {A(r), t€[0,T]} is
equal to [ A(#)dt, which can be interpreted as the aver-
age number of photons detected by a photodetector when
the instantaneous magnitude squared of the electric field
incident on its screen is A(t). Therefore, in this case, the
capacity per unit cost can be interpreted as the maximum
number of bits that can be transmitted per photon. To
put this channel in an equivalent discrete-time formula-
tion which fits in our framework, fix T, > 0, consider the
input alphabet to be the set of waveforms {x(¢), ¢ €[0, ],
0 < x(t)< A}, and let b[{x()}]= [ x(¢) dt. Hence there
is a free symbol: {x(¢)=0, t €[0,T,]}. Since we place no
restrictions on the variation of each of these waveforms
on [0,T,], it is clear that if we let T =nT, and let a
codeword ({x (1), - -,{x,(r)}) correspond with the contin-
wous-time input A(t) = X'>4 x,(r —iT;) the model is
equivalent to the original one (the fact that T grows as a
multiple of T, can be easily overcome by appending a
zero-valued waveform of duration smaller than T).

The divergence between the outputs due to input wave-
forms {x(t), t€[0,T,]} and {0, t €[0,T,]} can be com-
puted using the sample function density of a Poisson
point process with rate {A(¢), ¢ €[0,T,]} with respect to
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the probability measure generated by a unit-rate Poisson
point process evaluated at the unordered realization
(e, -t (31

T, K
pA(t,,---,zK)=expe(j0 [1—A(r>1dt)1]]m,-)‘

Then

1025
tion is easily shown to be given by
D(N(ml,a',z)HN(m(,,o'Oz))

2
T4 | (m, 0) 1
=log—+|— - =1
¢ o {20}% 20¢ 2| %%

I, K
expe(—fo [x(2)+Ag) dt)il:[] [x(2)+ 2]

D(p,lipy) = E|log

T() K ‘
€Xp. _/ Ao dt l_[’\()
0 i=1

=—fOT"x(t)dtloge+E[ f log(1+M)]

where the expectation is with respect to the measure
generated by the Poisson process with rate {x(z)+ A,
t €[0,T,]}. A straightforward computation shows

Tl
D(p,llpy) = _j;) ‘x(t)dtloge

T()
+f (x(¢)+ A,)log
0

x(t
1+ ( ))dt
Ao

and by virtue of Theorem 3 the capacity per unit cost is

fT"(x(t) + A(,)log(l + x(1) ) dt
0

’\0
C= sup = —loge
0<x()<A
Fr0=N [0 x(t)dt
Ay z
= max (1+—)log(1+—)—loge
0<zgA z Ay
A() /\l
=|1+—|log|1+—|—loge,
Al A()

which can be shown to coincide with

C(P,/\l) . C(P’Al)
= lim
pA, pl0  PAy

sup
p>0

where C(p, A,) is the capacity of the channel with average
cost per codeword not exceeding pA, found in [7], [22].

Example 3 (Gaussian Channel): Consider the discrete-
time memoryless channel with additive and multiplicative
Gaussian noise

yi=(at+z)x,+w,

where the input symbol is x; € R and {z;} and {w;} are
independent i.i.d. Gaussian sequences with zero-mean
and variances y2 and o2, respectively. The conventional
additive white noise channel corresponds to the case
v = 0; whereas the case a=0 arises (in a multidimen-
sional version) in the modeling of fading dispersive chan-
nels [9]. The divergence between two Gaussian distribu-

A()

i=1

which implies
D(Py x=:lIPyx=0)
Hence, if b[x]= x?, then the capacity per unit cost is

1 y%+ a?

2 o?

At this point it may be worthwhile stating a simple

lower bound to the capacity per unit cost in the special

case when A =R and b[x]= x?. Within mild regularity

conditions on the family of conditional distributions

{Py,x-x; x € R}, the following asymptotic result on the
divergence is known [14, 2.6]

_ D(Pyjx_il|Pyix=0) 1
lim Xz = EI()(PYIX)

x 10 X
where I,(Py,y) is Fisher’s information for estimating X
from Y. From Theorem 3, it follows that>

loge.

1
C> EI()(PHX)' (16)

Coupling (16) to the Cramer—Rao bound [2, 8.1.3] we
obtain an interesting connection between information
theory and estimation theory: the minimum energy neces-
sary to transmit one half nat information (0.721 bits)
through the channel cannot exceed the minimum condi-
tional variance of an estimate of the input from the
output given that the input is 0.

The reason for this connection can be explained as
follows. The capacity (and, hence, the capacity per unit
cost) of the channel cannot increase if the decoder is
constrained to use, in lieu of the channel outputs, the
input estimates provided on a symbol by symbol basis by
an unbiased minimum variance estimator. Then, the
channel seen by the decoder (Fig. 2) can be viewed as a
memoryless channel with additive noise (possibly depen-
dent of the input), i.e., the output of the equivalent

*If A= R¥ and b{x]=|x||>, then I(Py,x) is replaced by the largest
eigenvalue of Fisher’s information matrix.
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Yi | MINIMUM-VARIANCE
INPUT ESTIMATOR

|

IX;

= DECODER
|

|

Fig. 2. Modified decoder for justification of estimation-theoretic bound.

channel can be written as X, = X; + N;, with var(N,) = o2,
The capacity of this channel cannot be smaller than the
capacity of an additive white Gaussian noise channel with
noise variance equal to o2 This can be checked by
generalizing Theorem 7.4.3 in [9] to the case where the
additive noise and the input are uncorrelated, but not
necessarily independent. Therefore, the minimum energy
necessary to send one bit through the channel cannot be
greater than ¢%In4 = o2 /0.721. But for reliable commu-
nication with minimum energy, the overwhelming major-
ity of inputs are equal to 0 and o? is arbitrarily close to
the minimum conditional estimate of the input from the
output given that the input is 0.

Note that this estimation-theoretic bound on the mini-
mum energy required to transmit information reliably is
satisfied with equality in the case of the additive Gaussian
channel because in that case the Cramer—Rao bound is
tight and the input estimator gives a scaled version of the
channel output.

Another simple bound to the capacity per unit cost is
obtained using Kullback’s inequality [13],

1 2
D(PY|X=x”PY|X=0) 2 E(ﬁPY\X:x - PY\X=O|) .

The lower bound in (16) is satisfied with equality in the
additive Gaussian noise channel (Example 3) and in the
next example which illustrates the simplicity of the com-
putation of capacity per unit cost in channels where the
computation of the capacity-cost function is a pretty
hopeless task.

Example 4 (Additive non-Gaussian noise channel): Con-
sider the discrete-time memoryless channel with additive
Cauchy noise y;,=x; +n; where the probability density
function of each noise sample is

1 1
==
1+(=]
o
The divergence between two shifted versions of the
Cauchy distribution is easily computed
fz—x)

@

D(PY|X=x”PY|X=0) =f_:f(z —x)log

X 2
1 . 1 | l+(t+;) P
=— t

‘n—f,wlﬂz BT

1 1 —x2
- +
8 402 )

which results in

C= loge,

402
when the cost is equal to the energy (b[x]= x?).

A similar exercise for Laplace distributed noise with
probability density function

1
f(z)=

5 e~ V2izl/a
20

yields

V2
D(PY|X=XI|PY{X=O) ={—Ix|-1+ e V2ki/e loge
o
and
C=—loge,
Szloge
which satisfies (16) with equality as well.*

III. CaraciTy REGION PER UNIT COST OF
MuLTiusER CHANNELS

We consider frame-synchronous discrete-time memory-
less two-user multiple-access channels with arbitrary in-
put alphabets A4, and A4, and output alphabet B. (At the
end of this section we generalize the results obtained for
the multiple-access channel assuming the existence of
free symbols to the interference channel.) A (n, M, M,,
v,,v,,€) code has blocklength n; average probability of
decoding both messages correctly better than 1—¢€; M,
codewords for user k; and each codeword of user k
satisfies L7_, b[x,,;]<v, where b,: A, > R*, and k=
1,2. Generalizing Definition 1 to the multiple-access
channel (cf. [6])) and denoting the capacity region of the
stationary memoryless two user channel with cost per
symbol for user k not exceeding B,, k = 1,2, by C(B,, B,),
the following coding theorem holds.

Theorem 4 [10]: Define the directly achievable region,

Alppe)= U {((RLRy):0<R <I(X;;Y|X,)
Xy, X
E[b [ X )< py
k=1,2

0<R,<I(X,;Yl|X,)
R, +R,<I(X,,X,;Y)} (17)

where the union is over independent distributions on the
input alphabets.

%A sufficient condition for (16) to be satisfied with equality in an
energy-constrained additive noise channel is that the noise density be
even and its convolution with the fourth derivative of its logarithm be
nonnegative. (This condition was obtained jointly with H. V. Poor.)
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Then, C(B,, B,) is equal to the closure of

(R\,R,): ((R,,R,),(B,,B,)) € convex

: U (A(Ih’#z):(lhaﬂz))}- (18)

w >0

u2>0
The direct part of this result is a straightforward general-
ization of the unconstrained version of the result [6], [8];
the converse is due to Gallager [10] along with the realiza-
tion that C(B,,B,) need not equal A(B,,B,) (a long-
standing common misconception). It can be shown that
(18) can be written as

{0<R <I(X;YIX,,V)

U  0<R<I(X;YIX,V)

X, X,V
E[bz[:\’kj]zgpk R+ Ry < I(X,, XYV}

where (X, X,) are conditionally independent given the
simple random variable V' and Y is conditionally indepen-
dent of V given (X|, X,). This alternative expression is
akin to that given by Csiszar and Kérner [6, p. 278] in the
unconstrained case.

We define the capacity region per unit cost similarly to
Definition 2.

Definition 3: Given 0 <e <1, a pair of nonnegative
numbers (R,, R,) is an e-achievable rate pair per unit
cost if for every y >0, there exists, (¥,,7,)€ R* X R*
such that if x> 1 then an (n, M|, M,,v,,v,,¢) code can
be found with

log M,

Vi

2R, —v, k=1,2

and (v,,v,)=x(¥,7,). The pair (R,,R,) is achievable
per unit cost if it is e-achievable per unit cost for all
0 <€ <1 and the capacity region per unit cost is the set of
all achievable pairs per unit cost. Theorem 5 next is a
generalization of Theorem 2.

Theorem 5: The capacity region per unit cost of a
memoryless stationary two-user channel is equal to

C= U {(R,R,): (B\R,B,R,) €C(B,,B,)}. (19)
>0
iR
Proof: The proof of the direct part is a straightfor-
ward generalization of the corresponding proof in Theo-
rem 2. To show the converse part, note that because of
the Fano inequality, every (n, M;, M,,v,,v,, €) code satis-
fies

v, logM, v, logM
(l—e)(—l g 1,_2 g 2)
n v n v,
v, v, 11
eAn(—,—)+(—,—)log2 (20)
n’'n n'n

where A, is the directly achievable region for the n-block
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version of the channel,
) 1
A (my0) = U {OSRIS_I(XI";YH‘X;)
XXy n

1
;Z§'= VELb[ X T < pic

1
0<R,<—I(X};Y"X})

=

1
Ry+ Ry < 1((X7. X35 ¥} (21)
which is a subset of C(u,,u,) because the channel is
memoryless. From (20) and Definition 3 we have that if
(R, R,) is achievable per unit cost, then for all 0 <e <1,
v>0, (v,,v,)=x(¥,7,) and x> 1, there exists n such
that
V1 Va

Vi v
(-0 (Ri=). (R =m)) e 2, 2]
n n n’'n
1v, 1v
+(——1,——2)10g2,
vi,n v, n
which implies
(R,R))e U

B>0
B;>0

{(R1’R2)3 (1_5)(31(R1 -7),

&,E)logZ}
14 14

1 2

Bz(Rz - Y))E C(Bl?BZ) +

and since min{v,,v,} is arbitrarily large

(R\,R;) € U {(R,R): (1—€)(B\(R,—2y),
B8,>0
B,>0

'Bz(Rz _27)) EC(Bsz)} (22)

But since (22) holds for arbitrarily small € and y and the
set C(B,, B,) is closed, (R,, R,) must belong to the right
side of (19). O

Using the same idea as in the corollary to Theorem 2, it
is easy to prove that the capacity region per unit cost is
not reduced if the blocklength is constrained to grow
linearly with the cost.

Corollary: The pair (R, R,) is achievable per unit cost
if and only if for every 0 <e <1 and y > 0, there exists
By>0 and B, >0 such that an (n, M,,M,,nB,,nB,,€)
code can be found for all sufficiently large n, with

log M,
nBy

As in single-user channels, the interesting case which
allows us to proceed beyond Theorem 5 is when each user
has a free symbol.

>R, —v.

Theorem 6: 1f both alphabets contain free input sym-
bols, i.e., 0 € A, such that b,[0]=0, then the following
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rectangle is achievable per unit cost

D(Pyix —x x.eol Pyix.—o x.m
c>{0<R, < sup ( YiX,=x,X; oll Y1X,=0,X, 0)
x € A bl[x]
D(Py y o xolPyix 0 x.z
x{0<R,< sup ( Y|X,=0,X;= I YiX,=0, X, 0)
x €AY bz[x]
(23)

Proof: Consider the two single-user channels that are
derived from the multiple-access channel by letting all
input symbols from user 2 and user 1, respectively, be
equal to 0. Suppose that we have an (n, M,,v,,¢,) code
for the kth single-user channel, kK =1,2. Then we can
construct a (2n, M|, M,,v,,v,,€, + €,) code for the origi-
nal multiple-access channel by simply juxtaposing »n 0’s to
the left [resp. right] of each codeword of the single-user
code 1 [resp. 2], and by having two independent single-user
decoders. Then, the inner bound (23) follows from the
single-user result of Theorem 3. ]

Before we find sufficient conditions that guarantee that
the inner bound in (23) is equal to the capacity region per
unit cost, we exhibit an example where the inclusion in
(23) is strict: Let 4,= A, =B ={0,1}, b,[0]=0$, b,[1]=
1$, and y, = x; AND x,;. The inner bound in Theorem 6
is equal to {(0,0)}, whereas the capacity region per unit
cost (computed via Theorem 5) is depicted in Fig. 3.
Several observations on this region are in order. First,
note that the capacity region per unit cost need not be
convex, because the time-sharing principle does not apply
here: the rate pair per unit cost of two time-shared codes
is not the convex combination of the respective rate pairs
per unit cost. Second, note that any rate pair of the form
(0, R) or (R,0) is achievable, because if one of the users
always sends 1 (an altruistic strategy that incurs in the
highest possible cost without sending any information),
the other user sees a noiseless binary channel, over which
it is possible to send any amount of information with one
unit of cost (using sufficiently long blocklength). Third,
even though both users have a free symbol, coding strate-
gies that use a very low percentage of nonzeros are not
optimum, in contrast to the single-user channel. For ex-

]
2k
R, 1F
0 L ——
0 1 2 bits/$

Ry

Fig. 3. Capacity region per unit cost of AND multiple-access channel.
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ample, the boundary point of the capacity region per unit
cost in which both users have the same rate per unit cost,
0.81 bits/$ (or about 185¥ to send one bit), is achieved
with P[ X, =1]= P[ X, =1]=0.49.

The underlying reason why it is not possible to proceed
beyond Theorem 5 in the case of the aND channel, is that
use of the free symbol by one of the users disables
transmission by the other user. However, in many multi-
ple-access channels, the opposite situation is encoun-
tered, namely, use of the free symbol by one of the users
corresponds to the most favorable single-user channel
seen by the other user. In that case, we have the following
result.

Theorem 7: Let C{"(B) be the capacity-cost function
of the single-user channel seen by user 1 when input
2 is equal to the constant a € A,, i.e, a memoryless
single-user channel with conditional output probability
P)Y‘ X,=x.x,~a (@and CP(B) is defined analogously for user
2).

Suppose that both input alphabets contain a free sym-
bol and that
C¥(B) = max C¥(B), forp>0and k=1,2.
ac Ay
(24)

Then the inner bound in Theorem 6 is equal to the
capacity region per unit cost.

Proof: Let us introduce the set

Ao(#p#z) = [O,C(()l)(#l)] X [ch(()z)(ﬂ-z)]-
Note that

(25)

A(BI?BZ)CAO(BI’BZ) (26)

because for any random variables X, X, such that
Elb[X < u,

I(X;Y[X,) = [I(X;;Y|X, = a) dPy(a)

< [C(n,) dPy(a)

<CP(wy)-
Moreover the concavity of C§*'(u1,) ensures that

Ay(B,B2) = {(RnRz): ((Rl»Rz)»(Blaﬁz)) € convex

U (A()(I'Ll’.u'z)ﬂ(/“l‘l’f“'2))

w >0
wy>0

and consequently, via (26)

C(B,,B:) C A(By,B,)-
Together with Theorem 5 this implies

cc U {(R17R2): (BIRI’BZRZ) € A()(BI’BZ)}

B>0
B>>0

(27)
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and the theorem follows applying the single-user result in
Theorem 3. O

A more stringent sufficient condition for Theorem 7 is
that for any input distributions

I(X;Y1X, = 0) = max I(X;;Y|X; = x)

for (i,j)=(1,2),(2,1). An important case where this con-
dition is satisfied is the additive channel y, = x,; + x,; + n,.
In this case, I(X;Y|X;=a) is independent of a€ A,
A(B,,B,)=C(B,,B,), and the computation of the capac-
ity region per unit cost boils down to the computation of
single-user capacity per unit cost.

The decoupled nature of the results in Theorems 6 and
7 makes them an easy target for generalization to the
interference channel. Theorem 6 and its proof hold verba-
tim with the rectangle in (23) replaced by

CD{OsR,s sup b.[x]
1

D(PY1|X,=x,X2=()”PY1fX|=O,X2=0)
x€ A}

X{Osts sup

x € A,

D(PY2|X1=0,X2=x”PY2\X,=0,X2=0)
by[x] '

Regarding the generalization of Theorem 7 to the inter-
ference channel, it is possible to bypass Theorem 5 using
the following bounding argument. If both encoder 1 and
decoder 1 were informed of the codeword to be sent by
encoder 2 prior to transmission, they would see a single-
user arbitrarily varying channel with both encoder and
decoder informed of the state sequence. The capacity-cost
of this channel is equal to [6, p. 227]

inf C{V(B)
ac€ A%

for some A3 C A,. Because of (24), this is further upper
bounded by C§(B). If follows that under this hypotheti-
cal situation with side information, the capacity per unit
cost achievable by the first user is upper bounded by

C5(8)
P = sup

B>0

D(Py,u{1 =x‘X2=0||PY,|X1:0.X2=O)
bl[x]

x € A

IV. RELATED PROBLEMS

A problem that should be examined is whether there is
a counterpart to our channel coding result in rate-distor-
tion theory. The rate-distortion theorem [21] states that
the minimum number of bits that need to be transmitted
per source symbol so as to reproduce the source with
average distortion not exceeding 8 is the rate-distortion

function,
R(8) = inf
Yix
Eld(X,Y)]<$

I(X;Y) (28)
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where the nonnegative function d(x, y) assigns a penalty
to each input-output pair. Let §_,, be such that R(5,,,,)
=0and R(8)>0 for § <§,,,, i, 8., is the minimum
distortion that can be achieved by representing the source
by a fixed symbol;

6max = E[d(X’UX)] (29)

with

vy = argminE[d( X,y)]. (30)

In some situations it may be of interest to find the level of
distortion reduction from §,_,, that can be achieved by
low-rate coding. If we consider the reward function &8,
—d(x,y), then the minimum number of bits necessary to
get one reward unit is the slope of the rate-distortion
function at §_,,. The counterpart to Theorem 3 in rate-
distortion theory is

i 0)
arl{sn Oax — 0

max max

R(5

max )

inf D(Py|Py)
Py < Py E[d(W,Ux) —d(W,vy)

T (31)

The direct part of (31) can be shown by using the
following low-rate coding scheme: fix an arbitrary source
distribution P, ; for every string of n source symbols the
encoder informs the decoder that each symbol should be
represented by vy, if the string is P, -typical or by vy,
otherwise. Since the true distribution is Py, the probabil-
ity that the string is P,-typical is (cf. [6, Lemma 2.6])
essentially

p=exp(—nD(Py|Py)). (32)
Therefore, it suffices to transmit A(p)= —plogp—(1-—
p)log(1— p) information units per » source symbols. On
the other hand, (as n — =) the average distortion remains
equal to 8., if the string is not P, -typical, and it
decreases from E[d(W,v,)] to E[d(W,v, )] when the
string is P, -typical. Thus, the ratio of rate to distortion
reduction is (via (32))

lim hr)
n—w npE[d(W,vy) —d(W,vy)]

_ D(Py||Py)
E[d(W,vx)—d(W,v,)] "

To obtain the converse of (31), note that by the symmetry
of mutual information and the first equality in (10)

I(X;Y) :/D(PX)Y=y”PX)dPY(Y)~
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JD(Pyiy-,IPy) dPy(y)

R'(8 inf

v

max)

B [d(x o) dPy(x) = [ [Pyyoy(x) d(x,y) dPy(y)

[D(P)qy:yHPx) aPy(y)

v

inf

P =B [ [Py o (0 [d(x,0x) = d(x,04-,)] dPy ()

D(PyIPy)

In some situations, the designer of the communication
system may be interested in the sensitivity of the channel
capacity to the transmission resources, or in other words,
the slope of the capacity-cost function. If a closed-form
expression for the capacity-cost function is not available
and the capacity can only be obtained numerically, then
the following result, which can be obtained by generaliz-
ing the proof of Theorem 3, is of interest. If Py is the
input distribution that achieves capacity at cost equal to
Bos i.e., C(By) = I(Xy;Y,), then

D(Pyx-lIPy,) — C(By)
b[x] — By

C'(By) = sup

x€A
blx]> B,

that suggests that if 4 =R, and b[x] is symmetric and
increasing in the positive real line, then

C(ﬁo) = D(PY|X:+b“[3U]||PY(,) (33)

whenever the expression in the right side of (33) is con-
cave in B,.
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