Bounds on Reliable Boolean Function Computation with Noisy Gates

- R. L. Dobrushin \& S. I. Ortyukov, 1977
- N. Pippenger, 1985
- P. Gács \& A. Gál, 1994

> Presenter: Da Wang 6.454 Graduate Seminar in Area I EECS, MIT
> Oct. 5,2011

Question

Given a network of noisy logic gates, what is the redundancy required if we want to compute the a Boolean function reliably?

- noisy: gates produce the wrong output independently with error probability no more than ε.
- reliably: the value computed by the entire circuit is correct with probability at least $1-\delta$
- redundancy:
minimum \#gates needed for reliable computation in noisy circuit minimum \#gates needed for reliable computation in noiseless circuit
- noisy/noiseless complexity
- may depend on the function of interest
- upper bound: achievability
- lower bound: converse

Part I

Lower Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates

History of development

- [Dobrushin \& Ortyukov 1977]
- Contains all the key ideas
- Proofs for a few lemmas are incorrect
- [Pippenger \& Stamoulis \& Tsitsiklis 1990]
- Pointed out the errors in [DO1977]
- Provide proofs for the case of computing the parity function
- [Gács \& Gál 1994]
- Follow the ideas in [DO1977] and provide correct proofs
- Also prove some stronger results

In this talk
We will mainly follow the presentation in [Gács \& Gál 1994].

Problem formulation

System Model

Boolean circuit C

- a directed acycic graph
- node ~ gate
- edge \sim in/out of a gate

Gate g

- a function $g:\{0,1\}^{n_{g}} \rightarrow\{0,1\}$
- n_{g} : fan-in of the gate

Assumptions

- each gate g has constant number of fan-ins n_{g}.
- f can be represented by compositions of gate functions in Φ_{C}.

Problem formulation

Error models (ε, p)

Gate error

- A gate fails if its output value for $\mathbf{z} \in\{0,1\}^{n_{g}}$ is different from $g(\mathbf{z})$
- gates fail independently with
- fixed probability ε
- used for lower bound proof
- probability at most ε

■ $\varepsilon \in(0,1 / 2)$

Circuit error

- $C(\mathrm{x})$: random variable for output of circuit C on input x.
- A circuit computes f with error probability at most p if

$$
\mathbb{P}[C(\mathbf{x}) \neq f(\mathbf{x})] \leq p
$$

for any input x.

Problem formulation

Sensitivity of a Boolean function

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function with binary input vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Let x^{l} be a binary vector that differs from x only in the l-th bit, i.e.,

$$
\mathbf{x}_{i}^{l}=\left\{\begin{array}{ll}
x_{i} & i \neq l \\
\neg x_{i} & i=l
\end{array} .\right.
$$

$\square f$ is sensitive to the l th bit on \mathbf{x} if $f\left(\mathbf{x}^{l}\right) \neq f(\mathbf{x})$.

- Sensitivity of f on \mathbf{x} : \#bits in \mathbf{x} that f is sensitive to.
- "effecitive" input size
- Sensitivity of f : maximum over all \mathbf{x}.

Asymptotic notations

- $f(n)=O(g(n)):$

$$
\limsup _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|<\infty
$$

- $f(n)=\Omega(g(n))$:

$$
\liminf _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right| \geq 1
$$

- $f(n)=\Theta(g(n)):$

$$
\begin{aligned}
& f(n)=O(g(n)) \\
& \text { and } \\
& f(n)=\Omega(g(n))
\end{aligned}
$$

Main results

Theorem: number of gates for reliable computation

- Let ε and p be any constants such that $\varepsilon \in(0,1 / 2), p \in(0,1 / 2)$.
- Let f be any Boolean function with sensitivity s.

Under the error model (ε, p), the number of gates of the curcuit is $\Omega(s \log s)$.

Corollary: redundancy of noisy computation

For any Boolean function of n variables and with $O(n)$ noiseless complexity and $\Omega(n)$ sensitivity, the redundancy of noisy computation is $\Omega(\log n)$.

- e.g., nonconstant symmetric function of n variables has redundancy $\Omega(\log n)$

Equivalence result for wire failures

Lemma 3.1 in Dobrushin\&Ortyukov

- Let $\varepsilon \in(0,1 / 2)$ and $\delta \in\left[0, \varepsilon / n\left(\Phi_{C}\right)\right]$.
- Let y and t be the vector that a gate receives when the wire fail and does not fail respectively.
For any gate g in the circuit C there exists unique values $\eta_{g}(\mathbf{y}, \delta)$ such that if
- the wires of C fails independently with error probability δ, and
- the gate g fails with probability $\eta_{g}(\mathbf{y}, \delta)$ when receiving input \mathbf{y}, then the probability that the output of g is different from $g(\mathbf{t})$ is equal to ε.

Insights

- Independent gate failures can be "simulated" by independently wire failures and corresponding gate failures.
- These two failure modes are equivalent in the sense that the circuit C computes f with the same error probability.

"Noisy-wires" version of the main result

Theorem

- Let ε and p be any constants such that $\varepsilon \in(0,1 / 2), p \in(0,1 / 2)$.
- Let f be any Boolean function with sensitivity s.

Let C be a circuit such that

- its wires fail independently with fixed probability δ, and
- each gate fails independently with probability $\eta_{g}(\mathbf{y}, \delta)$ when receiving \mathbf{y}.

Suppose C computes f with error probability at most p. Then the number of gates of the curcuit is $\Omega(s \log s)$.

Error analysis

Function and circuit inputs

Maximal sensitive set S for f

- $s>0$: sensitivity of f
- \mathbf{z} : an input vector with s bits that f is sensitive to
- an input vector where f has maximum sensitivity
- S : the set of sensitive bits in z
- key object
B_{l} : edges originated from l-th input
- $m_{l} \triangleq\left|B_{l}\right|$
- e.g.
- $l=3$
- B_{l}
- $m_{l}=3$

Error analysis

Wire failures

- For $\beta \subset B_{l}$, let $H(\beta)$ be the event that for wires in B_{l}, only those in β fail.
- Let

$$
\beta_{l} \triangleq \underset{\beta \subset B_{l}}{\arg \max } \mathbb{P}\left[C\left(\mathbf{z}^{l}\right)=f\left(\mathbf{z}^{l}\right) \mid H(\beta)\right]
$$

- the best failing set for input z^{l}

- $B_{l}=\left\{w_{1}, w_{2}, w_{3}\right\}$
- $\beta=\left\{w_{2}\right\}$
- Let $H_{l} \triangleq H\left(B_{l} \backslash \beta_{l}\right)$

Fact 1

$$
\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid H_{l}\right]=\mathbb{P}\left[C\left(\mathbf{z}^{l}\right)=f\left(\mathbf{z}^{l}\right) \mid H\left(\beta_{l}\right)\right]
$$

- Proof
- f is sensitive to z_{l}
- $\neg z_{l} \Leftrightarrow$ "flip" all wires in B_{l}
- β_{l} is the worst non-failing set for input \mathbf{z}

Error analysis

Error probability given wire failures

Fact 2

$$
\mathbb{P}\left[C\left(\mathbf{z}^{l}\right)=f\left(\mathbf{z}^{l}\right) \mid H\left(\beta_{l}\right)\right] \geq 1-p
$$

- Proof
- $\mathbb{P}\left[C\left(\mathbf{z}^{l}\right)=f\left(\mathbf{z}^{l}\right)\right] \geq 1-p$
- β_{l} maximizes $\mathbb{P}\left[C\left(\mathbf{z}^{l}\right)=f\left(\mathbf{z}^{l}\right) \mid H(\beta)\right]$

Fact 1 \& $2 \Rightarrow$ Fact 3
For each $l \in S$,

$$
\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid H_{l}\right] \geq 1-p
$$

where $\left\{H_{l}, l \in S\right\}$ are independent events. Furthermore, Lemma 4.3 in [Gács\&Gál 1994] shows

$$
\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid \bigcup_{l \in S} H_{l}\right] \geq(1-\sqrt{p})^{2}
$$

The error probability given H_{l} or $\bigcup_{l \in S} H_{l}$ is relatively large.

Error analysis

Bounds on wire failure probabilities

Note

$$
\begin{aligned}
p & \geq \mathbb{P}[C(\mathbf{z}) \neq f(\mathbf{z})] \\
& \geq \mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid \bigcup_{l \in S} H_{l}\right] \mathbb{P}\left[\bigcup_{l \in S} H_{l}\right]
\end{aligned}
$$

Fact 3 implies
Fact 4

$$
\mathbb{P}\left[\bigcup_{l \in S} H_{l}\right] \leq \frac{p}{(1-\sqrt{p})^{2}}
$$

which implies (via Lemma 4.1 in [Gács\&Gál 1994]),
Fact 5

$$
\mathbb{P}\left[\bigcup_{l \in S} H_{l}\right] \geq\left(1-\frac{p}{(1-\sqrt{p})^{2}}\right) \sum_{l \in S} \mathbb{P}\left[H_{l}\right]
$$

Error analysis

Bounds on the total number of sensitive wires

Fact 6

$$
\mathbb{P}\left[H_{l}\right]=(1-\delta)^{\left|\beta_{l}\right|} \delta^{m_{l}-\left|\beta_{l}\right|} \geq \delta^{m_{l}}
$$

Fact 4 \& $5 \Rightarrow$

$$
\begin{aligned}
\frac{p}{1-2 \sqrt{p}} & \geq \sum_{l \in S} \delta^{m_{l}} \\
& \geq s\left(\prod_{l \in S} \delta^{m_{l}}\right)^{1 / s}
\end{aligned}
$$

which leads to

$$
\sum_{l \in S} m_{l} \geq \frac{s}{\log (1 / \delta)} \log \left(s \frac{1-2 \sqrt{p}}{p}\right)
$$

- lower bound on the total number of "sensitive wires"

Lower bound on number of gates

Let N_{C} be the total number of gates in C :

$$
\begin{aligned}
n\left(\Phi_{C}\right) N_{C} & \geq \sum_{g} n_{g} \\
& \geq \sum_{l \in S} m_{l} \\
& \geq \frac{s}{\log (1 / \delta)} \log \left(s \frac{1-2 \sqrt{p}}{p}\right)
\end{aligned}
$$

Comments:

- The above proof is for $p \in(0,1 / 4)$
- The case $p \in(1 / 4,1 / 2)$ can be shown similarly.

Block Sensitivity

Let x^{S} be a binary vector that differs from x in the S subset of indicies, i.e.,

$$
\mathbf{x}_{i}^{S}=\left\{\begin{array}{ll}
x_{i} & i \notin S \\
\neg x_{i} & i \in S
\end{array} .\right.
$$

- f is (block) sensitive to S on \mathbf{x} if $f\left(\mathbf{x}^{S}\right) \neq f(\mathbf{x})$.
- Block sensitivity of f on \mathbf{x} : the largest number b such that
- there exists b disjoint sets $S_{1}, S_{2}, \cdots, S_{b}$
- for all $1 \leq i \leq b, f$ is sensitive to S_{i} on \mathbf{x}
- Block sensitivity of f : maximum over all \mathbf{x}.
- block sensitivity \geq sensitivity

Theorem based on block sensitivity

- Let ε and p be any constants such that $\varepsilon \in(0,1 / 2), p \in(0,1 / 2)$.
- Let f be any Boolean function with block sensitivity b.

Under the error model (ε, p), the number of gates of the curcuit is $\Omega(b \log b)$.

Discussions

Lower bound for specific functions

Given an explicit function f of n variables, is there a lower boudn that is stronger than $\Omega(n \log n)$?

Open problem for

- unrestricted circuit C with complete basis
- function f that have $\Omega(n \log n)$ noiseless complexity for circuit C with some incomplete basis Φ

Discussions

Computation model

Exponential blowup

A noisy circuit with multiple levels

- The output of gates at level l goes to a gate at level $l+1$
- Level 0 has n inputs
- Level 0 has $N_{0}=n \log n$ output gates
- Level 1 has N_{0} inputs
- Level 1 has $N_{1}=N_{0} \log N_{0}$ output gates, ...

Why?

"The theorem is generally applicable only to the very first step of such a fault tolerant computation"

- If the input is not the original ones, we can choose them to make the sensitivity of a Boolean function to be 0 .
- $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{1} \oplus x_{2} \oplus x_{4}, x_{1} \oplus x_{3} \oplus x_{4}, x_{2} \oplus x_{3} \oplus x_{4}\right)$
- Lower bound does not apply: sensitivity is 0 . How about block sensitivity?
- Problem formulation issue on the lower bound for coded input
- coding is also computation!

Part II

Upper Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates

[Pippenger, "On Networks of Noisy Gates", 1985]

Overview

Achievability schemes in reliable computation with a network of nosiy gates.

1. System modeling

- various types of computations

2. Change of basis and error levels

- will skip

3. Functions with logarithmic redundancy

- with explicit construction
- for specific system parameters only

4. Functions with bounded redundancy

- Presents a class of functions with "bounded redundancy"
- Construction for reliable computation

System model: a revisit

Weak vs. strong computation
perturbation and approximation
Let $f, g:\{0,1\}^{k} \Rightarrow\{0,1\}$,

- g is a ε-perturbation of f if $\mathbb{P}[g(\mathbf{x})=f(\mathbf{x})]=1-\varepsilon$ for any $\mathbf{x} \in\{0,1\}^{k}$
- g is a ε-approximation of f if $\mathbb{P}[g(\mathbf{x})=f(\mathbf{x})] \geq 1-\varepsilon$ for any $\mathbf{x} \in\{0,1\}^{k}$
weakly (ε, δ)-computes
\square gates: ε-perturbation
■ output: δ-approximation
strongly (ε, δ)-computes
- gates: ε-approximation
- output: δ-approximation

Why bother?

- ε-perturbation may be helpful in randomized algorithms.

Functions with logarithmic redundancy

Main theorem

Theorem 3.1
If a Boolean function is computed by a noiseless network of size c, then it is also computed by a noisy network of size $O(c \log c)$.

Comments

- Provides explicit construction for some ε and δ values.
- $\varepsilon=1 / 512$
- $\delta=1 / 128$

Functions with logarithmic redundancy

Construction

Strategy

Given a noiseless network with 2-input gates, construct a corresponding noisy network with 3 -input gates.

Transformations

noiseless		noisy
each wire	\rightarrow	cable of m wires
gate	\rightarrow	module of $O(m)$
		noisy gates

Additions

- coda: computes the majority of m wires with at most some error probability
- Corollary 2.6: exists coda with size $O(c \log c)$
- Choose $m=O(\log c)$
- a cable is correct if at least $(1-\theta) m$ component wires are correct

Overview

Module requirement

If the input cables are "correct", then the output cable will be correct except for some small error probability.

Module construction

Executive organ

- Construction: m noisy gates that compute the same function as the corresponding gate in noiseless network

Restoring organ

- Construction: a (m, k, α, β)-compressor
- if at most $\alpha \mathrm{m}$ inputs are incorrect, then at most βm outputs will be incorrect.
- $k=8^{17}, \alpha=1 / 64, \beta=1 / 512$

Then

Choose system parameters properly, such that the resulting circuit has logarithmic redundancy.

Functions with bounded redundancy

Main results

Functions with bounded redundancy
For $r \geq 1$, let $s=2^{r}$. Let

$$
g_{r}\left(x_{0}, \ldots, x_{r-1}, y_{0}, \ldots, y_{s-1}\right)=y_{t}
$$

where $t=\sum_{i=0}^{r-1} 2^{i} x_{i}$ i.e., t has binary representation $x_{r-1} \cdots x_{1} x_{0}$.

Theorem 4.1

For every r and $s=2^{r}, g_{r}$ can be computed by a network of $O(s)$ nosiy gates.

Comments

- g_{r} : "indicator function"
- Any noiseless networks that computes g_{r} has $\Omega\left(2^{r}\right)$ gates.
- bounded redundancy
- Proof
- Construct a network that strongly $(\varepsilon=1 / 192, \delta=1 / 24)$-computes g_{r}.

Construction

g_{1}

$$
g_{1}\left(x_{0}, y_{0}, y_{1}\right)= \begin{cases}y_{0} & x_{0}=0 \\ y_{1} & x_{1}=1\end{cases}
$$

g_{r}

$$
g_{2}\left(x_{0}, x_{1}, y_{0}, y_{1}, y_{2}, y_{3}\right)= \begin{cases}y_{0} & x_{1} x_{0}=00 \\ y_{1} & x_{1} x_{0}=01 \\ y_{2} & x_{1} x_{0}=10 \\ y_{3} & x_{1} x_{0}=11\end{cases}
$$

$\square g_{r}$ can be implemented by a binary tree with $2^{r}-1$ elements of g_{1}.

- level $r-2$: root
- level 0: leaves
- y_{t} : corresponds to a path from level 0 to $r-2$

Construction (cont.)

- Each path only contains one gate at each level
- If each gate at level $k, 0 \leq k \leq r-2$ fails with probability $\Theta\left((a \varepsilon)^{k}\right)$, then the failure probability for a path is $\Theta(\varepsilon)$.

Construction: replace wires by cables, gates by modules

- cable at level k
- input: $2 k-1$ wires
- output: $2 k+1$ wires
- module at level k
- $2 k+1$ disjoint networks
- each compute the $(2 k-1)$-argument majority of the input wires
- then apply g_{1}
- noiseless complexity: $O(k) \Rightarrow$ noisy complexity: $O(k \log k)$
- $O\left(k^{2} \log k\right)$ noisy gates at level k
- error probability for each nosiy network: 2ε
- error probability for module: $4 \varepsilon(8 \varepsilon)^{k}=\Theta\left((8 \varepsilon)^{k}\right)$
- use coda at the root output for majority vote
- total \#gate: $O(s)=O\left(2^{r}\right)$

Networks with more than one input

A network with outputs $w_{1}, w_{2}, \ldots, w_{m}$ strongly (ε, δ)-computes $f_{1}, f_{2}, \ldots, f_{m}$ if, for every $1 \leq j \leq m$, the network obtained by ignoring all but the output w_{j} strongly (ε, δ)-computes f_{j}.

Theorem 4.2
For every $a \geq 1$ and $b=2^{2^{a}}$, let $h_{a, 0}\left(z_{0}, \cdots, z_{a-1}\right), \cdots, h_{a, b-1}\left(z_{0}, \cdots, z_{a-1}\right)$ denote the b Boolean functions of a Boolean argument.
Then $h_{a, 0}\left(z_{0}, \cdots, z_{a-1}\right), \cdots, h_{a, b-1}\left(z_{0}, \cdots, z_{a-1}\right)$ can be strongly computed by a network of $O(b)$ noisy gates.

- Proof: similar to Theorem 4.1

Boolean function with n Boolean arguments

Theorem 4.3

Any Boolean function of n Boolean arguments can be computed by a network of $O\left(2^{n} / n\right)$ noisy gates.

Proof

- Let $a=\left\lfloor\log _{2}\left(n-\log _{2} n\right)\right\rfloor$,

$$
\begin{aligned}
& b=2^{2^{a}}=2^{n} / n, r=n-a \text { and } \\
& s=2^{r}=2^{n} / n .
\end{aligned}
$$

- Theorem 4.2: M strongly computes $h_{a, 0}\left(z_{0}, \cdots, z_{a-1}\right)$,
$\cdots, h_{a, b-1}\left(z_{0}, \cdots, z_{a-1}\right)$
- $O(b)=O\left(2^{n} / n\right)$ gates
- Theorem 4.1: N strongly
 computes

$$
\begin{aligned}
& g_{r}\left(x_{0}, \ldots, x_{r-1}, y_{0}, \ldots, y_{s-1}\right) \\
& \quad \therefore O(s)=O\left(2^{n} / n\right) \text { gates }
\end{aligned}
$$

M and N : strongly computes any Boolean function with n Boolean arguments $x_{0}, x_{1}, \cdots, x_{r-1}, z_{0}, z_{1}, \cdots, z_{a-1}$.

Bounded redundancy for Boolean functions

Implication of Theorem 4.3

- [Muller, "Complexity in Electronic Switching Circuits", 1956]: "Almost all" Boolean functions of n Boolean arguments are computed only by noiseless networks with $\Omega\left(2^{n} / n\right)$ gates
- "Almost all" Boolean functions have bounded redundancy.

Set of Boolean linear functions

- A set of m Boolean functions $f_{1}\left(x_{1}, \cdots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \cdots, x_{n}\right)$ is linear if each of the functions is the sum (modulo 2) of some subset of the n Boolean arguments x_{1}, \cdots, x_{n}.
- "Almost all" sets of n linear functions of n Boolean arguments have bounded redundancy.
- Similar approach
- Theorem 4.4

Further readings...

- N. Pippenger, "Reliable computation by formulas in the presence of noise", 1988
- T. Feder, "Reliable computation by networks in the presence of noise", 1989

