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Linear Systems

Discrete Time Representation
In a classical multistage stochastic control problem, the
dynamics are

x(t + 1) = Fx(t) + Gu(t) + w(t)
y(t) = Hx(t) + v(t),

where v(t) and y(t) are independent sequences of random
variables and u(t) = γ(y(t)) is the control law (or decision rule).
A cost function

J(γ, x(0))

is to be minimized.
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Success Stories with Affine Laws

LQR
Consider a linear dynamical system

x(t + 1) = Fx(t) + Gu(t), x(t) ∈ Rn,u(t) ∈ Rm

with complete information and the task of finding a pair
(x(t),u(t)) that minimizes the functional

J(u(t)) =
T∑

t=0

[x(t)
′
Qx(t) + u(t)

′
Ru(t)],

subject to the described dynamical constraints and for
Q > 0,R > 0. This is a convex optimization problem with an
affine solution:

u∗(t) = −R−1B
′
P(t)x(t),

where P(t) is to be found by solving algebraic Riccati equations.



Certainty Equivalence

LQR
Consider a linear dynamical system

x(t + 1) = Fx(t) + Gu(t) + w(t), x(t) ∈ Rn,u(t) ∈ Rm

with imperfect information and the task of finding a law
u(t) = γ(x(t)) that minimizes the functional

J(u(t)) =
T∑

t=0

E[x(t)
′
Qx(t) + u(t)

′
Ru(t)],

subject to the described dynamical constraints and for
Q > 0,R > 0. This is a convex optimization problem with an
affine solution:

u∗(t) = −R−1B
′
P(t)x(t),

where P(t) is to be found by solving algebraic Riccati equations.



Classical vs Optimal Control

I Beyond its optimality properties, affinity enables us to make
tight connections between classical and modern control.

I The steady state approximation P(t) = P of LQR amounts
to the classical proportional controller u = −Kx .

Figure: Hendrik Wade Bode and Rudolf Kalman



Optimal Filter

LQG
Now consider the problem of estimating the state of a dynamical
system that evolves at the presence of noise

x(t + 1) = Fx(t) + Gu(t) + w(t)
y(t) = Hx(t) + v(t),

where w(t) and v(t) are independent stochastic processes.
I What is E[x(t)|FY (t)]? Kalman gave the answer: this is the

dual of LQR that we just saw.
I Why is this important?
I How about the optimal smoother E[x(0)|FY (t)]?



Optimal Smoother

Linear Systems
Assume that the goal is to design a causal control

γ : y → u
π : (x0,u,w)→ y

that gives the best estimate of (uncertain) initial conditions of the
system. Let Ft(γ(.)) denote the filtration generated by control
law γ(.). For linear systems:

var(E[x0|FYt (u(t))]) = var(E[x0|FYt (0)])

(there is no reward for amplifying small perturbations)



Separation Principle
I The solution to all mentioned problems is linear when

dealing with linear systems
I How about a problem that involves both estimation and

control? i.e.,
minimize E[J(γ(yt))].

subject to

x(t + 1) = Fx(t) + Gu(t) + w(t)
y(t) = Hx(t) + v(t).

Under some mild assumptions a composition of optimal
control and optimal estimator is optimal

u∗ = −K (t)x̂(t)
x̂ = −L(t)y(t)

(known as separation principle)



Role of Linearity in Separation Principle
I Fails for simplest forms of nonlinearity



Information Structure

Let us think about the information required to implement an
affine law in linear systems. Recall

xt+1 = Fxt + Gut + wt

yt = Hxt + vt .

How does y(t) depends on u(τ) for τ ≤ t? This is a convolution
sum

yt =
t∑

k=1

HF kGuk =
t∑

k=1

Dkuk

When the world is random

yt = Hηt +
t∑

k=1

Dkuk ,

with ηt = (x0,w1,w2, ...,wt , v1, v2, ..., vt)
′
.



I precedence⇒ dynamics are coupled (Dk 6= 0 for some k ).

yt = Hηt +
t∑

k=1

Dkuk



I perfect recall⇒ηs ⊂ ηt ⇐⇒ s ≤ t .

yt = Hηt +
t∑

k=1

Dkuk



Classical Structure
I perfect recall⇒ ηs ⊂ ηt ⇐⇒ s ≤ t .
I precedence+ perfect recall⇒ classical structure [2].

yt = Hηt +
t∑

k=1

Dkuk



Classical Structure
I perfect recall⇒ ηs ⊂ ηt ⇐⇒ s ≤ t .
I precedence+ perfect recall⇒ classical structure.
I equivalent to observing only external randomness.

yt = Hηt

how does this contribute to separation?



Connection between Information Structure and
Separation

I The fact that the information set can be reduced to {Hηt}
implies the separation (one cannot squeeze more
information by changing the observation path!)

I This is mainly due to the fact that control depends in a
deterministic fashion to randomness in external world.

I Main property that allows separation: use all of control to
minimize the cost without having to worry how to gain more
information!

I Rigorously proving the separation theorem, and classifying
systems for which it holds is an unresolved matter in
stochastic control [1].



Information Structure (Partially Nested)

I Same holds for partially nested structure [2](followers have
perfect recall).

Figure: Adapted from [2]



Team Decision Problems

Recap on Success Stories

I The class of affine laws gives us strong results for dealing
with various problems: optimal controller/filter/smoother/etc.

I But the success story had an end!

Decentralized control
I Are affine laws optimal when the information structure is

non-classical?
I Conjectured to be true for almost a decade. Witsenhausen

proved wrong [6].



Witsenhausen Counterexample
A classical example that shows affine laws are not optimal in
decentralized control problems.

Figure: Adapted from [5]
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Figure: Adapted from [5]

I Without the noise on the communication channel, the problem is
easy! (optimal cost zero).



Witsenhausen Counterexample
A classical example that shows affine laws are not optimal in
decentralized control problems.

I We will see by an example why the change of information
structure makes the problem non-convex

I In essence, when one forgets the past, the estimation equality
becomes control dependent. This is because control can vary the
extent to which the forgotten data can be recovered (control has
dual functionalities).

I Thus, the main difficulty is to find the first stage control
(Witsenhausen characterized the optimal second stage control as
a function of the first stage control [6]).
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Witsenhausen Counterexample
A two stage problem ("encoder/decoder"):

I first stage: x1 = x0 + u1 and y1 = x0, x0 ∼ N(0, σ2)
I second stage: x2 = x1 − u2 and y2 = x1 + w , w ∼ N(0,1)

Note the non-classical structure y2 = {x1 + w} as opposed to the
classical y2 = {x0, x1 + w}. The cost is

E[ku2
1 + x2

2 ],

where k is a design parameter. Look for feedback laws
u1 = γ(y1),u2 = γ(y2) that minimize the cost.



Optimal Affine Law

I The second stage is an estimation problem since x2 = x1 − u2.
I Let u2 = by2 and u1 = ay1. What is the best estimate of x1?

u2 = E[x1|y2] =
Ex2y2

Ey2
2

=
(1 + a)2σ2

(1 + a)2σ2 + 1
y

I The expected cost is

k2a2σ2 +
(1 + a)2σ2

(1 + a)2σ2 + 1
y .

Let t = σ(1 + a) and minimize w.r.t t to find the optimal gain as the
fixed point of

σ − t
k2(1 + t2)2



Where Convexity Fails?

I The second stage is an estimation problem since x2 = x1 − u2.
I Let u2 = by2 and u1 = ay1. What is the best estimate of x1?
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Figure: Expected Cost vs t [4]. Note the local minima!



Nonlinear Controllers
I For k = 0.1 and σ = 10, the expected cost of the optimal affine

controller is 0.99 > 0.
I Witsenhausen suggested a control law for u1

u1 = −x0 + σsgn(x0),

and a nonlinear control law for u2

u2 = σ tanh(σy2).

I First stage control gives a binary output (tanh(.) is the MMSE).
I This gives an expected cost of 0.404. How bad can this ratio be?



Quantized Controllers

I Mitter and Sahai [4] proposed 1-bit quantized controllers

γ(y1) = −y1 + σsgn(y1)

γ(y2) = σsgn(y2)

I The decoding error (proportional to the second stage cost)
dies off with e−σ2/2.

I Can find limiting values of k and σ for which the expected
cost of quantized to linear controller is zero.



Learning Approaches

Properties of Optimal Control
Consider a reformulation of the problem as shown.

I Let x1 = x0 + γ(x0) = f (x0) and x2 = f (x0)− g(f (x) + w)
I The cost is then given by

E[k2(x − f (x))2 + (f (x)− g(f (x) + w))2]

Figure: Witsenhausen Counterexample [3]



Learning Approaches

Properties of Optimal Control

I f (x) is an odd function
I For a given f (x)

g∗
f (y) = E[f (x)|y ] = Ex [f (x)φ(y − f (x))]

Ex [φ(y − f (x))]

I The cost becomes

J(f ) = k2E[(x − f (x))2] + 1− I(Df ),

where I(Df ) is the fisher information of random variable y

I(Df ) =

∫
(

d
dy

Df (y))2 dy
Df (y)

with density

Df (y) =
∫
φ(y − f (x))φ(x ;0, δ2)dx
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Learning Approaches
Where Convexity Fails?

I f (x) is an odd function
I For a given f (x)

g∗
f (y) = E[f (x)|y ] = Ex [f (x)φ(y − f (x))]

Ex [φ(y − f (x))]

I The cost becomes

J(f ) = k2E[(x − f (x))2] + 1−I(Df ),
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∫
(

d
dy

Df (y))2 dy
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with density

Df (y) =
∫
φ(y − f (x))φ(x ;0, δ2)dx

I Other convex+non-convex decompositions: quadratic
Wasserstein distance+MMSE [7].



Learning Approaches

Properties of Optimal Control

I The new formulation allows us to see why the non-classical
problem is not convex (−I(Df ) is concave).

I Cost of stage two can be written as 1− I(Df ). Intuitively,
this penalizes how hard it is at step 2 to decode the signal
sent at step 1.

I Maximizing the Fisher information amounts to properly
separating signals for a given noise level (does not matter if
odd or even).

I Optimal control f (x) is symmetric: stage one cost is
symmetric (asking for symmetric f (x)) and stage two cost
does not care!



Step Functions for f (x)

Figure: 3.5 step functions



Major Techniques to Solve the WHC

Figure: Some benchmark statistics [3]



Learning Approach to the WHC
I Divide f (x) into intervals
I Can compute g∗

f (y)

g∗
f (y) =

−
∑n+1

i=1 qiaiφ(y + ai) +
∑n+1

i=1
qiaiφ(y − ai)

,

where

qi =

∫ bi

bi−1

φ(s,0, δ2)ds.

I Similarly, for a choice of (a1, ...,an), one can compute the
expected cost

Figure: Quantized controller



Learning Approach to the WHC

Figure: Optimized quantized control [3].



Learning Approach to the WHC
I Players: intervals [b−i ,bi), i = {1, ...,n + 1}
I Decisions: value ai ∈ {a|a = amax

δ
m k , k = 0, ...,m}.

I Utility function: U = −J (to be maximized).
I Use joint fictitious play with inertia, i.e.,

a∗
i (t) = arg max

1
t

t∑
s=1

Us(ai ,a−i(s))

with probability 1− ε. and

a∗
i (t) = a∗

i (t − 1)

otherwise.



Learning Approach to the WHC

Figure: Convergence to 3.5 (tilted) step functions [3]
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