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Abstract— Since Witsenhausen put forward his remarkable
counterexample in 1968, there have been many attempts to
develop efficient methods for solving this non-convex func-
tional optimization problem. However there are few methods
designed from game theoretic perspectives. In this paper, after
discretizing the Witsenhausen counterexample and re-writing
the formulation in analytical expressions, we use fading memory
JSFP with inertia, one learning approach in games, to search for
better controllers from a view of potential games. We achieve a
better solution than the previously known best one. Moreover,
we show that the learning approaches are simple and automated
and they are easy to extend for solving general functional
optimization problems.

I. INTRODUCTION

A team decision problem consists of a group of decision
makers seeking to maximize a common objective that de-
pends on the group’s joint decision. The difficulty associated
with a team decision problem stems from the fact that
each decision maker is making a decision independently
in response to incomplete information. Decision makers are
allowed to communicate their information to one another
within a given information structure; however, such actions
bear communication costs. The goal of the team decision
problem is to find the optimal policy for the decision makers
and the optimal information structure such as to minimize
a cost function that incorporates the original objective, the
available information, and the communication costs [15],
[19].

One example of a team decision problem that has received
a significant degree of research attention is the Witsenhausen
counterexample (WC). The WC is illustrated in Figure 1 and
has the following elements1:

• External Signals: x, v, independent random variables
with finite second moments. In this paper, we assume
independent Gaussian random variables, where x ∼
N(0, δ2); v ∼ N(0, 1).

• Information (Observation): x, y, where y = u1 + v.
and u1 is explained below.
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1It’s not exactly the original WC, while it’s equivalent to WC [22].

Fig. 1. Information structure of the Witsenhausen Counterexample

• Decision Variables: u1 = f(x), u2 = g(y), where
(f, g) is any pair of Borel functions.

• Cost objective:

min
f, g

J = E
[
k2(u1 − x)2 + (u2 − u1)2

]
(1)

The goal is for DM1 to estimate the external signal x and
DM2 to estimate u1 which is corrupted by the noise signal
v. Although the WC involves only two decision makers, it
possesses almost all of the main difficulties inherent in any
decentralized team decision problem.

The WC is a simple example of a linear-quadratic-
Gaussian (LQG) team problem [8]. Before Witsenhausen
put forth this counterexample, it was conjectured that in any
LQG team problem the optimal controllers are linear. Witsen-
hausen proved that for some k > 0, the WC has an optimal
solution that is not of the linear type [22]. Thus he claimed
that the conjecture is not necessarily true if the information
pattern is not classical.2 Since then, many researchers have
focused on understanding the role of information structures
in team decision problems ([1], [8], [10], [11], [20], [21])
and on developing more efficient methods to find improved
solutions for the WC ([2], [4], [12], [13]). The work in this
paper belongs to the second kind. So far no optimal controller
has been found.

Witsenhausen proved that the optimal controllers for the
WC have the following properties [22]: (i) if f is optimal,
then E[f(x)] = 0, E[f(x)2] ≤ 4δ2; (ii) given a fixed
f(x) having zero means and variance not exceeding 4δ2,
the optimal choice for g(·) is given by

g∗f (y) = E[f(x)|y] =
Ex [f(x)φ(y − f(x))]

Ex [φ(y − f(x))]
, (2)

where φ(·) is the standard Gaussian density. The correspond-
ing payoff function is

J∗(f) := J(f, g∗f ) = k2E
[
(x− f(x))2

]
+ 1− I(Df ) (3)

2If the information pattern is classical, then the information available to
earlier decision makers is also available to later decision makers [8], [22].
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where

I(Df ) =
∫ (

d

dy
Df (y)

)2
dy

Df (y)
(4)

which is called the “Fisher Information” of the random
variable y with density Df (y) being

Df (y) =
∫
φ(y − f(x))φ(x; 0, δ2)dx (5)

where φ(x; 0, δ2) is the Gaussian Density with zero mean
and variance δ2.

By utilizing both of the two properties, we can convert
the problem of minimizing the cost over a pair of functions
(f, g) to the one of minimizing the cost over a single
function f . Most of the past attempts to find improved
controllers have utilized this idea. Moreover, because of the
first property, most work has only investigated functions f
that are symmetric about the origin.3 The main difficulty of
finding optimal f is that J∗(f) is not a convex functional,
since the fisher information I(Df ) is convex [3] and thus
−I(Df ) is concave.

Following the signal scheme suggested in Witsenhausen’s
original paper [22], many authors have focused on using step
functions or functions with other bases to approximate the
optimal controllers during the past 40 years. For example,
in [9] the authors analyzed the problem from a discrete
version; however, the authors were unable to make progress
in deriving the optimal solution. Later, it was proven that
the discretized Witsenhausen counterexample expressed in
discrete form is NP-complete [18]. Table I provides a brief
summary of the major advances on solving the WC. For
benchmarking, we choose the case when σ = 5 and k = 0.2.

TABLE I
A BRIEF SUMMARY OF MAJOR ADVANCES ON SOLVING THE WC

Solution of f(x) a Total cost J b

Optimal affine solution [22] (1968) 0.961852
1-step; by Witsenhausen [22] (1968) 0.404253

1-step; by Bansal and Basar [1] (1987) 0.365015
2-step; by Deng and Ho [4] (1999) 0.190
25-step; by Ho and Lee [12] (2000) 0.1717

2.5-main-step; by Baglietto et al. [2] (2001) 0.1701
3.5-main-step; by Lee et al. [13] (2001) 0.1673132

3.5-main-step; by our work in this paper (2009) 0.1670790

aAll f(x) are odd functions, thus “0” is always counted as a breakpoint.
“n-step” means that there are n breakpoints in the nonnegative domain of x.
“n.5-step” means that f(x) = 0 for any x ∈ [0, b1], where b1 is the smallest
positive breakpoint.

bIf the corresponding paper provided J’s value for the case of σ = 5, k =
0.2, the value is from the paper. Otherwise, we evaluate J with our numerical
methods provided in Section III, whose accuracy is at least gauranteed to be
10−6.

While most of the approaches highlighted in Table I rely
on utilizing step functions, [2] demonstrates that the optimal
controller f∗(x) is not necessarily strictly piecewise con-
stant but rather slightly sloped. [13] utilized this finding in

3There are further discussions on the reason why only symmetric func-
tions need to be considered in [13]-Appendix III.

constructing controllers by first deciding on the number and
positions of the main steps and then modifying each main
step to be several sub-steps to obtain improved solutions.
This explains the meaning of “n-main-step” in Table I.

While several types of numerical methods have been
employed to find efficient controllers for the WC, few
methods are designed from the perspective of learning in
games ([6], [7], [14], [16], [17], [23]). Learning approaches
are distributed algorithms designed to find Nash Equilibria in
games. In this paper, we discretize the WC and formulate this
problem as a game. We utilize the learning algorithm fading
memory joint strategy fictitious play(JSFP) with inertia [14]
to search for an efficient controller. This learning approach
provides a controller that improves upon the best known
controller in the past 40 years as highlighted in Table I. Fur-
thermore, learning algorithms such as JSFP have alternative
advantages over other searching methods as to the issues of
complexity, flexibility, as well as generality.

The remainder of the paper is organized as follows. In
Section II, we offer some basic background of game theory
and introduce the learning approach fading memory JSFP
with inertia. In Section III, we discretize the WC and
derive an analytic formulation for the problem based on the
discretizing parameters. We formulate the WC as a potential
game, which is a special case of games, and employ the
algorithm of fading memory JSFP with inertia to find an
efficient controller. In Section IV we compare our methods
and results with others’. We conclude in Section V.

II. LEARNING APPROACHES IN POTENTIAL GAMES

In this section, we introduce a brief background on the
game theoretic concepts and learning approaches in this
paper. We refer the readers to [5], [6], [7], [14], [16], [17],
[23] for a more comprehensive review.

A. Background of Game Theory

1) Finite Strategic-Form Games: In a finite strategic-form
game, there are n-players N := {1, 2, · · · , n} where each
player i ∈ N has a finite action set Ai and a utility function
Ui : A → R where A = A1 × A2 × . . . × An. Every
player i seeks to selfishly maximize their utility. We use G
to represent the entire game, i.e. the players, actions sets,
and utilities.

For an action profile a = (a1, a2, . . . , an) ∈ A, a−i
denotes the action profile of players other than player i, i.e.,
a−i = (a1, . . . , ai−1, ai+1, . . . , an). The definition of pure
Nash equilibrium is as follows:

Definition 2.1: a∗ ∈ A is called a pure Nash equi-
librium if for all players i ∈ N , Ui(a∗i , a

∗
−i) =

maxai∈Ai
Ui(ai, a∗−i).

2) Potential Games: In an identical interest game, all the
players have a common utility function, i.e., Ui(a) = Ug(a)
for some global utility function Ug : A → R. Hence,
every identical interest game has at least one pure Nash
equilibrium, namely any action profile a that maximizes
Ug(a). Potential games are a generalization of identical
interest games.
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Definition 2.2: A game G is a potential game, iff ∃ a
function Φ : A → R such that for every player i and
∀ a−i ∈ A−i, ∀ a′i, a′′i ∈ Ai,

Ui(a′i, a−i)−Ui(a′′i , a−i) = Φ(a′i, a−i)−Φ(a′′i , a−i) (6)

The function Φ is called a potential for G.
In a potential game, the change in a player’s utility resulting
from a unilateral change in strategy equals the change in
some global potential function. It is easy to verify that any
maximum of the potential is a pure Nash equilibrium of the
potential game.

3) Repeated Games: In a repeated game, at each time
t = 0, 1, 2, · · · , each player i ∈ N simultaneously chooses
an action ai(t) ∈ Ai and receives the utility Ui(a(t))
where a(t) := (a1(t), a2(t), . . . , an(t)). Each player i ∈ N
chooses his action ai(t) at time t according to a probability
distribution pti ∈ ∆(Ai)4, which is a function of the infor-
mation available to the player i up to time t which includes
observations from the games played at times {0, 1, ..., t−1}.
In the most general form, a strategy update mechanism for
player i takes on the form

pti = Fi(a(0), a(1), ..., a(t− 1);Ui),

meaning that the strategy update mechanism could depend
on all past information in addition to the structural form of a
player’s utility. Different learning algorithms are specified by
both the assumption on available information and mechanism
by which pti are updated.

B. Fading memory JSFP with inertia

Firstly consider the learning algorithm joint strategy fic-
titious play (JSFP) with inertia [14]. Define V ai

i (t) as the
average utility player i would have received up to time t if
player i selected action ai at all previous time steps and the
actions of the other players remained unchanged

V ai
i (t) :=

1
t

t−1∑
τ=0

Ui(ai, a−i(τ)).

The average utility admits the following simple recursion:

V ai
i (t) =

t− 1
t

V ai
i (t− 1) +

1
t
Ui(ai, a−i(t− 1)) (7)

Therefore, each player can maintain this average utility
vector using minimal computations.

At the time t = 0, each player i randomly selects one
action from his action set Ai. While at each time t > 0, if
ai(t−1) ∈ arg maxāi∈Ai

V āi
i (t), player i select the previous

action ai(t − 1); otherwise randomly selects any action
ai(t) ∈ arg maxāi∈Ai V

āi
i (t) with probability (1 − ε) or

selects the previous action ai(t) = ai(t−1) with probability
ε where ε ∈ (0, 1).

4∆(Ai) = {pi : pi is a probaility distribution on Ai, i.e., ∀ai ∈
Ai, 0 ≤ pi(ai) ≤ 0; &

P
ai∈Ai

pi(ai) = 1.}.

In this paper, we consider the learning algorithm fading
memory JSFP with inertia. In this setting, each player main-
tains a weighted average utility, denoted as Ṽ , as opposed
to the true average utility as in JSFP.

Ṽ ai
i (t) = (1− ρ)

t−1∑
τ=0

ρt−1−τUi(ai, a−i(τ)) (8)

Ṽ ai
i (t) = ρṼ ai

i (t− 1) + (1− ρ)Ui(ai, a−i(t− 1)) (9)

where ρ ∈ [0, 1) is referred to as the player’s discount factor.
The mechanism of selecting actions in fading memory

JSFP with inertia is the same with that in JSFP with inertia.
If all players adhere to the prescribed learning rule fading
memory JSFP with inertia, then the action profile, a(t), will
converge to a pure Nash equilibrium almost surely in all
potential games [14]. In this paper, we set the inertia ε = 0.6
and discount factor ρ = 0.8.

III. A GAME THEORETIC APPROACH TO THE
WITSENHAUSEN COUNTEREXAMPLE

In this section, we formulate the WC as a potential game
and use the learning approach fading memory JSFP with
inertia to find an efficient controller. One approach to for-
mulating the WC as a potential game is to model it as a game
between the two decision makers where the actions available
to each decision maker are the set of possible control laws.
This approach leads to some challenges since the cardinality
of each action set is infinite. Hence, we formulate this WC
as a potential game in an alternative fashion. We use n-step
functions for f(x) and model each interval as a player and
the value taken by each interval as the player’s action. The
number of players and the size of action sets are determined
by the way of discretizing the problem. Moreover, in order
to reduce the burden of computation, we provide a local
utility function for each player which is exactly aligned with
the global utility function. For benchmarking, we choose
σ = 5, k = 0.2.

A. Problem Re-formulation

Based on the first property of the optimal controllers for
the WC in Section I and Appendix III in [13], we assume that
the optimal f∗(x) is symmetric about the origin and hence
we only investigate odd functions f(x). We discretize DM1’s
nonnegative information and decision variables spaces as
follows:

1) Expression for f(x): We just discretize the main
ranges of DM1’s information and decision variables do-
main, i.e. the two intervals [−rangeb · δ, rangeb · δ] and
[−rangea · δ, rangea · δ]. Moreover, we choose rangeb =
4, rangea = 4.5.

f(x) =



a1 (0 = b0 ≤ x < b1)
a2 (b1 ≤ x < b2)
...

...
an (bn−1 ≤ x < bn)
an+1 (bn ≤ x < bn+1 =∞)
−f(−x) x < 0

(10)
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in which bi = rangeb · δn i, i = 0, 1, 2, · · · , n, bn+1 =
∞ and ai ∈

{
a|a = rangea · δmk, k = 0, 1, · · · ,m

}
, i =

1, 2, · · · , n+ 1. The probabilities at these point intervals are
q1, . . . , qn+1 respectively, where

qi =
∫ bi

bi−1

φ(s; 0, δ2) ds =
1
2

(erf(
bi√
2δ

)− erf(
bi−1√

2δ
)),

(11)
and erf(·) is the standard error function.

Remark 3.1: We discretize the two main ranges into in-
tervals with equal size to make the problem easier to handle.
Note that this approach does not require this intervention.

2) Expression for g∗f (y): By equation (2), we get

g∗f (y) =
−
∑n+1
i=1 qiaiφ(y + ai) +

∑n+1
i=1 qiaiφ(y − ai)∑n+1

i=1 qiφ(y + ai) +
∑n+1
i=1 qiφ(y − ai)

.

(12)
Moreover, we have

g∗f (y) =
∑n+1
i=1 qie

−a2
i (eaiy − e−aiy) ai∑n+1

i=1 qie
−a2

i (eaiy + e−aiy)
. (13)

By writing eaiy−e−aiy = 2 sinh(aiy) and eaiy+e−aiy =
2 cosh(aiy), we get

g∗f (y) =
∑n+1
i=1 qie

−a2
i ai sinh(aiy)∑n+1

i=1 qie
−a2

i cosh(aiy)
. (14)

3) Expression for J(f): It is easy to compute the DM1’s
cost,

k2E
[
(x− f(x))2

]
= 1 + 2

∑n+1
i=1 qik

2a2
i

− 4
2πδ2

∑n+1
i=1 ai

[
exp(− b

2
i−1
2δ2 )− exp(− b2i

2δ2 )
]
.

(15)
The expression for Df (y) is:

Df (y) =
2

2π
e−

y2

2

n+1∑
i=1

qie
− a2

i
2 cosh(aiy). (16)

The expression for d
dyDf (y) is:

d

dy
Df (y) =

2
2π
e−

y2

2

n+1∑
i=1

qie
− a2

i
2 ai sinh(aiy)− yDf (y).

(17)
Using J = k2E

[
(x− f(x))2

]
+ 1 −

∫
( ddyDf (y))2 dy

Df (y)

we can evaluate the objective value.
Remark 3.2: In order to calculate the cost J , we need

to compute an integration. We choose “Numerical Gaus-
sian Integration”, i.e., dividing the main integration interval[
−rangey, rangey

]
into q subintervals, and for each interval,

using 16 degree Guassian Integration. Since y = u1 + v,
where u1 ∈ [−rangea · δ, rangea · δ] and v ∼ N(0, 1), we
choose rangey = 5 + rangea · δ = 5 + 4.5 · δ. Choose proper
large r (r = 200 in this paper) to ensure the integration error
smaller than 10−8 over the main integration domain. Using
the solution provided in [13] with our numerical gaussian
integration, we obtain the same value of total cost which
is J = 0.1673132. Our numerical method provide a good
comparable accuracy.

B. Learning Approaches to the WC

We formulate the WC as a game:
1) “Players”: Each interval [bi−1, bi), (i = 1, · · · , n+1)

can be considered to be a player.
2) “Action”: The value ai ∈ {a|a = rangea · δmk, k =

0, 1, · · · ,m} of f(x) on each interval [bi−1, bi) is the
action taken by each player.

3) “Utility Function”: For each player, we have an iden-
tical utility function U(= −J) to maximize, which is

U = 4
2πδ2

∑n+1
i=1 ai

[
exp(− b

2
i−1
2δ2 )− exp(− b2i

2δ2 )
]

−2
∑n+1
i=1 qik

2a2
i +

∫
( ddyDf (y))2 dy

Df (y) − 2.
(18)

Note that the first two summations at the right side
of equation (18) can be separated by items depending
only on each player’s own action ai. Given this prop-
erty and in order to reduce the number of calculation,
we can regard the utility function as a potential of a
potential game where the local utility function for each
player is:

Ui(āi, a−i) = 4
2πδ2 āi

[
exp(− b

2
i−1
2δ2 )− exp(− b2i

2δ2 )
]

−2
∑n+1
i=1 qik

2ā2
i +

∫
( ddyDf (y))2 dy

Df (y)

(19)
with the integral part in the right hand side depending
on the joint action file of all the players namely
a1, a2, . . . , an+1 as shown in equations of (16) and
(17).

It is easy to verify that the local utility is perfectly aligned
with the original utility. This implies that the Nash equilibria
for the potential game are the same as those for the original
problem. Note that calculating the local utility is easier and
faster than calculating the global utility.

C. Results

Pick n = 400;m = 450, and use “fading memory JSFP
with inertia” , after about 750 steps of iterations, we get
the solution shown in Table II. The corresponding cost is
J = 0.1671507. Figure 2 shows the convergence processes
of ai, (i = 1, 2, · · · , n+ 1) and the total cost J .

TABLE II
SOLUTION OF f(x) a ; n = 400;m = 450

f(x) Interval f(x) Interval
0.00 0.00 ≤ x < 0.70 13.25 11.15 ≤ x < 12.65
0.05 0.70 ≤ x < 2.10 13.30 12.65 ≤ x < 14.10
0.10 2.10 ≤ x < 3.30 13.35 14.10 ≤ x < 15.55
6.45 3.30 ≤ x < 4.25 13.40 15.55 ≤ x < 16.85
6.50 4.25 ≤ x < 5.70 20.25 16.85 ≤ x < 17.65
6.55 5.70 ≤ x < 7.10 20.30 17.65 ≤ x < 19.20
6.60 7.10 ≤ x < 8.55 20.35 19.20 ≤ x < 20
6.65 8.55 ≤ x < 9.95 20.40 x ≥ 20
13.20 9.95 ≤ x < 11.15 −f(−x) x < 0

aAlthough we discretize the main information domain into 400 intervals,
those intervals can choose the same decision value. In this table, we show
the intervals together which have the same decision value. We do the same
process in Table III.
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Fig. 2. Convergence processes of ai and the total cost J in the case
where n = 400, m = 450: each colored plot in the left figure shows one
interval’s decision value f(x) at each step of iteration. There are totally
400 colored plots in the left figure since we discretize f(x) into 400 steps.
The right one shows the convergence of the total cost J .

Change the discretizing parameters to be n = 600; m =
675, and use “fading memory JSFP with inertia”, after about
850 steps of iterations, we get the solution shown in table
III. The corresponding cost is J = 0.1670790. Figure 3 and

TABLE III
SOLUTION OF f(x); n = 600; m = 675

f(x) Interval f(x) Interval
0.00 0.00 ≤ x < 0.467 13.233 10.667 ≤ x < 11.667
0.033 0.467 ≤ x < 1.40000 13.267 11.667 ≤ x < 12.633
0.067 1.400 ≤ x < 2.333 13.300 12.633 ≤ x < 13.633
0.100 2.333 ≤ x < 3.333 13.333 13.633 ≤ x < 14.600
6.467 3.333 ≤ x < 4.133 13.367 14.600 ≤ x < 15.567
6.500 4.133 ≤ x < 5.100 13.400 15.567 ≤ x < 16.533
6.533 5.100 ≤ x < 6.033 13.433 16.533 ≤ x < 16.867
6.567 6.033 ≤ x < 7.000 20.267 16.867 ≤ x < 17.531
6.600 7.000 ≤ x < 7.933 20.300 17.531 ≤ x < 18.567
6.633 7.933 ≤ x < 8.867 20.333 18.567 ≤ x < 19.600
6.667 8.867 ≤ x < 9.833 20.367 19.600 ≤ x < 20
6.700 9.833 ≤ x < 9.967 20.400 x ≥ 20
13.200 9.967 ≤ x < 10.667 −f(−x) x < 0

4 show the convergence processes of ai (i = 1, 2, · · · , n+1)
and the total cost J respectively. In order to show the
convergence dynamics more clearly, we use two separate
plots for each process.

Figure 5 plots the two different fs which we obtain by
using different algorithm parameters. We can see that in both
cases, f is a monotone nondecreasing function with 3.5 main
steps, each of which has a slightly sloped piece between
discontinuities.

IV. COMPARISON TO THE PREVIOUS METHODS AND
RESULTS

In this section, we primarily focus on comparing our
results with the previously known best result in [13]. While
our approach yields an improved cost over [13], i.e., 0.1670
compared to 0.1673, it is interesting to note that our solutions
are relatively close to one another: each f has 3.5 main
steps; the corresponding breakpoints and signal levels for
the 3.5 main steps in each f are respectively close to each
other; and for each main step, there are sub-steps, i.e., each
f(x) has a slightly sloped piece between discontinuities.

Fig. 3. Convergence processes of ai, (i = 1, 2, · · · , n + 1) in the case
where n = 600; m = 675: the left one shows the first 400 steps of
iteration; the right one shows the later 400 steps of iteration. Each colored
plot shows one interval’s decision value f(x) at each step of iterations.
There are totally 600 colored plots since we discretize f(x) into 600 steps.

Fig. 4. Convergence process of the total cost J in the case where n =
600; m = 675: the left one shows the first 400 steps of iteration; the right
one shows the later 400 steps of iteration. Note that the ticks for Y-axis
are different in the two plots, with the aim of showing the convergence
dynamics more clearly.

Furthermore, since the parameters used in our first case (i.e.,
n = 400,m = 450) were chosen to make our solution
comparable to the one in [13], we observe that even the
breakpoints and signal levels for the sub-steps in each f
are respectively close to each other. In Figure 6, we plot
the difference between f(x) in Table II and f(x) in [13].
Although we do not know whether the shape of f(x) is
optimal, the similarity of the solutions found by two quite
different searching methods might not be a coincidence.

Besides improving the best known results to date, the
learning algorithms presented in the paper have alternative
advantages with regards to complexity when compared to
many of the alternative search algorithms proposed in [4],
[12], [13]. First, those searching methods for the WC relied
on the monotone nondecreasing property of the optimal
f(x). This property was proven by Witsenhausen [22] with a
certain amount of effort. However, our solutions do not rely
on this property. The solutions we achieved verify that f(x)
is monotone nondecreasing.

Secondly, some of these algorithms are predicated on
information regarding the problem setup; hence, they are
not fully automated. Take the hierarchical search approach
proposed in [13] as an example. During the search process,
each main procedure required significant analytic work to

WeA05.3

161



Fig. 5. Solutions of f(x): the left one is the f(x) in table II; the right
one is the f(x) in table III.

Fig. 6. Difference between f(x) in Table II and that in [13]: f(x) in Table
II minus f(x) in [13].

obtain a preference for doing that procedure, such as de-
termining the proper interval values and signaling levels,
determining the step number, determining whether and how
to insert smaller steps and so on. Hence, their approach
requires paying close attention to each procedure. In contrast,
our method is automated: once we discretize the problem
and setup the learning approach, we wait for the solution to
emerge.

Lastly, to some extent learning approaches are easier to
extend for solving other optimization problems. Some of
other searching methods requires many modifications when
being employed to other different problems. Again take
the hierarchical search approach as an example. We should
design proper hierarchical searching stages according to the
properties of different problems; and because each stage
requires authors’ priori information about the problem, this
work is not easy. While, as for learning approaches, we just
need to find a reasonable way to model the optimization
problem as a game, i.e. set up the corresponding players,
strategy space and utility functions. Then we can implement
one proper learning approach which has been already de-
signed in game theory to search for a good solution.

V. CONCLUSION

In this paper, we used step functions to approximate
the optimal controllers, which is not a new idea; however,
we used a different searching method namely learning ap-
proaches in game theory to search for such step functions. We
demonstrate that it does not only provide us a better result
than the previous ones in the past 40 years, but also has

other advantages both for solving the Witsenhausen Coun-
terexample and for solving general optimization problems
after comparing with other existing searching methods.
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