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Flash memory

* Array of Floating Gate Memory Cells.

* In abundant use for short-term storage and limited number of writes.
* Can they be used as caches?

A USB Flash Drive. The
chip on the left is the flash
memory. The controller is
on the right (Wikipedia).




and rank modulation scheme

Drift of charge from cells: Reliability of data stored.

1 2 3 4 : . n

Information is written in blocks of n cells with q charge levels in each cells.



emory Cells

» Conventional g-ary codes can be used for protection of data.

* The error process is non-conventional!




~ Error caused by drlft of char
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1 2 3 4 5 6 7
4 6 7 1 5 3 >

o o =(4.7,6.1,5,2.3)
o o/ =(7,4,6,1,5,2,3)



ring data in Flas ory

1 2 3 4 5 6 7
4 6 7 2 5 3 1

@ Error process: charge leaks.

o
o= (4,7,6,1,5,2,3) — o =(7,4,6,1,5,2.3)

@ Unit error : Transposition of adjacent elements.



e —
odes in permut

ations

@ CodeC C S,,.

@ Elementary errors: transpositions of adjacent symbols.



-

Codes in permutations

Discrepancy measures (metrics):

@ Hamming distance d(o1,00) = [{i : o1(i) # o2(i) }|.
Blake-Cohen-Deza 1979:
Tarnanen 19809:

Colbourn-Klove-Ling 2004;
Cameron.

@ Cayley distance (minimum number number of transpositions).

@ Many more.. (Deza, Huang: "Metrics on permutations, a
survey”; General literature on permutation arrays).

@ Coding for Hamming distance is a well-studied problem.




| es in permutations wi
Kendall metric

Our problem: Kendall distance (Maurice Kendall, 1930s,
"Advanced Statistics” Vol.1, 1946)

@ d;(o1,02) = minimum number of transpositions of adjacent
symbols.

d-((2,4,3,1),(2,3,1,4)) = 2;
(2,4,3,1) — (2,3,4,1) — (2.3,1,4)
Coding for the Kendall distance is NOT new!

Impulse Noise: H. Chadwick and L. Kurz, “Rank permutation

group codes based on Kendalls correlation statistics”, IEEE Trans.
Inform. Theory 15, 1969.



Rank modulation codes

@ Rank Modulation Code: A set of permutations.

@ Data is Encoded in to a permutation from the Code.

@ Permutations are stored as relative charge levels in memory
cells.

@ Charge levels can be continuous.

@ Unit Error: Transposition of adjacent elements.

@ Want to encode as much information as possible (Large
Code).

@ Guarantee reliability as long as number of errors in the
medium is at most a given number t.

@ Any two code-words should be well-separated (at least by
2t +1).



Coding for the Kendall distance

Properties:

0 0 < dr(01,00) < 222

d((1,2,3.4),(4,3.2,1)) = 6.

@ Right invariance: d,(oy,02) = d, (010, 050) for all
01,02,0 & S,.

@ "Weight" of permutation w(o) = d(o, e), e = identity
permutation.



ing for the Ke

Rateof C C S, :

In |C]
R(C) = :
(€) In nl
Clearly 0 < R < 1.
Capacity of rank modulation code:
C(d) = lim A 9)
n—oo  Innl

where

A(n,d) =max|C|: d-(C) = d.

@ Find the maximum possible size of a rank modulation code.

@ Find the exact asymptotic scaling of the distance, and then
derive capacity (eg. for Hamming space for rate bounds we
take d = dn).



Bounds on the size of codes

Standard techniques of bounding the size of a code in a metric
space:

@ Sphere-volume bounds: Hamming bound, Gilbert-Varshamov
Lower bound.

@ “Independence of coordinates of codes:" Plotkin bound, Elias
bound (we do not have this).

@ The Kendall metric is graphic. However the metric graph is
not “distance regular.”

@ However we have a Singleton-type bound:

A(n,d) < [3/2++/n(n—1) — 2d + 1/a|l.

@ Not useful for capacity!



~ Capacity of rank modulation
Scheme

@ One of the main results.

1 it d = O(n)
Cd)=Q1—¢ ifd=0(n""), 0<e<1
0 if d = ©(n?).

il

The equality C(d) =1 — € holds under a slightly weaker condition,
namely, d = n*T¢a(n), where a(n) grows slower than any positive
power of n.



/X/

- To prove: basic arguments

@ Upper bound on the size of best code (Hamming bound) :
Sphere Packing.

@ Lower bound on the size of best code (Gilbert-Varshamov
bound) : Sphere Covering.

@ Want : Volume of the sphere in Kendall Space of
permutations.

@ [he volume does not depend on the center.



- To prove: basics of permutation

Inversion in permutation:

1< 2 3 4
2> 1 3 4

Inversion vector of a permutation:

Gl dif b v g

T e

@ Inversion vector:

xo(i) = [{j - J < i Na(i) > a(i)}].

@ X, € Gy 2T XT3 X ...X T,
@ The mapping S,, — G, is bijective.



~ Direct atte mm

of the sphere

Let I(o) be the total number of inversions in o. Then

w(o) 2 dy(o,e) = I(c0) = Zx{r

o Let Ky(k) = |{oc €S, I(c) = k}|.

@ We need to find number of solutions of the equation:

Zx,- = k, where x; € Zj41.



- Direct attempt to find the volume

of the sphere

_ i K, (k)z< = H 12
k=0 - 12

@ Since K(z) converges for every z in the finite plane, we can

write

l—z z 14z

ﬂ

2Tf

where D is a circle around the origin.



~ Direct atte mm

of the sphere

Margolius(2001) and Louchard and Prodinger(2003),

There exist constants ¢; and ¢» such that

Kn(k) < exp(c1n) it k = 0(n),
Kn(k) = n!/exp(can) if k =0©(n%).




/X/

Isometric embeddings

@ (S, d;) — Binary Hamming space of dimension (7).

(i <j)e[n] x[n]=1if (i <j) forms an inversion, 0
otherwise. Chadwick, Reed (1970).
Not useful in this context.

@ Spearman'’s footrule: D(o1,02) =>4 |o1(i) — o2(i)|.
Diaconis, Graham (1977),

1 1 -
59(5’1552) i dT(gl 1'.«0.2 1) E D(¢”11'¢”2)+



Isometric embeddings

@ Existence of any code C C S,, with Kendall distance d must
imply existence of a code ¢’ = {07! : 0 € C} of same size
that have (7 distance at least d.

@ On the other hand existence of any code C C S, with /4
distance d implies the code ¢’ = {o7! : o € C} will have
Kendall distance at least d/2.

@ Bound volume of sphere in the Lattice Z with ¢4 distance
(Irregular Space).

@ Then use the Sphere packing and Gilbert-Varshamov type
argument.
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- Codes that correct t-errors

Our contribution:

Let m = ((n—2)™* —1)/(n—3), where n — 2 is a power of a
prime. There exists a t-error-correcting rank permutation code in
S, whose size satisfies

n!/(t(t +2)m) (t even).

. {n!/(r(r+ 1)m) (t odd)

@ Sphere packing bound (for constant t it is easy to compute)
gives M = O(n!/n*) for a code C in S, of length n that
corrects t errors. We show existence within a constant factor!

@ Known construction: t =1 M > %(n — 1)! (Jiang, Schwartz,

Bruck, ISIT 2008) (by the Varshamov-Tenenholtz
construction).



/X/

Existence of good codes: proof idea

@ The symmetric group S,, has a bijective mapping to
Gn =70 X ... X ZLp.

@ Consider G, with ¢1 metric. Show:
dr(o.m) = dp,(Xo, Xr ).

@ Show existence of a code in G, that corrects t additive errors.



Existence of good codes: proof idea

@ Show: existence of a code that is a subgroup of Z:};l for
some m; = n.

@ Compute the average intersection of the translations of the
code constructed above with G,, (use Group property).

@ Code C that corrects t additive errors:
X,y €C, x+e; #x+es, ifZ e jl <t, fori=1,2.
J

@ The errors are "symmetric’, i.e., the known constructions of
asymmetric error correcting codes do not apply.



Existence of good codes: main tool

(Bose and Chowla, 1962) Let q be a power of a prime and
m = (gt —1)/(q — 1). There exist q + 1 integers
jo=0.j1,...,Jq in Zpm such that the sums

Ji+Jp+-.-+Jji, 0<ih<ih<...<ir<q)

are all different modulo m.

@ Extend the above theorem so that it remains true for sums
and differences.



Existence of good codes: final step

Forl1<i<qg-+1let

o ji-1+5tm  for t odd
| Ji-1+ %m for t even

where the numbers j; are given by the Bose-Chowla theorem. Let
me = t(t+ 1)m if t is odd and m; = t(t + 2)m if t is even. For all
e € Z9ML such that ||e|| < t the sums Zq 1 eihi are all distinct
and nonzero modulo m;.

@ We can therefore correct “symmetric errors’ is 1 norm with a
“group code.”



p o e —

“Explicit constructions

Permutation Polynomials: Polynomials
that give bijective maps from a finite
field to itself.

Main Idea: Evaluations of permutation
polynomials of bounded degree forms a
subset of Reed-Solomon code.

Problem 1: Identifying permutation
polynomials calls for extensive search.
Consider special classes, such as,
Linearized polynomials, Dickson
polynomials, monomials.

Problem 2: Connecting Kendall
Distance with Hamming distance is
difficult. We use certain accumulator-
type transformation that does the job
for small distances.

Construction from good codes of the
Hamming space: We find a distance
preserving Gray Map (and its
variations) for the space of inversion
vectors and the Hamming space of
comparable size.

Remember we seek an additive error
correcting code in the space of
inversion vectors.

We obtain family of ‘good’ codes,
efficiently encodable and decodable,
that corrects up to O(n *¢) number of
errors, for o<e<u.



-~ To summarize:

@ We established the exact scaling law for code rate for codes
with Kendall distance d (capacity of rank permutation codes).

@ We proved existence of good codes (a constant factor away
from the sphere packing bound) for any fixed number of
Kendall errors.

@ We proved other bounds. Namely, Singleton Bound:
A(n,d) < [3/2++/n(n—1) — 2d + 1/a|l.

@ We presented explicit constructions. Example: It is possible to
construct a t-error-correcting rank modulation code of length
n and size

2(n+1)|log n] —2llogn]+14 9

((”"‘UUGE nj _2L|ognj—|—l_|_3)r+




