Bounds on Reliable Boolean Function Computation with Noisy Gates

- R. L. Dobrushin & S. I. Ortyukov, 1977
- N. Pippenger, 1985
- P. Gács & A. Gál, 1994

Presenter: Da Wang
6.454 Graduate Seminar in Area I
EECS, MIT
Oct. 5, 2011
Question

Given a network of noisy logic gates, what is the redundancy required if we want to compute the a Boolean function reliably?

- **noisy**: gates produce the wrong output independently with error probability no more than ε.
- **reliably**: the value computed by the entire circuit is correct with probability at least $1 - \delta$.
- **redundancy**: minimum #gates needed for reliable computation in noisy circuit

 minimum #gates needed for reliable computation in noiseless circuit

- noisy/noiseless complexity
- may depend on the function of interest
- upper bound: achievability
- lower bound: converse
Part I

Lower Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates
History of development

- [Dobrushin & Ortyukov 1977]
 - Contains all the key ideas
 - Proofs for a few lemmas are incorrect
- [Pippenger & Stamoulis & Tsitsiklis 1990]
 - Pointed out the errors in [DO1977]
 - Provide proofs for the case of computing the parity function
- [Gács & Gál 1994]
 - Follow the ideas in [DO1977] and provide correct proofs
 - Also prove some stronger results

In this talk
We will mainly follow the presentation in [Gács & Gál 1994].
Problem formulation

System Model

Boolean circuit C
- a directed acyclic graph
- node \sim gate
- edge \sim in/out of a gate

Gate g
- a function $g : \{0, 1\}^{n_g} \rightarrow \{0, 1\}$
 - n_g: fan-in of the gate

Basis Φ
- a set of possible gate functions
- e.g., $\Phi = \{AND, OR, XOR\}$
- complete basis
- for circuit C: Φ_C
- maximum fan-in in C: $n(\Phi_C)$

Assumptions
- each gate g has constant number of fan-ins n_g.
- f can be represented by compositions of gate functions in Φ_C.
Problem formulation

Error models (ε, p)

Gate error
- A gate fails if its output value for $z \in \{0, 1\}^{n_g}$ is different from $g(z)$
- Gates fail independently with
 - fixed probability ε
 - used for lower bound proof
 - probability at most ε
- $\varepsilon \in (0, 1/2)$

Circuit error
- $C(x)$: random variable for output of circuit C on input x.
- A circuit computes f with error probability at most p if
 \[\mathbb{P}[C(x) \neq f(x)] \leq p \]
 for any input x.
Problem formulation

Sensitivity of a Boolean function

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be a Boolean function with binary input vector $x = (x_1, x_2, \ldots, x_n)$.
Let x^l be a binary vector that differs from x only in the l-th bit, i.e.,

$$x^l_i = \begin{cases}
x_i & i \neq l \\
-x_i & i = l.
\end{cases}$$

- f is sensitive to the lth bit on x if $f(x^l) \neq f(x)$.
- Sensitivity of f on x: #bits in x that f is sensitive to.
 - “effective” input size
- Sensitivity of f: maximum over all x.
Asymptotic notations

- \(f(n) = O(g(n)) \):
 \[\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty, \]

- \(f(n) = \Omega(g(n)) \):
 \[\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \geq 1, \]

- \(f(n) = \Theta(g(n)) \):
 \[f(n) = O(g(n)) \]
 and
 \[f(n) = \Omega(g(n)) \]
Main results

Theorem: number of gates for reliable computation

- Let ε and p be any constants such that $\varepsilon \in (0, 1/2), p \in (0, 1/2)$.
- Let f be any Boolean function with sensitivity s.

Under the error model (ε, p), the number of gates of the circuit is $\Omega(s \log s)$.

Corollary: redundancy of noisy computation

For any Boolean function of n variables and with $O(n)$ noiseless complexity and $\Omega(n)$ sensitivity, the redundancy of noisy computation is $\Omega(\log n)$.

- e.g., nonconstant symmetric function of n variables has redundancy $\Omega(\log n)$
Equivalence result for wire failures

Lemma 3.1 in Dobrushin&Ortyukov

- Let $\varepsilon \in (0, 1/2)$ and $\delta \in [0, \varepsilon/n(\Phi_C)]$.
- Let y and t be the vector that a gate receives when the wire fail and does not fail respectively.

For any gate g in the circuit C there exists unique values $\eta_g(y, \delta)$ such that if
- the wires of C fails independently with error probability δ, and
- the gate g fails with probability $\eta_g(y, \delta)$ when receiving input y,
then the probability that the output of g is different from $g(t)$ is equal to ε.

Insights

- Independent gate failures can be “simulated” by independently wire failures and corresponding gate failures.
- These two failure modes are equivalent in the sense that the circuit C computes f with the same error probability.
Theorem

- Let ε and p be any constants such that $\varepsilon \in (0, 1/2), p \in (0, 1/2)$.
- Let f be any Boolean function with sensitivity s.

Let C be a circuit such that

- its wires fail independently with fixed probability δ, and
- each gate fails independently with probability $\eta_g(y, \delta)$ when receiving y.

Suppose C computes f with error probability at most p. Then the number of gates of the circuit is $\Omega(s \log s)$.
Error analysis
Function and circuit inputs

Maximal sensitive set S for f

- $s > 0$: sensitivity of f
- z: an input vector with s bits that f is sensitive to
 - an input vector where f has maximum sensitivity
- S: the set of sensitive bits in z
 - key object

B_l: edges originated from l-th input

- $m_l \triangleq |B_l|$
- e.g.
 - $l = 3$
 - B_l
 - $m_l = 3$
Error analysis

Wire failures

- For $\beta \subset B_l$, let $H(\beta)$ be the event that for wires in B_l, only those in β fail.

- Let

$$\beta_l \triangleq \arg \max_{\beta \subset B_l} \mathbb{P} \left[C(z^l) = f(z^l) \mid H(\beta) \right]$$

 ▶ the best failing set for input z^l

- Let $H_l \triangleq H(B_l \setminus \beta_l)$

Fact 1

$$\mathbb{P} \left[C(z) \neq f(z) \mid H_l \right] = \mathbb{P} \left[C(z^l) = f(z^l) \mid H(\beta_l) \right]$$

- Proof

 ▶ f is sensitive to z_l

 ▶ $\neg z_l \iff$ “flip” all wires in B_l

- β_l is the worst non-failing set for input z
Error analysis
Error probability given wire failures

Fact 2

\[
\mathbb{P}[C(z^l) = f(z^l) | H(\beta_l)] \geq 1 - p
\]

Proof
- \(\mathbb{P}[C(z^l) = f(z^l)] \geq 1 - p\)
- \(\beta_l\) maximizes \(\mathbb{P}[C(z^l) = f(z^l) | H(\beta)]\)

Fact 1 & 2 \Rightarrow Fact 3

For each \(l \in S\),

\[
\mathbb{P}[C(z) \neq f(z) | H_l] \geq 1 - p
\]

where \(\{H_l, l \in S\}\) are independent events. Furthermore, Lemma 4.3 in [Gács&Gál 1994] shows

\[
\mathbb{P}\left[C(z) \neq f(z) \left\| \bigcup_{l \in S} H_l \right\| \right] \geq (1 - \sqrt{p})^2
\]

The error probability given \(H_l\) or \(\bigcup_{l \in S} H_l\) is relatively large.
Error analysis

Bounds on wire failure probabilities

Note

\[p \geq \mathbb{P}[C(z) \neq f(z)] \]
\[\geq \mathbb{P}\left[C(z) \neq f(z) \bigg| \bigcup_{l \in S} H_l\right] \mathbb{P}\left[\bigcup_{l \in S} H_l\right] \]

Fact 3 implies

Fact 4

\[\mathbb{P}\left[\bigcup_{l \in S} H_l\right] \leq \frac{p}{(1 - \sqrt{p})^2} \]

which implies (via Lemma 4.1 in [Gács&Gál 1994]),

Fact 5

\[\mathbb{P}\left[\bigcup_{l \in S} H_l\right] \geq \left(1 - \frac{p}{(1 - \sqrt{p})^2}\right) \sum_{l \in S} \mathbb{P}[H_l] \]
Error analysis

Bounds on the total number of sensitive wires

Fact 6

\[\mathbb{P}[H_l] = (1 - \delta)\beta_l \delta^m - |\beta_l| \geq \delta^m_l \]

**Fact 4 & 5 ⇒

\[
\frac{p}{1 - 2\sqrt{p}} \geq \sum_{l \in S} \delta^m_l \\
\geq s \left(\prod_{l \in S} \delta^m_l \right)^{1/s}
\]

which leads to

\[
\sum_{l \in S} m_l \geq \frac{s}{\log(1/\delta)} \log \left(s \frac{1 - 2\sqrt{p}}{p} \right)
\]

lower bound on the total number of “sensitive wires”
Let N_C be the total number of gates in C:

\[
n(\Phi_C) N_C \geq \sum_{g} n_g \geq \sum_{l \in S} m_l \geq \frac{s}{\log(1/\delta)} \log \left(s \frac{1 - 2\sqrt{p}}{p} \right)
\]

Comments:
- The above proof is for $p \in (0, 1/4)$
- The case $p \in (1/4, 1/2)$ can be shown similarly.
Let \(x^S \) be a binary vector that differs from \(x \) in the \(S \) subset of indices, i.e.,

\[
x^S_i = \begin{cases}
 x_i & i \not\in S \\
 -x_i & i \in S
\end{cases}
\]

- \(f \) is (block) sensitive to \(S \) on \(x \) if \(f(x^S) \neq f(x) \).
- **Block sensitivity** of \(f \) on \(x \): the largest number \(b \) such that
 - there exists \(b \) disjoint sets \(S_1, S_2, \ldots, S_b \)
 - for all \(1 \leq i \leq b \), \(f \) is sensitive to \(S_i \) on \(x \)
- **Block sensitivity** of \(f \): maximum over all \(x \).
 - block sensitivity \(\geq \) sensitivity

Theorem based on block sensitivity

- Let \(\varepsilon \) and \(p \) be any constants such that \(\varepsilon \in (0, 1/2) \), \(p \in (0, 1/2) \).
- Let \(f \) be any Boolean function with block sensitivity \(b \).

Under the error model \((\varepsilon, p)\), the number of gates of the circuit is \(\Omega(b \log b) \).
Discussions
Lower bound for specific functions

Given an explicit function f of n variables, is there a lower bound that is stronger than $\Omega(n \log n)$?

Open problem for

- unrestricted circuit C with complete basis
- function f that have $\Omega(n \log n)$ noiseless complexity for circuit C with some incomplete basis Φ
Discussions

Computation model

Exponential blowup
A noisy circuit with multiple levels

- The output of gates at level l goes to a gate at level $l + 1$
- Level 0 has n inputs
 - Level 0 has $N_0 = n \log n$ output gates
 - Level 1 has N_0 inputs
 - Level 1 has $N_1 = N_0 \log N_0$ output gates, ...

Why?
“The theorem is generally applicable only to the very first step of such a fault tolerant computation”

- If the input is not the original ones, we can choose them to make the sensitivity of a Boolean function to be 0.
 - $f(x_1, x_2, x_3, x_4, x_1 \oplus x_2 \oplus x_4, x_1 \oplus x_3 \oplus x_4, x_2 \oplus x_3 \oplus x_4)$
 - Lower bound does not apply: sensitivity is 0. How about block sensitivity?
- Problem formulation issue on the lower bound for **coded** input
 - coding is also computation!
Part II

Upper Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates

Overview

Achievability schemes in reliable computation with a network of noisy gates.

1. System modeling
 ▶ various types of computations
2. Change of basis and error levels
 ▶ will skip
3. Functions with logarithmic redundancy
 ▶ with explicit construction
 ▶ for specific system parameters only
4. Functions with bounded redundancy
 ▶ Presents a class of functions with “bounded redundancy”
 ▶ Construction for reliable computation
System model: a revisit
Weak vs. strong computation

perturbation and approximation
Let \(f, g : \{0, 1\}^k \rightarrow \{0, 1\} \),

- \(g \) is a \(\varepsilon \)-perturbation of \(f \) if \(\Pr[\text{\(g(x) = f(x) \)}] = 1 - \varepsilon \) for any \(x \in \{0, 1\}^k \)
- \(g \) is a \(\varepsilon \)-approximation of \(f \) if \(\Pr[\text{\(g(x) = f(x) \)}] \geq 1 - \varepsilon \) for any \(x \in \{0, 1\}^k \)

weakly \((\varepsilon, \delta)\)-computes
- gates: \(\varepsilon \)-perturbation
- output: \(\delta \)-approximation

strongly \((\varepsilon, \delta)\)-computes
- gates: \(\varepsilon \)-approximation
- output: \(\delta \)-approximation

Why bother?
- \(\varepsilon \)-perturbation may be helpful in randomized algorithms.
Functions with logarithmic redundancy

Main theorem

Theorem 3.1
If a Boolean function is computed by a noiseless network of size c, then it is also computed by a noisy network of size $O(c \log c)$.

Comments
- Provides explicit construction for some ε and δ values.
 - $\varepsilon = 1/512$
 - $\delta = 1/128$
Strategy
Given a noiseless network with 2-input gates, construct a corresponding noisy network with 3-input gates.

Transformations

<table>
<thead>
<tr>
<th>noiseless</th>
<th>noisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>each wire → cable of (m) wires</td>
<td></td>
</tr>
<tr>
<td>gate → module of (O(m)) noisy gates</td>
<td></td>
</tr>
</tbody>
</table>

Additions

- **coda**: computes the majority of \(m \) wires with at most some error probability
 - Corollary 2.6: exists coda with size \(O(c \log c) \)
- Choose \(m = O(\log c) \)
- a cable is correct if at least \((1 - \theta)m \) component wires are correct
Module requirement
If the input cables are “correct”, then the output cable will be correct except for some small error probability.
Module construction

Executive organ
- Construction: m noisy gates that compute the same function as the corresponding gate in noiseless network

Restoring organ
- Construction: a (m, k, α, β)-compressor
 - if at most αm inputs are incorrect, then at most βm outputs will be incorrect.
- $k = 8^{17}$, $\alpha = 1/64$, $\beta = 1/512$

Then
Choose system parameters properly, such that the resulting circuit has logarithmic redundancy.
Functions with bounded redundancy

Main results

Functions with bounded redundancy
For $r \geq 1$, let $s = 2^r$. Let

$$g_r(x_0, \ldots, x_{r-1}, y_0, \ldots, y_{s-1}) = y_t$$

where $t = \sum_{i=0}^{r-1} 2^i x_i$ i.e., t has binary representation $x_{r-1} \cdots x_1 x_0$.

Theorem 4.1
For every r and $s = 2^r$, g_r can be computed by a network of $O(s)$ nosiy gates.

Comments
- g_r: “indicator function”
- Any noiseless networks that computes g_r has $\Omega(2^r)$ gates.
 - bounded redundancy
- Proof
 - Construct a network that strongly $(\varepsilon = 1/192, \delta = 1/24)$-computes g_r.
Construction

\[g_1 \]

\[g_1(x_0, y_0, y_1) = \begin{cases}
 y_0 & x_0 = 0 \\
 y_1 & x_1 = 1
\end{cases} \]

\[g_r \]

\[g_2(x_0, x_1, y_0, y_1, y_2, y_3) = \begin{cases}
 y_0 & x_1x_0 = 00 \\
 y_1 & x_1x_0 = 01 \\
 y_2 & x_1x_0 = 10 \\
 y_3 & x_1x_0 = 11
\end{cases} \]

\[\ldots \]

\(g_r \) can be implemented by a binary tree with \(2^r - 1 \) elements of \(g_1 \).

- level \(r - 2 \): root
- level 0: leaves
- \(y_t \): corresponds to a path from level 0 to \(r - 2 \)
Each path only contains one gate at each level
If each gate at level \(k \), \(0 \leq k \leq r - 2 \) fails with probability \(\Theta \left((a\varepsilon)^k \right) \), then
the failure probability for a path is \(\Theta \left(\varepsilon \right) \).

Construction: replace wires by cables, gates by modules
- **cable** at level \(k \)
 - input: \(2k - 1 \) wires
 - output: \(2k + 1 \) wires
- **module** at level \(k \)
 - \(2k + 1 \) disjoint networks
 - each compute the \((2k - 1)\)-argument majority of the input wires
 - then apply \(g_1 \)
 - noiseless complexity: \(O(k) \) ⇒ noisy complexity: \(O(k \log k) \)
 - \(O \left(k^2 \log k \right) \) noisy gates at level \(k \)
 - error probability for each nosiy network: \(2\varepsilon \)
 - error probability for module: \(4\varepsilon (8\varepsilon)^k = \Theta \left((8\varepsilon)^k \right) \)
- use **coda** at the root output for majority vote
- total #gate: \(O(s) = O \left(2^r \right) \)
A network with outputs \(w_1, w_2, \ldots, w_m\) strongly \((\varepsilon, \delta)\)-computes \(f_1, f_2, \ldots, f_m\) if, for every \(1 \leq j \leq m\), the network obtained by ignoring all but the output \(w_j\) strongly \((\varepsilon, \delta)\)-computes \(f_j\).

Theorem 4.2

For every \(a \geq 1\) and \(b = 2^{2^a}\), let \(h_{a,0}(z_0, \ldots, z_{a-1}), \ldots, h_{a,b-1}(z_0, \ldots, z_{a-1})\) denote the \(b\) Boolean functions of \(a\) Boolean argument.

Then \(h_{a,0}(z_0, \ldots, z_{a-1}), \ldots, h_{a,b-1}(z_0, \ldots, z_{a-1})\) can be strongly computed by a network of \(O(b)\) noisy gates.

Proof: similar to Theorem 4.1
Boolean function with \(n \) Boolean arguments

Theorem 4.3

Any Boolean function of \(n \) Boolean arguments can be computed by a network of \(O\left(\frac{2^n}{n}\right) \) noisy gates.

Proof

- Let \(a = \lfloor \log_2(n - \log_2 n) \rfloor \), \(b = 2^{2^a} = 2^n/n \), \(r = n - a \) and \(s = 2^r = 2^n/n \).

- **Theorem 4.2:** \(M \) strongly computes \(h_{a,0}(z_0, \cdots, z_{a-1}), \cdots, h_{a,b-1}(z_0, \cdots, z_{a-1}) \)

 \(O(b) = O\left(\frac{2^n}{n}\right) \) gates

- **Theorem 4.1:** \(N \) strongly computes

 \(g_r(x_0, \cdots, x_{r-1}, y_0, \cdots, y_{s-1}) \)

 \(O(s) = O\left(\frac{2^n}{n}\right) \) gates

\(M \) and \(N \): strongly computes any Boolean function with \(n \) Boolean arguments \(x_0, x_1, \cdots, x_{r-1}, z_0, z_1, \cdots, z_{a-1} \).
Bounded redundancy for Boolean functions

Implication of Theorem 4.3

- [Muller, “Complexity in Electronic Switching Circuits”, 1956]: “Almost all” Boolean functions of n Boolean arguments are computed only by noiseless networks with $\Omega \left(2^n/n\right)$ gates
- “Almost all” Boolean functions have bounded redundancy.

Set of Boolean linear functions

- A set of m Boolean functions $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ is linear if each of the functions is the sum (modulo 2) of some subset of the n Boolean arguments x_1, \ldots, x_n.
- “Almost all” sets of n linear functions of n Boolean arguments have bounded redundancy.
 - Similar approach
 - Theorem 4.4
Further readings...

- N. Pippenger, “Reliable computation by formulas in the presence of noise”, 1988
- T. Feder, “Reliable computation by networks in the presence of noise”, 1989