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Control and Communications

General Problem: Stabilizing an unstable plant with noisy
feedback.
How much “information” do we need?
What is the correct measure of “information”?
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Control and Communications

Main insights
How much “information” do we need?

I No single answer. It depends on the degree of “stability” desirable.
What is the correct measure of “information”?

I Shannon capacity may not be adequate for stronger notions of
stability. Need anytime capacity.
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Plan of This talk

A simple example to illustrate that Shannon capacity is not strong
enough for control applications.

I In particular, a plant can be unstable even if the Shannon capacity
of the channel is infinite.

A necessary condition for stability in terms of anytime capacity.

6 / 38



Plan of This talk

A simple example to illustrate that Shannon capacity is not strong
enough for control applications.

I In particular, a plant can be unstable even if the Shannon capacity
of the channel is infinite.

A necessary condition for stability in terms of anytime capacity.

6 / 38



Main Reference

A. Sahai, S. K. Mitter, “The Necessity and Sufficiency of Anytime
Capacity for Stabilization of a Linear System Over a Noisy
Communication Link. Part I: Scalar Systems,” IEEE Trans. Inform.
Th., vol. 52, no. 8, pp. 3369-3395, Aug. 2006.

7 / 38



Outline

1 Introduction

2 A Counter Example

3 Necessity of Anytime Capacity

4 Conclusions

8 / 38



The Control Problem

Xt+1 = λXt + Ut +Wt, t ∈ Z+.

Time (discrete): t ∈ Z+.
State: Xt ∈ R.
control: Ut ∈ R.
Bounded disturbance: |Wt| < Ω

2 , with probability 1.

To make things interesting:
unstable gain: λ > 1.
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The Control Problem

Xt+1 = λXt + Ut +Wt, t ∈ Z+.

Goal: choose good Ut to keep Xt “small”.
If feedback is perfect, simply set Ut = −λXt.
What if feedback is sent through a noisy channel?
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Definition of Stability

Observer O: sees Xt and generates channel input at.
Controller C: observes channel output Bt and generates control
signal Ut.
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The Control Problem

Definition: η-stability

A closed-loop system is η-stable if there exists K <∞, such that

E [|Xt|η] < K

for all t ≥ 0.

(More general notions of stability can be defined, but we will focus on
η-stability for now.)
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Counter Example in Real-Erasure Channel

When is Shannon capacity not sufficient in describing communications
in control systems?

Real Erasure Channel (REC)

The real packet erasure channel has
Input alphabet: A = R.
Output alphabet: B = R.
Transition probabilities

p(x|x) = 1− δ,
p(0|x) = δ.

I.e., a symbol is either received perfectly, or received as zero.
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Counter Example in Real-Erasure Channel

What is the Shannon capacity of the channel?
It is infinite, because a real number can carry as many bits as we
want.

14 / 38



Counter Example in Real-Erasure Channel

What is the Shannon capacity of the channel?
It is infinite, because a real number can carry as many bits as we
want.

14 / 38



Counter Example in Real-Erasure Channel

What is the optimal communication / control policy?
Communication: set

at = Xt.

Control: set
Ut = −λBt.

Resulting dynamics: Xt is reset to 0 every Geo(δ) steps.
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Counter Example in Real-Erasure Channel

Is the system η-stable under optimal control?
It is 1-stable,

E[|Xt|] =
(

3
2

)(
1
2

)
< 1,

for all t.
However, it is not η-stable, for η ≥ 2,

E[|Xt|2] >
4σ2

5

t∑
i=0

((
9
8

)i+1

−
(

1
2

)i+1
)

which diverges as t→∞.
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Counter Example in Real-Erasure Channel

Lesson learned: notion of information depends on the strength of
stability required (e.g., values of η).

Why was Shannon capacity insufficient?
Need good information about the system state at all times, not
just the end of a large block.
Fix: define a stronger notion of capacity to guarantee good
estimation of system state at any point in time (“anytime
capacity”).
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Anytime Reliability and Capacity

Communication System

A rate R communication system is
Encoder receives R-bit message Mt in slot t. (details on
whiteboard)
Encoder produces channel input based on all past messages and
possible feedback Bt−1−θ

1 (with delay 1 + θ).
Decoder updates estimates of all past messages, M̂i(t), for all
i ≤ t, based on all channel outputs till time t.
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Anytime Reliability and Capacity
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Anytime Reliability and Capacity

Anytime Reliability

A rate R communication system achieves anytime reliability α if there
exists constant K such that

P
(
M̂ i

1(t) 6= M i
1

)
≤ K2−α(t−i).

The system is uniformly anytime reliable if the above holds for all
messages M .

Comparing to Shannon reliability? Block versus sequential?
Exercise: fix t or i and vary the other.
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Anytime Reliability and Capacity

α-anytime Capacity

Cany(α) of a channel is the highest rate R, at which the channel can
achieve uniform anytime reliability α.

More stringent than Shannon capacity, C:

Cany(α) ≤ C,

for any α > 0.
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Necessity of Anytime Capacity

Theorem: Necessity of Anytime Capacity

If there exists an observer / controller pair that achieves η-stability
under bounded disturbance, then the channel’s feedback anytime
capacity satisfies

Cany(η log2 λ) ≥ log2 λ,
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Necessity of Anytime Capacity: Proof

Use the control system as a black box to construct a communication
system with good anytime reliability. (sketch on white board)

1 Encoder sits with the plant; decoder with the controller.
2 Encode messages in the disturbance, Wt.
3 Controller must somehow know the disturbances, otherwise there

is no way to stabilize the plant.
4 Decoder then reads off the control actions chosen by the controller

to decode message.
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Necessity of Anytime Capacity: Proof
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Necessity of Anytime Capacity: Proof

But what do you mean by “knowing the disturbances”?
Alright, let’s be more concrete here. Write

Xt = Yt + Zt,

such that
X0 = Y0 = Z0 = 0.
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Necessity of Anytime Capacity: Proof

Yt is the control branch

Yt+1 = λYt +Wt.

Zt is the disturbance branch

Zt+1 = λZt + Ut.

Can easily verify by recursion

Xt = Yt + Zt.
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Necessity of Anytime Capacity: Proof

Key idea: encoder can control Wt (hence Yt), while decoder knows
Zt perfectly.
The plant is η-stable, so |Xt| must be small at all times.
Therefore, we must have

Yt ≈ −Zt.

Voila! Decoder should be able to extract good information of Wt

by looking at Zt.
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Part 1: Encoding

Now, down to business: step 1, encoding.
Let each message Mt be a collection of R bits.
Let Si ∈ {−1, 1} be the ith bit in the system.
Write

Yt = λYt−1 +Wt−1

= λt−1
t−1∑
j=0

λ−jWj .
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Part 1: Encoding

Encoding: choose Wt to be the value of the fractional
representation of {Si}, bRtc+ 1 ≤ i ≤ bR(t+ 1)c,
In particular, set

Wt = γλt+1

bR(t+1)c∑
k=bRtc+1

(2 + ε1)−k Sk.

Need the right constants to make things work

ε1 = 2
log2 λ
R − 2,

γ =
Ω

2λ1+ 1
R

.
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Part 2: Decoding

Sent...fingers crossed...how much separation did we get?
Main technical lemma:

Technical Lemma

Let Ŝi(t) be the estimate of bit Si at time t. For all 0 ≤ j ≤ t,{
ω
∣∣∃i ≤ j, Ŝi(t) 6= Ŝi(t)

}
⊂
{
ω
∣∣ |Xt| ≥ λt−

j
R

(
γε1

1 + ε1

)}
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Part 2: Decoding

Technical Lemma

Let Ŝi(t) be the estimate of bit Si at time t. For all 0 ≤ j ≤ t,{
ω
∣∣∃i ≤ j, Ŝi(t) 6= Ŝi(t)

}
⊂
{
ω
∣∣ |Xt| ≥ λt−

j
R

(
γε1

1 + ε1

)}

Intuition: if early disturbances (St) were guessed incorrectly,
control will blow up exponentially fast!
Hence small |Xt| must imply good estimates of early disturbances.
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Part 2: Decoding
Proof:

If two message differ in the first bit, S1, how much will they differ
on resulting Yt?

inf
S̄:S̄1 6=S1

∣∣Y1(S)− Y1(S̄)
∣∣

≥ γλt

1−
bRtc∑
k=1

(2 + ε1)−k

−
−1−

bRtc∑
k=1

(2 + ε1)−k


> γλt 2

1−
bRtc∑
k=1

(2 + ε1)−k


= λt

(
2ε1γ

1 + ε1

)
Note the exponential dependence on λ (will force controller to
report good estimates).
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Part 2: Decoding

More generally,

inf
S̄:S̄i 6=Si

∣∣Yt(S)− Yt(S̄)
∣∣ > λt−

i
R

(
2ε1γ

1 + ε1

)
,

if i ≤ bRtc.
We will decode to get the Ŝi by pretending that −Zt is Yt.
Complete the proof of Lemma by noting that∣∣Zt(S)− Zt(S̄)

∣∣ ≥ ∣∣Yt(S)− Yt(S̄)
∣∣− ∣∣Xt(S)−Xt(S̄)

∣∣ .
In other words, smallness of Xt guarantees the closeness of −Zt
and Yt.
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Part 3: Probability of Error

P (|Xt| > m) = P (|Xt|η > mη)
≤ E (|Xt|η)m−η

< Km−η (definition of η-stability).

Combine this with the Technical Lemma

P
(
Ŝi1(t) 6= Si1(t)

)
≤ P

(
|Xt| > λt−

j
R

(
γε1

1 + ε1

))
<

(
K

(
1
γ

+
1
γε1

)η)
2−(η log2 λ)(t− i

R).

This proves the theorem.
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Review: we just proved...

Theorem: Necessity of Anytime Capacity

If there exists an observer / controller pair that achieves η-stability
under bounded disturbance, then the channel’s feedback anytime
capacity satisfies

Cany(η log2 λ) ≥ log2 λ.

Sufficient conditions for anytime reliability in stabilizing a plant is
in the paper, but will not be covered here.
Is the necessary condition tight? Are there simpler ways to
interpret / proof this result?
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Conclusions
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Concluding Remarks

Thinking about the required information rate for particular
application: may need different (or stronger) notion of capacity /
reliability.
Exponentially unstable nature of linear control system underlies
the higher information barrier.
Put in an adversarial way, instability and noise are both our
enemies in communications. Any other major adversaries that we
should consider?
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