Variable blocklength communication with feedback

Gauri Joshi Graduate Seminar in Area 1

EECS MIT

9th Nov 2010

Gauri Joshi (MIT)

Variable length comm. with feedback

9th Nov 2010

1 / 20

Motivation

- Shannon feedback does not improve capacity
- Can help in the non-asymptotic regime

Length required to achieve 90% capacity on a C = 1/2 BSC

- Fixed length with feedback, l > 3100 bits
- Variable length with feedback, l < 200 bits

Even a simple termination signal sent by the source indicating end of transmission helps a lot

(人間) トイヨト イヨト

System Model

Discrete Memoryless Channel

$$P_{Y_i|X_1^i,Y_1^{i-1}} = P_{Y_i|X_i} = P_{Y_1|X_1}$$

- \bullet Input and Output Alphabet ${\cal A}$ and ${\cal B}$
- Transition matrix \mathcal{P} $p_{i,j}$ is the probability of transmitting i^{th} input symbol and receiving j^{th} output symbol
- $W \in {1,2,..M}$ equiprobable message to be transmitted mapped to input alphabet ${\mathcal A}$

(人間) トイヨト イヨト 三日

Part I

Feedback in non-asymptotic regime

Gauri Joshi (MIT)

Variable length comm. with feedback

∃ ⊳ 9th Nov 2010

4 / 20

э

Fixed Blocklength without feedback

An (l,M,ϵ) code,

- Encoder $X_n = f(W)$, Decoder $\hat{W} = g(Y^l)$
- The fundamental limit of coding is,

$$M^*(l,\epsilon) = \max\{M: \exists (l,M,\epsilon) \ \mathsf{code}\}$$

• Maximum information we can send is,

$$\log M^*(l,\epsilon) = lC - \sqrt{lV}Q^{-1}(\epsilon) + O(\log l)$$

- V Channel dispersion measures the stochastic variability of the channel as compared to a deterministic channel of the same capacity.
- In presence of variable-length coding with feedback the $\frac{1}{\sqrt{l}}$ penalty term is eliminated

化间面 化医丙酮医丙酮

Fixed Blocklength with feedback

An (l,M,ϵ) code

• Noiseless Feedback of Y's to the encoder

• Encoder
$$X_n = f(W, Y^{n-1})$$

• Feedback does not help remove the penalty term

$$\log M_b^*(l,\epsilon) = nC - \sqrt{nV}Q^{-1}(\epsilon) + O(\log n)$$

• $\log M_h^*$ increases hardly by 2-3 bits as compared to $\log M^*$.

Variable Blocklength without feedback

- Allow a non-vanishing probability of error ϵ
- The capacity increases to give ϵ -capacity

Theorem

For any non-anticipatory channel with capacity C that satisfies the strong converse for fixed-blocklength codes (without feedback), the ϵ -capacity under variable-length coding without feedback, is

$$C_{\epsilon} = \frac{C}{1-\epsilon}$$

Variable blocklength with feedback

- Encoder $X_n = f(W, Y^{n-1})$
- Decoder $\hat{W} = g_{\tau}(Y^{\tau})$
- Stopping time τ on $\sigma\{Y_1,..Y_n\}$ such that $\mathbb{E}(\tau) \leq l$
- $Pr(\hat{W} \neq W) \leq \epsilon$

The fundamental limit of VLF coding is,

$$M^*_f(l,\epsilon) = \max M : \exists (l,M,\epsilon) - \mathsf{VLF}$$
 code

ヘロト 不得 とうき とうとう ほう

VLF codes with termination

- In VLF codes, the decoder decides the stopping time τ as a function of outputs $Y^{\tau-1}$. It is conveyed to source through feedback
- Source sends a termination signal to receiver on a separate reliable channel VLFT code
- Stopping time τ on $\sigma\{W,Y_1,..Y_n\}$ such that $\mathbb{E}(\tau)\leq l$

The fundamental limit of VLFT coding is,

$$M^*_t(l,\epsilon) = \max M : \exists (l,M,\epsilon) - \mathsf{VLFT}$$
 code

Variable Blocklength with feedback

Theorem

For an arbitrary DMC with capacity C we have for any $0 < \epsilon < 1$

$$\log M_f^*(l,\epsilon) = \frac{lC}{1-\epsilon} + O(\log l) \tag{1}$$

$$\log M_t^*(l,\epsilon) = \frac{lC}{1-\epsilon} + O(\log l)$$
⁽²⁾

More precisely, we have,

$$\frac{lC}{1-\epsilon} - \log l + O(1) \le \log M_f^*(l,\epsilon) \le \frac{lC}{1-\epsilon} + O(1)$$

$$\log M_f^*(l,\epsilon) \le \log M_t^*(l,\epsilon) \le \frac{lC + \log l}{1-\epsilon} + O(1)$$
(4)

Proof of converse of the theorem

Theorem

Consider an arbitrary DMC with capacity C. Then any (l,M,ϵ) VLF code with $0\leq\epsilon\leq1$ satisfies

$$\log M \leq \frac{Cl + h(\epsilon)}{1 - \epsilon},$$

whereas each (l, M, ϵ) VLFT code with $0 \le \epsilon \le 1$ satisfies

$$\begin{split} \log M &\leq \frac{Cl+h(\epsilon)+(l+1)h(\frac{1}{l+1})}{1-\epsilon} \\ &\leq \frac{Cl+\log(l+1)+h(\epsilon)+\log(\epsilon)}{1-\epsilon}, \end{split}$$

where $h(x) = -x \log x - (1 - x) \log(1 - x)$ is the binary entropy function.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

11 / 20

Proof of converse of the theorem

By Fano's inequality we have,

$$\begin{split} (1-\epsilon)\log M &\leq I(W;Y^{\tau},\tau) + h(\epsilon) \\ &= I(W;Y^{\tau}) + I(W;\tau|Y^{\tau}) + h(\epsilon) \\ &\leq I(W;Y^{\tau}) + H(\tau) + h(\epsilon) \\ &\leq I(W;Y^{\tau}) + (l+1)h\left(\frac{1}{l+1}\right) + h(\epsilon), \end{split}$$

where, we upper bound $H(\tau)$ by solving the optimization problem:

$$\underset{\tau:\mathbb{E}[\tau]\leq l}{\max}H(\tau)=(l+1)h\left(\frac{1}{l+1}\right)$$

 τ cannot convey more than $O(\log l)$ bits of information about the message

(**D**) (**A B**) (**A**) (**A**

12 / 20

Proof of converse of the theorem

$$\begin{split} (1-\epsilon)\log M &\leq I(W;Y^{\tau}) + (l+1)h\left(\frac{1}{l+1}\right) + h(\epsilon) \\ &\leq Cl + (l+1)h\left(\frac{1}{l+1}\right) + h(\epsilon), \end{split}$$

We use the result from Burnashev which says that,

 $I(W;Y^\tau) \leq C \mathbb{E}[\tau] \leq C l.$

B> B

A (1) > A (1) > A

Concluding Remarks

- Variable length coding with feedback drastically reduces the average blocklength required to achieve a given probability of error by removing the $\frac{1}{\sqrt{l}}$ penalty term.
- Even simple decision-feedback codes with just the termination signal have performance very close to the VLFT codes

Part II

Optimal Error Exponents

Gauri Joshi (MIT)

Variable length comm. with feedback

9th Nov 2010

(日) (同) (三) (三)

15 / 20

æ

Decision making method

- Find the posterior probability $p_j(n)$ of the j^{th} input symbol after n observations
- Calculate the likelihood functions $\log \frac{p_j(x_n)}{1-p_j(x_n)}$.
- Make a decision in favor of symbol X_i if the likelihood crosses $\log(1/\epsilon)$
- Probability of error,

$$P_e = \frac{1}{M} \sum_{j=1}^{M} \left(1 - p_j(x_n) \right) \le \frac{\epsilon}{1+\epsilon} \le \epsilon$$

Entropy of the posterior distribution

• Entropy of the posterior distribution p(n) is defined as H_n

$$\mathbb{E}(H_n - H_{n+1}) \le C$$

 $\mathbb{E}(\log H_n - \log H_{n+1}) \le C_1$

where $C_1 > C$ is the maximal relative entropy between output distributions.

$$C_{1} = \max_{i,k} \sum_{l=1}^{K} p_{i,l} \log \frac{p_{i,l}}{p_{k,l}} = \max_{i,k} D(\mathbf{p}_{i} || \mathbf{p}_{k})$$

- We know that without feedback, the error exponent is E(R) = (C R). i.e the probability of error with blocklength l is, $P_e \leq e^{-El}$
- With variable length and feedback we get the error exponent,

$$E(R) = C_1 \left(1 - \frac{R}{C} \right)$$

- Simple two-phase coding scheme that achieves this error exponent
- Phase 1 Transmit message for γN symbols
- Phase 2 Transmit correct/error signal for $n = (1 \gamma)N$ symbols
- If in error, retransmit the message in the next block
- Probability of error $= P_E = P_{1e}P_{ce}$