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Linear Quadratic Gaussian Control

Linear: Dynamical System

Xk+1 = AXk + Buk + vk

Xk ∈ Rd, uk ∈ Rm,A ∈ Rd×d,B ∈ Rm×d

Quadratic: Cost Criterion

Determine a control process {uk}
arg min{uk} lim sup

n→∞
1
n

�
n

k=0 E[XT
GX + u

T

k
Fuk]

F ≥ 0,G ≥ 0;F,G ∈ Rd×d

Gaussian: Noise

vk

i.i.d∼ N (0,Q)
“Non-anticipative” noise
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Main Insight of Paper

The L.Q.G. Problem can be dealt with “cleanly” with com-

munication contraints- an optimal controller and code length

can be found.

Caveat! We don’t encode and transmit the state/observation

information, but rather, an innovations process, which is re-

lated to them

The innovations process is i.i.d. Gaussian, statistically inde-

pendent of control- so can use a fixed, optimal vector quan-

tizer.

This optimal quantizer has a centroid property- view quan-

tized variable as a conditional expectation

Controller need not remember the past states.
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Communication System

Definition

Code Length, M ≥ 1
Delay, N = ψ(M) ≥ 1

N-step propagation, for some k ≥ 0

X(k+1)N = A
N

XkN +
N�

i=0

A
N−i

BukN+i + ṽk+1

where

ṽk+1 =
N−1�

j=0

A
N−1−j

vkN+j

i.i.d.∼ N (0, Q̃N)

Definition

The sequence {ṽk} is termed the innovation sequence, and this

is what we quantize, encode and transmit to the controller.
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Communication System

Quantization - Optimal Vector Quantizer

Maps ṽk ∈ Ai → ai in a particular way. Output is v̂k

Centroid Property: v̂k = E[ṽk|σ-field generated by ṽk ∈ Ai]

Memoryless channel

Map ai to aj with probability q(i, j)
Channel noise is independent of everything else

Call the output v
�
k

Receiver End Make an M.M.S.E. estimate of v̂k from v
�
k
, call

it v̄k. Then this is an unbiased estimate, but has cov(v̄k) = E.

The Issue- Delay + Distortion

The controller only see all this distorted information at time (k +
1)N. What’s the optimal control?
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Memoryless channel

Map ai to aj with probability q(i, j)
Channel noise is independent of everything else

Call the output v
�
k

Receiver End Make an M.M.S.E. estimate of v̂k from v
�
k
, call

it v̄k. Then this is an unbiased estimate, but has cov(v̄k) = E.

The Issue- Delay + Distortion

The controller only see all this distorted information at time (k +
1)N. What’s the optimal control?



Communication System

Quantization - Optimal Vector Quantizer
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“Separated” Control Problem

Consider the L.M.S. estimate of Xk at the receiver (controller)

end, X̂k. Then, let the error in this be ek = X̂k − Xk, with a

covariance of Rk

The evolution of Rk is independent of the control sequence {uk}.

So we can reformulate the controller’s problem as finding {uk}
that satisfies

arg min
{uk}

lim sup
n→∞

1
n

n�

k=0

E[X̂T
GX̂ + u

T

k
Fuk]
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Setting up the Control Problem

The “new” control problem has an evolution equation written as

X̂k+1 = AX̂k + Buk + wk

Easy to show that

wk =

�
A

N
v̄i−1, k ∈ iN, i ≥ 0

0, otherwise

and that it’s 0 mean

This is like the LQG problem, except the statistics on noise.

Solution also very similar.
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Solving it

Theorem

The optimal (steady state) value of the controller {uk} for the
separated control problem (and, it follows, for the original) is
given by uk = µ(X̂k), k ≥ 0 where

µ(x) = −(BT
KB + R)−1

B
T

KAx

K is the solution to the algebraic Ricatti equation

K = A
T(K − KB(BT

KB + GF)−1
B

T
K)A + G

Also, with this controller, the cost as n → ∞ is given by

λ(N) =
1
N

tr[(AT)N
KA

N
E]



Optimal Codelength

The total cost of the original cost function is given by

J(N) = λ(N)� �� �
Cost for the new criterion

+
1
N

N−1�

i=0

tr[GA
i
R̄(AT)i] + tr[GQ]

� �� �
Error due to variance

where R̄ is the steady state variance of the L.M.S. estimate of

{Xk}

To get the optimal code length “just” optimize this over M ∈ N,

where N = ψ(M). Do it offline.

The idea of the optimization is:

Shorter codes mean less delay, more distortion

Longer codes mean more resolution, but more delay

as we’d expect.
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Partial Observations

If we have partial observations, i.e., an observation proce-

dure Yk = HXk + ηk, k ≥ 0, where ηk ∼ N (0, S).

Nothing really changes- the solution becomes a modified

Kalman filter. The results (costs, etc.) become modified

versions of the corresponding results for the Kalman filter.
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Issues

What is the optimal coding scheme?

Distributed control- some talks already

Other applications of analysis?
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