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Flash memory
• Array of Floating Gate Memory Cells.
• In abundant use for short-term storage and limited number of writes.
• Can they be used as caches? 

• What is the best model for the errors in Flash 
memory?
• How to increase the longevity of the flash 
devices?
• What will be the architecture of a high-
performance error-resilient Flash controller?

A USB Flash Drive. The 
chip on the left is the flash 
memory. The controller is 
on the right (Wikipedia).



Reliability of data in Flash memory 
and rank modulation scheme
Drift of charge from cells: Reliability of data stored.
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Information is written in blocks of n cells with q charge levels in each cells.



Memory Cells
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• Conventional q-ary codes can be used for protection of data.

• The error process is non-conventional!



Error caused by drift of charge  
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• Due to charge leakage, after some time (aging of device) all cells will contain 
erroneous values.
• Moreover the rate of leakage in different cells may vary.

• Error correction schemes designed for q-ary writing will FAIL.



Storing data in Flash memory
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•Rank Modulation Scheme (ISIT’08 Jiang/Schwartz/Bruck).
• Store information as the relative values of the charge levels.
• σ = (4, 7, 6, 1, 5, 2, 3) 
• Levels can take continuous values.



Storing data in Flash memory
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Storing data in Flash memory
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Codes in permutations

• Sn= Group of permutations on n symbols 
• Vector representation:  = ((1), (2), … (n),)
• Identity: (1, 2, 3, … ,n)
• Multiplication: Composition (1, 3, 2, 4)(2, 4, 1, 3)=(2, 1, 4, 3)
• Inverse:  (3, 4, 2, 1)(4, 3, 1, 2) = (1, 2, 3, 4)   
• Transposition: (1,3, 5, 4, 6, 2)  (1, 3, 5, 2, 6, 4)



Codes in permutations



Codes in permutations with 
Kendall metric



Rank modulation codes



Coding for the Kendall distance



Coding for the Kendall distance



Bounds on the size of codes



Capacity of rank modulation 
Scheme



To prove: basic arguments



To prove: basics of permutation

1 0 1 20 0 2 0 1xσ

 2    1    6    4    3    7    5    9    8     



Direct attempt to find the volume 
of the sphere



Direct attempt to find the volume 
of the sphere



Direct attempt to find the volume 
of the sphere



Isometric embeddings



Isometric embeddings



Codes that correct t-errors



Existence of good codes: proof idea



Existence of good codes: proof idea



Existence of good codes: main tool



Existence of good codes: final step



Explicit constructions
Permutation Polynomials: Polynomials 
that give bijective maps from a finite 
field to itself.
Main Idea: Evaluations of permutation 
polynomials of bounded degree forms a 
subset of Reed-Solomon code.
Problem 1: Identifying permutation 
polynomials calls for extensive search.
Consider special classes, such as, 
Linearized polynomials, Dickson 
polynomials, monomials. 
Problem 2: Connecting Kendall 
Distance with Hamming distance is 
difficult.  We use certain accumulator-
type transformation that does the job 
for small distances. 

Construction from good codes of the 
Hamming space: We find a distance 
preserving Gray Map (and its 
variations) for the space of inversion 
vectors and the Hamming space of  
comparable size.

Remember  we seek an additive error 
correcting code in the space of 
inversion vectors.

We obtain family of ‘good’ codes, 
efficiently encodable and decodable,  
that corrects up to O(n 1+ε) number of 
errors, for  0≤ε≤1. 



To summarize:


