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Abstract—In Shannon theory, lossless source coding deals with
the optimal compression of discrete sources. Compressed sensing
is a lossless coding strategy for analog sources by means of mul-
tiplication by real-valued matrices. In this paper we study almost
lossless analog compression for analog memoryless sources in an
information-theoretic framework, in which the compressor or de-
compressor is constrained by various regularity conditions, in par-
ticular linearity of the compressor and Lipschitz continuity of the
decompressor. The fundamental limit is shown to be the informa-
tion dimension proposed by Rényi in 1959.

Index Terms—Analog compression, compressed sensing, infor-
mation measures, Rényi information dimension, Shannon theory,
source coding.

I. INTRODUCTION

A. Motivations From Compressed Sensing

T HE “Bit” is the universal currency in lossless source
coding theory [1], where Shannon entropy is the fun-

damental limit of compression rate for discrete memoryless
sources (DMS). Sources are modeled by stochastic processes
and redundancy is exploited as probability is concentrated
on a set of exponentially small cardinality as blocklength
grows. Therefore, by encoding this subset, data compression
is achieved if we tolerate a positive, though arbitrarily small,
block error probability.

Compressed sensing [2], [3] has recently emerged as an ap-
proach to lossless encoding of analog sources by real numbers
rather than bits. It deals with efficient recovery of an unknown
real vector from the information provided by linear measure-
ments. The formulation of the problem is reminiscent of the tra-
ditional lossless data compression in the following sense.

• Sources are sparse in the sense that each vector is sup-
ported on a set much smaller than the blocklength. This
kind of redundancy in terms of sparsity is exploited to
achieve effective compression by taking fewer number of
linear measurements.

• In contrast to lossy data compression, block error proba-
bility, instead of distortion, is the performance benchmark.
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• The central problem is to determine how many compressed
measurements are sufficient/necessary for recovery with
vanishing block error probability as blocklength tends to
infinity [2]–[4].

• Random coding is employed to show the existence of
“good” linear encoders. In particular, when the random
projection matrices follow certain distribution (e.g., stan-
dard Gaussian), the restricted isometry property (RIP) is
satisfied with overwhelming probability and guarantees
exact recovery.

On the other hand, there are also significantly different ingre-
dients in compressed sensing in comparison with information
theoretic setups.

• Sources are not modeled probabilistically, and the funda-
mental limits are on a worst case basis rather than on av-
erage. Moreover, block error probability is with respect to
the distribution of the encoding random matrices.

• Real-valued sparse vectors are encoded by real numbers
instead of bits.

• The encoder is confined to be linear while generally in
information-theoretical problems such as lossless source
coding we have the freedom to choose the best possible
coding scheme.

Departing from the compressed sensing literature, we study fun-
damental limits of lossless source coding for real-valued mem-
oryless sources within an information theoretic setup.

• Sources are modeled by random processes. This method
is more flexible to describe source redundancy which en-
compasses, but is not limited to, sparsity. For example, a
mixed discrete-continuous distribution is suitable for char-
acterizing linearly sparse vectors [5], [6], i.e., those with a
number of nonzero components proportional to the block-
length with high probability and whose nonzero compo-
nents are drawn from a given continuous distribution.

• Block error probability is evaluated by averaging with re-
spect to the source.

• While linear compression plays an important role in our de-
velopment, our treatment encompasses weaker regularity
conditions.

Methodologically, the relationship between our approach and
compressed sensing is analogous to the relationship between
modern coding theory and classical coding theory: classical
coding theory adopts a worst case (Hamming) approach whose
goal is to obtain codes with a certain minimum distance, while
modern coding theory adopts a statistical (Shannon) approach
whose goal is to obtain codes with small probability of failure.
Likewise compressed sensing adopts a worst case model in
which compressors work provided that the number of nonzero
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components in the source does not exceed a certain threshold,
while we adopt a statistical model in which compressors work
for most source realizations. In this sense, almost lossless
analog compression can be viewed as an information theoretic
framework for compressed sensing. Probabilistic modeling
provides elegant results in terms of fundamental limit, as well
as sheds light on constructive schemes on individual sequences.
For example, not only is random coding a proof technique in
Shannon theory, but also a guiding principle in modern coding
theory as well as in compressed sensing.

Recently there have been considerably new developments
in using statistical signal models (e.g., mixed distributions)
in compressed sensing (e.g., [5]–[8]), where reconstruction
performance is evaluated by computing the asymptotic error
probability in the large-blocklength limit. As discussed in
Section IV-B, the performance of those practical algorithms
still lies far from the fundamental limit.

B. Lossless Source Coding for Analog Sources

Discrete sources have been the sole object in lossless data
compression theory. The reason is at least twofold. First,
nondiscrete sources have infinite entropy, which implies that
representation with arbitrarily small block error probability
requires arbitrarily large rate. On the other hand, even if we
consider encoding analog sources by real numbers, the result is
still trivial, as and have the same cardinality. Therefore,
a single real number is capable of representing a real vector
losslessly, yielding a universal compression scheme for any
analog source with zero rate and zero error probability.

However, it is worth pointing out that the compression
method proposed above is not robust because the bijection be-
tween and is highly irregular. In fact, neither the encoder
nor the decoder can be continuous [9, Exercise 6(c), p. 385].
Therefore, such a compression scheme is useless in the pres-
ence of any observation noise regardless of the signal-to-noise
ratio (SNR). This disadvantage motivates us to study how to
compress not only losslessly but also gracefully in the real
field. In fact some authors have also noticed the importance of
regularity in data compression. In [10] Montanari and Mossel
observed that the optimal data compression scheme often ex-
hibits the following inconvenience: codewords tend to depend
chaotically on the data; hence, changing a single source symbol
leads to a radical change in the codeword. In [10], a source
code is said to be smooth (resp., robust) if the encoder (resp.,
decoder) is Lipschitz (see Definition 6) with respect to the
Hamming distance. The fundamental limits of smooth lossless
compression are analyzed in [10] for binary sources via sparse
graph codes. In this paper, we focus on sources in the real field
with general distributions. Introducing a topological structure
makes the nature of the problem quite different from traditional
formulations in the discrete world, and calls for machinery
from dimension theory and geometric measure theory.

C. Operational Characterization of Rényi
Information Dimension

In 1959, Alfréd Rényi proposed an information measure for
random vectors in Euclidean space named information dimen-
sion [11], through the normalized entropy of a finely quantized

version of the random vector. It characterizes the rate of growth
of the information given by successively finer discretizations
of the space. Although a fundamental information measure, the
Rényi dimension is far less well known than either the Shannon
entropy or the Rényi entropy. Rényi showed that under certain
conditions for an absolutely continuous -dimensional random
vector the information dimension is . Hence, he remarked in
[11] that “the geometrical (or topological) and information-the-
oretical concepts of dimension coincide for absolutely contin-
uous probability distributions.” However, the operational role
of Rényi information dimension has not been addressed before
except in the work of Kawabata and Dembo [12], which relates
it to the rate-distortion function. It is shown in [12] that when
the single-letter distortion function satisfies certain conditions,
the rate-distortion function of a real-valued source scales
proportionally to as , with the proportionality con-
stant being the information dimension of the source. This result
serves to drop the assumption of continuity in the asymptotic
tightness of Shannon’s lower bound in the low distortion regime.

In this paper we give an operational characterization of Rényi
information dimension as the fundamental limit of almost loss-
less data compression for analog sources under various regu-
larity constraints of the encoder/decoder. Moreover, we con-
sider the problem of lossless Minkowski dimension compres-
sion, where the Minkowski dimension of a set measures its de-
gree of fractality. In this setup we study the minimum upper
Minkowski dimension of high-probability events of source re-
alizations. This can be seen as a counterpart of lossless source
coding, which seeks the smallest cardinality of high-probability
events. Rényi information dimension turns out to be the funda-
mental limit for lossless Minkowski dimension compression.

D. Organization of the Paper

Notations frequently used throughout the paper are sum-
marized in Section II. Section III gives an overview of Rényi
information dimension, a new interpretation in terms of entropy
rate and discusses connections with rate-distortion theory.
Section IV states the main definitions and results, as well as
their connections with compressed sensing. Section V contains
definitions and coding theorems of lossless Minkowski dimen-
sion compression, which are important intermediate results for
Sections VI and VII. New type of concentration-of-measure
type of results are proved for memoryless sources, where it is
shown that overwhelmingly large probability is concentrated
on subsets of low (Minkowski) dimension. Section VI tackles
the case of lossless linear compression, where achievability
results are given as well as a converse for mixed discrete-con-
tinuous sources. Section VII is devoted to lossless Lipschitz
decompression, where we establish a general converse in terms
of upper information dimension, and its tightness for mixed
discrete-continuous and self-similar sources. Some technical
lemmas are proved in Appendixes I–X.

II. NOTATIONS

The major notations adopted in this paper are summarized as
follows.

• , for .
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• denotes a random vector.
denotes a realization of .

• denotes the quantization operator, which can be ap-
plied to real numbers, vectors or subsets of as follows:

(1)

(2)

(3)

• .
• For

(4)

(5)

Then, is a partition of with called
mesh cubes of size .

• denotes the th bit in the binary expansion of
, that is

(6)

Then

(7)

(8)

Similarly, is defined componentwise.
• Let be a metric space. Denote the closed ball of

radius centered at by
. In particular, in , denote the

ball of radius centered at by

(9)

where the -norm on is defined as

(10)

• Define , which is not a norm
since for or . However,

is a valid metric on .
• Let . For a matrix , denote by

the submatrix formed by those columns of whose
indices are in .

• All logarithms in this paper are with respect to base .

III. RÉNYI INFORMATION DIMENSION

In this section, we give an overview of Rényi information di-
mension and its properties. Moreover, we give a novel interpre-
tation in terms of the entropy rate of the dyadic expansion of the
random variable. We also discuss the connection between infor-
mation dimension and rate-distortion theory established in [12].

A. Definitions

Definition 1 (Information Dimension [11]): Let be an arbi-
trary real-valued random variable. Denote for a positive integer

(11)

Define

(12)

and

(13)

where and are called lower and upper information
dimensions of , respectively. If , the common
value is called the information dimension of , denoted by

, i.e.,

(14)

Rényi also defined the “entropy of dimension ” as

(15)

provided the limit exists.

Definition 1 can be readily extended to random vectors, where
the floor function is taken componentwise. Since only
depends on the distribution of , we also denote

. Similar convention also applies to entropy and other in-
formation measures.

Apart from discretization, information dimension can be de-
fined from a more general viewpoint: the mesh cubes of size

in are the sets for
. For any , the collection par-

titions . Hence, for any probability measure on , this
partition generates a discrete probability measure on by
assigning . Then, the information dimension
of can be expressed as

(16)

It should be noted that there exist alternative definitions of
information dimension in the literature. For example, in [13],
the lower and upper information dimensions are defined by
replacing with the -entropy with respect to the

distance. This definition essentially allows unequal partition
of the whole space and lowers the value of information dimen-
sion, since . However, the resulting definition
is equivalent (see Theorem 23). As an another example, the
following definition is adopted in [14, Def. 4.2]:

(17)

where denotes the distribution of and is the -ball
of radius centered at . This definition is equivalent to Defini-
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tion 1, as shown in Appendix I. Note that (17) can be generalized
to random variables on an arbitrary metric space.

B. Characterizations and Properties

The lower and upper information dimension of a random vari-
able might not always be finite, because can be in-
finity for all . However, as pointed out in [11], if the mild con-
dition is satisfied, we have

(18)

The necessity of this condition is shown in Proposition 1.
One sufficient condition for finite information dimension is

. Consequently, if for some
, then .

Proposition 1:

(19)

(20)

(21)

If , then

(22)

Proof: See Appendix II.

For -valued , (20) can be generalized to
.

To calculate the information dimension in (12) and (13), it is
sufficient to restrict to the exponential subsequence , as
a result of the following proposition.

Proposition 2:

(23)

(24)

Proof: See Appendix II.

Similarly to the approach in Proposition 1, we have the
following.

Proposition 3: and are unchanged if rounding or
ceiling functions are used in Definition 1.

Proof: See Appendix II.

C. Evaluation of Information Dimension

By the Lebesgue decomposition theorem [15], a probability
distribution can be uniquely represented as the mixture

(25)

where ; is a purely atomic proba-
bility measure (discrete part); is a probability measure abso-
lutely continuous with respect to Lebesgue measure, i.e., having
a probability density function (continuous part1); and is a

1In measure theory, sometimes a measure is called continuous if it does not
have any atoms, and a singular measure is called singularly continuous. Here
we say a measure is continuous if and only if it is absolutely continuous.

probability measure singular with respect to Lebesgue measure
but with no atoms (singular part).

As shown in [11], the information dimension for the mixture
of discrete and absolutely continuous distribution can be deter-
mined as follows.

Theorem 1 [11]: Let be a random variable such that
is finite. Assume the distribution of can be repre-

sented as

(26)

where is a discrete measure, is an absolutely continuous
measure, and . Then

(27)

Furthermore, given the finiteness of and
admits a simple formula

(28)

where is the Shannon entropy of is the differ-
ential entropy of , and is
the binary entropy function.

Proof: See [11, Th. 1 and 3] or [16, Th. 1, pp. 588–592].

Some consequences of Theorem 1 are as follows. As long as
:

1) is discrete: , and coincides with the
Shannon entropy of .

2) is continuous: , and is equal to the
differential entropy of .

3) is discrete-continuous-mixed: , and is
the weighted sum of the entropy of discrete and continuous
parts plus a term of .

For mixtures of countably many distributions, we have the
following theorem.

Theorem 2: Let be a discrete random variable with
. If exists for all , then exists and

is given by . More generally

(29)

(30)

Proof: For any , the conditional distribution of
given is the same as . Then

(31)

where

(32)

Since , dividing both sides of (31) by and
sending yields (29) and (30).
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To summarize, when has a discrete-continuous-mixed dis-
tribution, the information dimension of is given by the weight
of the continuous part. When the distribution of has a singular
component, its information dimension does not admit a simple
formula in general. For instance, it is possible that

[11]. However, for the important class of self-similar sin-
gular distributions, the information dimension can be explicitly
determined. See Section III-E.

D. Interpretation of Rényi Dimension as Entropy Rate

Let a.s. Observe that , since the
range of contains at most values. Then,

. The dyadic expansion of can be written as

(33)

where each is a binary random variable. Therefore, there is
a one-to-one correspondence between and the binary random
process . Note that the partial sum in (33) is

(34)

and and are in one-to-one correspon-
dence, therefore

(35)

By Proposition 2, we have

(36)

(37)

Thus, its information dimension is the entropy rate of its dyadic
expansion, or the entropy rate of any -ary expansion of ,
divided by .

This interpretation of information dimension enables us to
gain more intuition about the result in Theorem 1. When has a
discrete distribution, its dyadic expansion has zero entropy rate.
When is uniform on , its dyadic expansion is indepen-
dent identically distributed (i.i.d.) equiprobable, and therefore it
has unit entropy rate in bits. If is continuous, but nonuniform,
its dyadic expansion still has unit entropy rate. Moreover, from
(36), (37), and Theorem 1, we have

(38)

where denotes the relative entropy and the differential
entropy is since a.s. The information
dimension of a discrete-continuous mixture is also easily un-
derstood from this point of view, because the entropy rate of a
mixed process is the weighted sum of entropy rates of each com-
ponent. Moreover, random variables whose lower and upper in-
formation dimensions differ can be easily constructed from pro-
cesses with different lower and upper entropy rates.

E. Self-Similar Distribution

An iterated function system (IFS) is a family of contractions
on , where , and

satisfies for all
with . By [17, Theorem 2.6], given an IFS, there is a
unique nonempty compact set , called the invariant set of the
IFS, such that . We say that the IFS satisfies
the strong separation condition, if are
disjoint. The corresponding invariant set is called self-similar, if
the IFS consists of similarity transformations, that is,

with an orthogonal matrix and , in which
case

(39)

is called the similarity ratio of . Self-similar sets are usually
fractal. For example, consider the IFS on with

(40)

The resulting invariant set is the middle-third Cantor set.
Now we define measures supported on a self-similar set

associated with the IFS . A continuous mapping
from the space (equipped with the product

topology) onto is defined as follows:

(41)

where the right-hand side is a singleton [12]. Therefore, every
measure on induces a measure on as the
image measure of under , that is, .
If is stationary and ergodic, is called a self-similar mea-
sure. In the special case when corresponds to a memoryless
process with common distribution satis-
fies [17, Th. 2.8]

(42)

and for each . The usual Cantor distribution
[15] can be defined through the IFS in (40) and .

The next result gives the information dimension of a self-
similar measure with IFS satisfying the open set condition2

[18, p. 129], that is, there exists a nonempty bounded open set
, such that and for

.

Theorem 3 [17], [12]: Let the distribution of be a self-
similar measure generated from the stationary ergodic measure

on and the IFS with similarity
ratios and invariant set . Then

(43)

When is the distribution of a memoryless process with
common distribution , (43) is reduced to

(44)

2The open set condition is weaker than the previous strong separation
condition.
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Note that the open set condition implies that
.

Since , it follows that

(45)

In view of (44), we have

(46)

where is a subprobability measure. Since
, we have , which agrees with

Proposition 1.

F. Connections With Rate-Distortion Theory

The asymptotic behavior of the rate-distortion function, in
particular, the asymptotic tightness of the Shannon lower bound
in the high-rate regime, has been addressed in [19] and [20] for
continuous sources. In [12], Kawabata and Dembo generalized
it to real-valued sources that do not necessarily possess a den-
sity, and showed that the information dimension plays a cen-
tral role. For completeness, we summarize the main results from
[12] in Appendix III.

G. Rényi Dimension of Order

With Shannon entropy replaced by Rényi entropy in
(12)–(13), the generalized notion of dimension of order is
defined similarly.

Definition 2 (Information Dimension of Order ): Let
. Define

(47)

and

(48)

where denotes the Rényi entropy of order of a discrete
random variable with probability mass function

, defined as

(49)

and are called lower and upper dimensions of
of order , respectively. If , the common value
is called the information dimension of of order , denoted by

. Rényi also defined in [16] “the entropy of of order
and dimension ” as

(50)

provided the limit exists.

As a consequence of the monotonicity of Rényi entropy, in-
formation dimensions of different orders satisfy the following
result.

Lemma 1: For and both decrease with .
Define

(51)

Then

(52)

Proof: All inequalities follow from the fact that for a fixed
random variable decreases with in .

For dimension of order , we highlight the following result
from [21].

Theorem 4 [21, Th. 3]: Let be a random variable whose
distribution has Lebesgue decomposition as in (25). Then, we
have the following.

1) : if , that is, has a discrete component, we
have .

2) : if , that is, has a continuous component,
and , we have .
The differential Rényi entropy is defined using its
density as

(53)

In general, is discontinuous in . For discrete-contin-
uous-mixed distributions, for all ,
while equals to the weight of the continuous part. How-
ever, for Cantor distribution,
for all .

IV. DEFINITIONS AND MAIN RESULTS

This section presents a unified framework for lossless data
compression and our main results in the form of coding theo-
rems under various regularity conditions. Proofs are relegated
to Sections V–VII.

A. Lossless Data Compression

Let the source be a stochastic process on
, with denoting the source alphabet and a -al-

gebra over . Let be a measurable space, where is
called the code alphabet. The main objective of lossless data
compression is to find efficient representations for source real-
izations by .

Definition 3: A -code for over the code
space is a pair of mappings:

1) encoder: that is measurable relative to
and ;

2) decoder: that is measurable relative to
and .

The block error probability is .

The fundamental limit in lossless source coding is as follows.
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Definition 4 (Lossless Data Compression): Let
be a stochastic process on . Define to be

the infimum of such that there exists a sequence of
-codes over the code space , such that

(54)

for all sufficiently large .

According to the classical discrete almost-lossless source
coding theorem, if is countable and is finite, the minimum
achievable rate for any i.i.d. process with distribution is

(55)

Using codes over an infinite alphabet, any discrete source can
be compressed with zero rate and zero block error probability.
In other words, if both and are countably infinite, then for
all

(56)

for any random process.

B. Lossless Analog Compression With Regularity Conditions

In this section, we consider the problem of encoding analog
sources with analog symbols, that is, and

or if bounded encoders are
required, where denotes the Borel -algebra. As in the
countably infinite case, zero rate is achievable even for zero
block error probability, because the cardinality of is the same
for any [22]. This conclusion holds even if we require the en-
coder/decoder to be Borel measurable, because according to Ku-
ratowski’s theorem [23, Remark (i), p. 451] every uncountable
standard Borel space is isomorphic3 to . Therefore,
a single real number has the capability of encoding a real vector,
or even a real sequence, with a coding scheme that is both uni-
versal and deterministic.

However, the rich structure of equipped with a metric
topology (e.g., that induced by Euclidean distance) enables us
to probe the problem further. If we seek the fundamental limits
of not only lossless coding but “graceful” lossless coding,
the result is not trivial anymore. In this spirit, our various
definitions share the basic information-theoretic setup where a
random vector is encoded with a function
and decoded with with such that
and satisfy certain regularity conditions and the probability
of incorrect reproduction vanishes as .

Regularity in encoder and decoder is imposed for the sake
of both less complexity and more robustness. For example, al-
though a surjection from to is capable of lossless
encoding, its irregularity requires specifying uncountably many
real numbers to determine this mapping. Moreover, regularity
in encoder/decoder is crucial to guarantee noise resilience of the
coding scheme.

3Two measurable spaces are isomorphic if there exists a measurable bijection
whose inverse is also measurable.

TABLE I
REGULARITY CONDITIONS OF ENCODER/DECODERS AND CORRESPONDING

MINIMUM -ACHIEVABLE RATES

Definition 5: Let be a stochastic process
on . Define the minimum -achievable rate to be
the infimum of such that there exists a sequence of

-codes , such that

(57)

for all sufficiently large , and the encoder and decoder
are constrained according to Table I. Except for linear encoding
where , it is assumed that .

In Definition 5, we have used the following definitions.

Definition 6 (Hölder and Lipschitz Continuity): Let
and be metric spaces. A function is called

-Hölder continuous if there exists such that for
any

(58)

is called -Lipschitz if is -Hölder continuous. is
simply called Lipschitz (resp., -Hölder continuous) if is

-Lipschitz (resp., -Hölder continuous) for some .

We proceed to give results for each of the minimum -achiev-
able rates introduced in Definition 5. Motivated by compressed
sensing theory, it is interesting to consider the case where the
encoder is restricted to be linear.

Theorem 5 (Linear Encoding: General Achievability): Sup-
pose that the source is memoryless. Then

(59)

for all , where is defined in (51). Moreover, we
have the following.

1) For all linear encoders (except possibly those in a set of
zero Lebesgue measure on the space of real matrices),
block error probability is achievable.

2) The decoder can be chosen to be -Hölder continuous for
all , where is the compression
rate.
Proof: See Section VI-C.

Theorem 6 (Linear Encoding: Discrete-Continuous Mixture):
Suppose that the source is memoryless with a discrete-contin-
uous mixed distribution. Then

(60)

for all .
Proof: See Section VI-C.
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Theorem 7 (Linear Encoding: Achievability for Self-Similar
Sources): Suppose that the source is memoryless with a self-
similar distribution that satisfies the open set condition. Then

(61)

for all .
Proof: See Section VI-C.

In Theorems 5 and 6, it has been shown that block error prob-
ability is achievable for Lebesgue-a.e. linear encoder. There-
fore, choosing any random matrix with i.i.d. entries distributed
according to some absolutely continuous distribution on (e.g.,
a Gaussian random matrix) satisfies block error probability al-
most surely.

Now, we drop the restriction that the encoder is linear, al-
lowing very general encoding rules. Let us first consider the case
where both the encoder and decoder are constrained to be con-
tinuous. It turns out that zero rate is achievable in this case.

Theorem 8 (Continuous Encoder and Decoder): For general
sources

(62)

for all .
Proof: Since and are Borel iso-

morphic, there exist Borel measurable and
, such that . By Lusin’s theorem [24,

Th. 7.10], there exists a compact set such that re-
stricted on is continuous and . Since is
compact and is injective on is a homeomorphism from
to . Hence, is continuous. Since both
and are closed, by Tietze extension theorem [9], and can
be extended to continuous and

, respectively. Using and as the new encoder and de-
coder, the error probability satisfies

.

Employing similar arguments as in the proof of Theorem 8,
we see that imposing additional continuity constraints on the
encoder (resp., decoder) has almost no impact on the funda-
mental limit (resp., ). This is because a continuous
encoder (resp., decoder) can be obtained at the price of an arbi-
trarily small increase of error probability, which can be chosen
to vanish as grows.

Theorems 9–11 deal with Lipschitz decoding in Euclidean
spaces.

Theorem 9 (Lipschitz Decoding: General Converse): Sup-
pose that the source is memoryless. If , then

(63)

for all .
Proof: See Section VII-B.

Theorem 10 (Lipschitz Decoding: Achievability for Discrete/
Continuous Mixture): Suppose that the source is memoryless
with a discrete-continuous mixed distribution. Then

(64)

for all .
Proof: See Section VII-C.

For sources with a singular distribution, in general there is no
simple answer due to their fractal nature. For an important class
of singular measures, namely self-similar measures generated
from i.i.d. digits (e.g., generalized Cantor distribution), the in-
formation dimension turns out to be the fundamental limit for
lossless compression with Lipschitz decoder.

Theorem 11 (Lipschitz Decoding: Achievability for Self-Sim-
ilar Measures): Suppose that the source is memoryless and
bounded, and its -ary expansion consists of independent iden-
tically distributed digits. Then

(65)

for all . Moreover, if the distribution of each bit is
equiprobable on its support, then (65) holds for

Proof: See Section VII-D.

Example 1: As an example, we consider the setup in Theorem
11 with and , where . The
associated invariant set is the middle third Cantor set [18]
and is supported on . The distribution of , denoted by ,
is called the generalized Cantor distribution [25]. In the ternary
expansion of , each digit is independent and takes value and

with probability and respectively. Then, by Theorem 11,
for any . Furthermore, when

coincides with the “uniform” distribution on , i.e., the
standard Cantor distribution. Hence, we have a stronger result
that , i.e., exact lossless compression can
be achieved with a Lipschitz continuous decompressor at the
rate of the information dimension.

Let . Then, is the inverse
of on . Due to the -Lipschitz continuity of is an
expansive mapping, that is

(66)

Note that (66) implies the injectivity of , a necessary con-
dition for decodability. Moreover, not only does assign
different codewords to different source symbols, but also it
keeps them sufficiently separated proportionally to their dis-
tance. Therefore, the encoder respects the metric structure
of the source alphabet.

We conclude this section by introducing stable decoding, a
weaker condition than Lipschitz continuity.

Definition 7 ( -Stable): Let and be
metric spaces and . is called -stable
on if for all

(67)

We say is -stable if is -stable.

A function is -Lipschitz if and only if it is -stable
for every . We denote by the minimum -achiev-
able rate such that there exists a sequence of Borel encoders and

-stable decoders that achieve block error probability . The
fundamental limit of stable decoding is given by the following
tight result, whose proof is omitted for conciseness.
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Theorem 12 ( -Stable Decoding): Let the underlying metric
be the distance. Suppose that the source is memoryless.
Then, for all

(68)

that is, the minimum -achievable rate such that for all suffi-
ciently small there exists a -stable coding strategy is given
by .

C. Connections With Compressed Sensing

As an application of Theorem 6, we consider the following
source distribution:

(69)

where is the Dirac measure with atom at and
is an absolutely continuous distribution. This is the model for

linearly sparse signals used in [5] and [6], where a universal4
iterative thresholding decoding algorithm is proposed. Under
certain assumptions on , the asymptotic error probability turns
out to exhibit a “phase transition” [5], [6]: there is a sparsity-de-
pendent threshold on the measurement rate above which
the error probability vanishes and below which the error prob-
ability goes to one. This behavior is predicted by Theorem 6,
which shows the optimal threshold is , irrespective of the prior

. Moreover, the decoding algorithm in the achievability proof
of Section VI-C is universal and robust (Hölder continuous), al-
though it has exponential complexity. The threshold is not
given in closed form (in [5, eq. (5) and Fig. 1]), but its numerical
evaluation shows that it lies far from the optimal threshold ex-
cept in the nonsparse regime ( close to 1). Moreover, it can be
shown that as . The performance of several
other suboptimal factor-graph-based reconstruction algorithms
is analyzed in [7]. Practical robust algorithms that approach the
fundamental limit of compressed sensing given by Theorem 6
are not yet known.

Robust reconstruction is of great importance in the theory
of compressed sensing [26]–[28], since noise resilience is an
indispensable property for decompressing sparse signals from
real-valued measurements. For example, consider the following
robustness result.

Theorem 13 [26]: Suppose we wish to recover a vector
from noisy compressed linear measurements ,

where and . Let be a solution
of the following -regularization problem:

(70)

Let satisfy , where is the
-restricted isometry constant of matrix , defined as the

smallest positive number such that

(71)

4The decoding algorithm is universal if it requires no knowledge of the prior
distribution of nonzero entries.

for all with and for all in sup-
ported on . Then

(72)

By Theorem 13, using (70) as the decoder, the -norm of the
decoding error is upper bounded proportionally to the -norm
of the noise.

In our framework, a stable or Lipschitz continuous coding
scheme also implies robustness with respect to noise added at
the input of the decompressor, which could result from quan-
tization, finite wordlength or other inaccuracies. For example,
suppose that the encoder output is quantized by
a -bit uniform quantizer, resulting in . With a -stable
coding strategy , we can use the following decoder. De-
note the following nonempty set:

(73)

where . Pick any
in and output . Then, by the stability of
, we have

(74)

i.e., each component in the decoder output will suffer at most
twice the inaccuracy of the decoder input. Similarly, an -Lips-
chitz coding scheme with respect to distance incurs an error
no more than .

V. LOSSLESS MINKOWSKI-DIMENSION COMPRESSION

As a counterpart to lossless data compression, in this section,
we investigate the problem of lossless Minkowski dimension5

compression for general sources, where the minimum -achiev-
able rate is defined as . This is an important intermediate
tool for studying fundamental limits of lossless linear encoding
and Lipschitz decoding. Bridging the three compression frame-
works, in Sections VI-C and VII-B, we prove the following
inequality:

(75)

Hence, studying provides an achievability bound for loss-
less linear encoding and a converse bound for Lipschitz de-
coding. We present bounds for for general sources, as
well as tight results for discrete-continuous mixed and self-sim-
ilar sources.

A. Minkowski Dimension of Sets in Metric Spaces

In fractal geometry, the Minkowski dimension is a way of
determining the fractality of a subset in metric spaces.

Definition 8 (Covering Number): Let be a nonempty
bounded subset of the metric space . For , define

5Also known as Minkowski–Bouligand dimension, fractal dimension or box-
counting dimension.
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, the -covering number of , to be the smallest number
of -balls needed to cover , that is

(76)

Definition 9 (Minkowski Dimensions): Let be a nonempty
bounded subset of metric space . Define the lower and
upper Minkowski dimensions of as

(77)

(78)

respectively. If , the common value is called
the Minkowski dimension of , denoted by .

It should be pointed out that the Minkowski dimension
depends on the underlying metric. Nevertheless, equivalent
metrics result in the same dimension. A few examples are as
follows.

• for any finite set .
• for any bounded set of nonempty interior

in Euclidean space .
• Let be the middle-third Cantor set in the unit interval.

Then, [18, Example 3.3].
• [18, Example 3.5]. From this

example, wee see that Minkowski dimension lacks certain
stability properties one would expect of a dimension, since
it is often desirable that adding a countable set would have
no effect on dimension. This property fails for Minkowski
dimension. On the contrary, we observe that Rényi infor-
mation dimension exhibits stability with respect to adding
a discrete component as long as the entropy is finite. How-
ever, mixing any distribution with a discrete measure with
unbounded support and infinite entropy will necessarily re-
sult in infinite information dimension.

The upper Minkowski dimension satisfies the following prop-
erties (see [18, p. 48 (iii) and p. 102 (7.9)]), which will be used
in the proof of Theorem 14.

Lemma 2: For bounded sets

(79)

(80)

The following lemma shows that in Euclidean spaces, without
loss of generality we can restrict attention to covering with
mesh cubes defined in (5). Since all the mesh cubes partition
the whole space, to calculate lower or upper Minkowski dimen-
sion of a set, it is sufficient to count the number of mesh cubes

it intersects, hence justifying the name of box-counting dimen-
sion. Denote by the smallest number of mesh cubes
of size that covers , that is

(81)

(82)

(83)

Lemma 3: Let be a bounded subset in
. The Minkowski dimensions satisfy

(84)

(85)

Proof: See Appendix V.

B. Definitions and Coding Theorems

Consider a source in equipped with an -norm. We
define the minimum -achievable rate for Minkowski-dimen-
sion compression as follows.

Definition 10 (Minkowski-Dimension Compression Rate):
Let be a stochastic process on . Define

(86)

Note that the conventional minimum source coding rate
in Definition 4 is defined like in (86) replacing by

.
In general for any . This is because

for any , there exists a compact subset , such that
, and by definition. Several

coding theorems for are given as follows.

Theorem 14: Suppose that the source is memoryless with dis-
tribution such that . Then

(87)

and

(88)

for .
Proof: See Section V-C.

For the special cases of discrete-continuous-mixed and self-
similar sources, we have the following tight results.

Theorem 15: Suppose that the source is memoryless with a
discrete-continuous mixed distribution. Then

(89)
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for all , where is the weight of the continuous part
of the distribution. If is finite, then

(90)

Theorem 16: Suppose that the source is memoryless with a
self-similar distribution that satisfies the strong separation con-
dition. Then

(91)

for all .

Theorem 17: Suppose that the source is memoryless and
bounded, and its -ary expansion consists of independent
digits. Then

(92)

for all .

When can take any value in for all
. Such a source can be constructed using Theorem 15

as follows: Let the distribution of be a mixture of a contin-
uous and a discrete distribution with weights and respec-
tively, where the discrete part is supported on and has infinite
entropy. Then, by Proposition 1 and Theorem 1, but

by Theorem 15.

C. Proofs

Before showing the converse part of Theorem 14, we state
two lemmas which are of independent interest in conventional
lossless source coding theory.

Lemma 4: Assume that is a discrete memo-
ryless source with common distribution on the alphabet .

. Let . Denote by the block
error probability of the optimal -code.
Then, for any

(93)

(94)

where the exponents are given by

(95)

(96)

(97)

(98)

Lemma 5: For

(99)

Proof: See Appendix VII.

Lemma 4 shows that the error exponents for lossless source
coding are not only asymptotically tight, but also apply to every

block length. This has been shown for rates above entropy in
[29, Exercise 1.2.7, pp. 41–42] via a combinatorial method. A
unified proof can be given through the method of Rényi entropy,
which we omit for conciseness. The idea of using Rényi entropy
to study lossless source coding error exponents was previously
introduced by [30]–[32].

Lemma 5 deals with universal lower bounds on the source
coding error exponents, in the sense that these bounds are inde-
pendent of the source distribution. A better bound on
has been shown in [33]: for

(100)

However, the proof of (100) was based on the dual expression
(96) and a similar lower bound of random channel coding error
exponent due to Gallager [34, Exercise 5.23], which cannot be
applied to . Here we give a common lower bound on
both exponents, which is a consequence of Pinsker’s inequality
[35] combined with the lower bound on entropy difference by
variational distance [29].

Proof of Theorem 14: (Converse) Let and
abbreviate as . Suppose for some .
Then, for sufficiently large there exists , such that

and .
First we assume that the source has bounded support, that is,

a.s. for some . By Proposition 2, choose
such that for all

(101)

By Lemma 3, for all , there exists , such that for all

(102)

(103)

Then, by (101), we have

(104)

Note that is a memoryless source with alphabet size at
most . By Lemmas 4 and 5, for all , for all
such that , we have

(105)

(106)

Choose and so large that the right-hand side of (106) is less
than . In the special case of , (106) contradicts
(103) in view of (104).

Next we drop the restriction that is almost surely bounded.
Denote by the distribution of . Let be so large that

(107)

Denote the normalized restriction of on by , that
is

(108)
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and the normalized restriction of on by . Then

(109)

By Theorem 2

(110)

(111)

where because of the following: since is finite, we
have in view of Proposition 1. Conse-
quently, , hence .

The distribution of is given by

(112)

where denotes the Dirac measure with atom at . Then

(113)

(114)

where:
• (113): by (112) and (31), since Theorem 1 implies

;
• (114): by (111) and (107).

For , let . Define

(115)

Then, for all

(116)

and

(117)

(118)

(119)

(120)

where (120), (117), and (118) follow from (114), (79), and (80),
respectively. But now (120) and (116) contradict the converse
part of Theorem 14 for the bounded source , which we have
already proved.

(Achievability) Recall that

(121)

We show that for all , for all , there exists
such that for all , there exists with

and . Therefore,
readily follows.

Suppose for now that we can construct a sequence of subsets
, such that for any the following holds:

(122)

(123)

Denote

(124)

(125)

(126)

Then, . Now we claim that for each
and . First observe that for each

, therefore covers
. Hence, , by (122). Therefore,

by Lemma 3

(127)

By the Borel–Cantelli lemma, (123) implies that
. Let where is so large

that . By the finite subad-
ditivity6 of upper Minkowski dimension in Lemma 2,

. By the
arbitrariness of , the -achievability of rate is proved.

Now let us proceed to the construction of the required .
To that end, denote by the probability mass function of

. Let

(128)

(129)

Then, immediately (122) follows from .
Also, for

(130)

(131)

(132)

(133)

(134)

6Countable subadditivity fails for upper Minkowski dimension. Had it been
satisfied, we could have picked to achieve .
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where (134) follows from the fact that
are i.i.d. and the joint Rényi entropy is

the sum of individual Rényi entropies. Hence

(135)
Choose such that , which is guaranteed
to exist in view of (121) and the fact that is nonincreasing in

according to Lemma 1. Then

(136)

(137)

(138)

Hence, decays at least exponentially with
. Accordingly, (123) holds, and the proof of is

complete.
Next we prove for the special case of discrete-

continuous mixed sources. The following lemma is needed in
the converse proof.

Lemma 6 [36, Th. 4.16]: Any Borel set whose upper
Minkowski dimension is strictly less than has zero Lebesgue
measure.

Proof of Theorem 15: (Achievability) Let the distribution
of be

(139)

where is a probability measure on abso-
lutely continuous with respect to Lebesgue measure and is a
discrete probability measure. Let be the collection of all the
atoms of , which is, by definition, a countable subset of .

Let . Then, is a sequence of i.i.d. binary
random variables with expectation

(140)

By the weak law of large numbers (WLLN)

(141)

(142)

where the generalized support of vector is defined as

(143)

Fix an arbitrary and let

(144)

By (142), for sufficiently large .
Decompose as

(145)

where

(146)

Note that the collection of all is countable, and thus we
may relabel them as . Then, . Hence,
there exists and , such that ,
where

(147)

Then

(148)

(149)

where (148) is by Lemma 2, and (149) follows from
for each . This proves the -achiev-

ability of . By the arbitrariness of .
(Converse) Since , we can assume . Let

be such that . Define

(150)

By (142), for sufficiently large . Let
, then . Write as the

disjoint union

(151)

where

(152)

Also let . Since
, there exists and , such

that . Note that

(153)

If , which implies has
positive Lebesgue measure. By Lemma 6,

, hence

(154)
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If implies that has positive Lebesgue
measure. Thus, . By the arbitrariness of , the
proof of is complete.

Next we prove for self-similar sources under
the same assumption of Theorem 3. This result is due to the
stationarity and ergodicity of the underlying discrete process
that generates the analog source distribution.

Proof of Theorem 16: By Theorem 3, is finite. There-
fore, the converse follows from Theorem 14. To show achiev-
ability, we invoke the following definition. Define the local di-
mension of a Borel measure on as the function (if the limit
exists) [17, p. 169]

(155)

Denote the distribution of by the product measure ,
which is also self-similar and satisfies the strong separation the-
orem. By [17, Lemma 6.4(b) and Prop. 10.6]

(156)

holds for -almost every . Define the sequence of random
variables

(157)

Then, (156) implies that as . There-
fore, for all and , there exists , such that

(158)

Let

(159)

(160)

Then, in view of (158), and

(161)

(162)

where (162) follows from (160) and . Hence,
is proved.

Finally, we prove for memoryless sources
whose -ary expansion consisting of independent digits.

Proof of Theorem 17: Without loss of generality, assume
, that is, the binary expansion of consists of inde-

pendent bits. We follow the same steps as in the achievability
proof of Theorem 14. Suppose for now that we can construct a
sequence of subsets , such that (123) holds and their car-
dinality does not exceed

(163)

By the same arguments that lead to (127), the sets defined in
(125) satisfy

(164)

(165)

(166)

Since , this shows the -achiev-
ability of .

Next we proceed to construct the required . Applying
Lemma 4 to the DMS and blocklength yields

(167)

By the assumption that is bounded, without loss of generality,
we shall assume a.s. Therefore, the alphabet size of

is at most . Simply applying (100) to yields

(168)

which does not grow with and cannot suffice for our purpose
of constructing . Exploiting the structure that consists
of independent bits, in Appendix VIII, we show a much better
bound

(169)

Then, by (167) and (169), there exists , such that (163) holds
and

(170)

which implies (123). This concludes the proof of .

VI. LOSSLESS LINEAR COMPRESSION

In this section, we analyze lossless compression with linear
encoders, which are the basic elements in compressed sensing.
Capitalizing on the approach of Minkowski-dimension com-
pression developed in Section V, we obtain achievability re-
sults for linear compression. For memoryless sources with a
discrete-continuous mixed distribution, we also establish a con-
verse in Theorem 6 which shows that the information dimension
is the fundamental limit of lossless linear encoding.

A. Minkowski-Dimension Compression
and Linear Compression

The following theorem establishes the relationship be-
tween Minkowski-dimension compression and linear data
compression.

Theorem 18 (Linear Encoding: General Achievability): For
general sources

(171)

Moreover, we have the following.
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1) For all linear encoders (except possibly those in a set of
zero Lebesgue measure on the space of real matrices),
block error probability is achievable.

2) For all and

(172)

where is the compression rate, there exists
a -Hölder continuous decoder that achieves block error
probability .

Consequently, in view of Theorem 18, the results on
for memoryless sources in Theorems 14–16 yield the achiev-
ability results in Theorems 5–7, respectively. Hölder exponents
of the decoder can be found by replacing in (172) by its
respective upper bound.

For discrete-continuous sources, the achievability in Theorem
6 can be shown directly without invoking the general result in
Theorem 18. See Remark 3. From the converse proof of The-
orem 6, we see that effective compression can be achieved with
linear encoders, i.e., , only if the source distribution
is not absolutely continuous with respect to Lebesgue measure.

Remark 1: Linear embedding of low-dimensional subsets in
Banach spaces was previously studied in [37]–[39], etc., in a
nonprobabilistic setting. For example, [38, Th 1.1] showed that:
for a subset of a Banach space with , there
exists a bounded linear function that embeds into . Here in
a probabilistic setup, the embedding dimension can be improved
by a factor of two.

Following the idea in the proof of Theorem 18, we obtain a
nonasymptotic result of lossless linear compression for -sparse
vectors, which is relevant to compressed sensing.

Corollary 1: Denote the collection of all -sparse vectors in
by

(173)

Let be a -finite Borel measure on . Then, given any
, for Lebesgue-a.e. real matrix , there exists a

Borel function , such that for
-a.e. . Moreover, when is finite, for any and

, there exists a matrix and ,
such that and is

-Hölder continuous.

Remark 2: The assumption that the measure is -finite is
essential, because the validity of Corollary 1 hinges upon Fu-
bini’s theorem, where -finiteness is an indispensable require-
ment. Consequently, if is the distribution of a -sparse random
vector with uniformly chosen support and Gaussian distributed
nonzero entries, we conclude that all -sparse vectors can be
linearly compressed except for a subset of zero measure under

. On the other hand, if is the counting measure on , Corol-
lary 1 no longer applies because that is not -finite. In fact,
if , no linear encoder from to works for every

-sparse vector, even if no regularity constraint is imposed on

the decoder. This is because no matrix acts injectively on
. To see this, introduce the notation

(174)

where . Then, for any matrix

(175)

Hence, there exist two -sparse vectors that have the same image
under .

On the other hand, is sufficient to linearly compress all
-sparse vectors, because (175) holds for Lebesgue-a.e.

matrix . To see this, choose to be a random matrix with
i.i.d. entries according to some continuous distribution (e.g.,
Gaussian). Then, (190) holds if and only if all subma-
trices formed by columns of are invertible. This is an al-

most sure event, because the determinant of each of the

submatrices is an absolutely continuous random variable. The
sufficiency of is a bit stronger than the result in Re-
mark 1, which gives . For an explicit construction
of such a matrix, we can choose to be the matrix

(see Appendix IV).

B. Auxiliary Results

Let . Denote by the Grassmannian man-
ifold [25] consisting of all -dimensional subspaces of . For

, the orthogonal projection from to defines
a linear mapping of rank . The technique
we use in the achievability proof of linear analog compression is
to use the random orthogonal projection as the encoder,
where is distributed according to the invariant probability
measure on , denoted by [25]. The relationship be-
tween and the Lebesgue measure on is shown in the
following lemma.

Lemma 7 [25, Exercise 3.6]: Denote the rows of a
matrix by , the row span of by , and
the volume of the unit -ball in by . Set

(176)

Then, for measurable, i.e., a collection of -di-
mensional subspaces of

(177)

The following result states that a random projection of a given
vector is not too small with high probability. It plays a central
role in estimating the probability of “bad” linear encoders.

Lemma 8 [25, Lemma 3.11]: For any

(178)

To show the converse part of Theorem 6, we will invoke the
Steinhaus theorem as an auxiliary result.
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Lemma 9 (Steinhaus [40]): For any measurable set
with positive Lebesgue measure, there exists an open ball cen-
tered at contained in .

Lastly, with the notation in (174), we give a characterization
of the fundamental limit of lossless linear encoding as follows.
The proof is omitted for conciseness.

Lemma 10: is the infimum of such that for
sufficiently large , there exists a Borel set and a
linear subspace of dimension at least ,
such that

(179)

C. Proofs

Proof of Theorem 18: We first show (171). Fix
arbitrarily. Let

and . We show that there exists a matrix
of rank and Borel measur-

able such that

(180)

for sufficiently large .
By definition of , there exists such that for all

, there exists a compact such that
and . Given an encoding matrix ,

define the decoder as

(181)

where the is taken componentwise7. Since is
closed and is compact, is compact. Hence,

is well defined.
Next consider a random orthogonal projection matrix

independent of , where is a random
-dimensional subspace distributed according to the invariant

measure on . We show that for all

(182)

which implies that there exists at least one realization of that
satisfies (180). To that end, we define

(183)

and use the union bound

(184)

where the first term . Next we show that the
second term is zero. Let . Then

(185)

(186)

(187)

7Alternatively, we can use any other tie-breaking strategy as long as Borel
measurability is satisfied.

We show that for all .
To this end, let

(188)

Define
(189)
(190)

Then
(191)

Observe that implies that

(192)

Therefore, for all but a finite number of ’s if and only
if

(193)

for some .
Next we show that for all but a finite number of

’s with probability one. Cover with -balls.
The centers of those balls that intersect are denoted by

. Pick .
Then, , hence

cover . Suppose ,
then for any

(194)
(195)
(196)

where (195) follows because is an orthogonal projection.
Thus, for all implies that

. Therefore, by the union bound

(197)

By Lemma 8

(198)

(199)

(200)

where (200) is due to , because .
Since , there is a constant such that

. Since is a translation of
, it follows that

(201)
Thus

(202)

(203)
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where:
• (202): by substituting (200) and (201) into (197);
• (203): by (188).

Therefore, by the Borel–Cantelli lemma, for all but a
finite number of ’s with probability one. Hence

(204)

which implies that for any

(205)

In view of (187)

(206)

whence (182) follows. This shows the -achievability of . By
the arbitrariness of , (171) is proved.

Now we show that

(207)

holds for all except possibly on a set of zero
Lebesgue measure, where is the corresponding decoder for

defined in (181). Note that

(208)

(209)

where:
• (208): by (184);
• (209): by (187) and .
Define

(210)

Recalling defined in (176), we have

(211)
(212)
(213)

where:
• (211): by (209) and since holds

Lebesgue-a.e.;
• (212): by Lemma 7;
• (213): by (206).

Observe that (213) implies that for any

(214)

Since , in view of (209) and (214), we con-
clude that (207) holds Lebesgue-a.e.

Finally, we show that for any , there exists a sequence of
matrices and -Hölder continuous decoders that achieves com-
pression rate and block error probability . Since for

all but a finite number of ’s a.s., there exists a (independent
of ), such that

(215)

Thus, by (192), for any

(216)
Integrating (216) with respect to on and by Fu-
bini’s theorem, we have

(217)
(218)

Hence, there exists and an orthogonal projection ma-
trix of rank , such that and for all

(219)

for all . Therefore8 is
-Hölder continuous. By the extension the-

orem of Hölder continuous mappings [41], can be
extended to that is -Hölder continuous. Then

(220)

Recall from (188) that . By the arbitrari-
ness of , (172) holds.

Remark 3: Without recourse to the general result in Theorem
18, the achievability for discrete-continuous sources in Theorem
6 can be proved directly as follows. In (184), choose

(221)

and consider whose entries are i.i.d. standard Gaussian (or
any other absolutely continuous distribution on ). Using linear
algebra, it is straightforward to show that the second term in
(184) is zero. Thus, the block error probability vanishes since

.

Finally, we complete the proof of Theorem 6 by proving the
converse.

Converse Proof of Theorem 6: Let the distribution of be
defined as in (139). We show that for any .
Since , assume . Fix an arbitrary .
Suppose is -achievable. Let and

. By Lemma 10, for sufficiently large ,
there exist a Borel set and a linear subspace ,

8 denotes the restriction of on the subset .
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such that and
.

If is absolutely continuous with respect to
Lebesgue measure. Therefore, has positive Lebesgue mea-
sure. By Lemma 9, contains an open ball in . Hence,

cannot hold for any subspace with
positive dimension. This proves . Next we assume
that .

Let

(222)

and . By (142), for sufficiently large
, hence .

Next we decompose according to the generalized support
of

(223)

where we have denoted the disjoint subsets

(224)

Then

(225)

(226)

So there exists such that and
.

Next we decompose each according to which can
only take countably many values. Let . For ,
let

(227)
(228)

Then, can be written as a disjoint union of

(229)

Since , there exists such that
.

Note that

(230)

(231)

(232)

Therefore, . Since is absolutely continuous with
respect to Lebesgue measure on has positive Lebesgue
measure. By Lemma 9, contains an open ball
for some . Therefore, we have

(233)

where . Hence,
contains linear independent vectors, denoted by .
Let be a basis for , where by
assumption. Since , we conclude that

are linearly dependent. Therefore

(234)

where and for some and . If we choose
those nonzero coefficients sufficiently small, then

and since is a linear subspace. This
contradicts . Thus, , and

follows from the arbitrariness of .

VII. LOSSLESS LIPSCHITZ DECOMPRESSION

In this section, we study the fundamental limit of lossless
compression with Lipschitz decoders. To facilitate the discus-
sion, we first introduce several important concepts from geo-
metric measure theory. Then, we proceed to give proofs of The-
orems 9–11.

A. Geometry Measure Theory

Geometric measure theory [42], [25] is an area of analysis
studying the geometric properties of sets (typically in Euclidean
spaces) through measure theoretic methods. One of the core
concepts in this theory is rectifiability, a notion of smoothness
or regularity of sets and measures. Basically a set is rectifi-
able if it is the image of a subset of a Euclidean space under
some Lipschitz function. Rectifiable sets admit a smooth analog
coding strategy. Therefore, lossless compression with Lipschitz
decoders boils down to finding a subset of source realizations
that is rectifiable and has high probability. In contrast, the goal
of conventional almost-lossless data compression is to show
concentration of probability on sets of small cardinality. This
characterization enables us to use results from geometric mea-
sure theory to study Lipschitz coding schemes.

Definition 11 (Hausdorff Measure and Dimension): Let
and . Define

(235)
where . Define the
-dimensional Hausdorff measure on by

(236)

The Hausdorff dimension of is defined by

(237)

Hausdorff measure generalizes both the counting measure
and Lebesgue measure and provides a nontrivial way to mea-
sure low-dimensional sets in a high-dimensional space. When

is just a rescaled version of the usual -dimen-
sional Lebesgue measure [25, 4.3]; when reduces
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to the counting measure. For gives a nontrivial
measure for sets of Hausdorff dimension in , because if

; if .
As an example, consider and . Let be
the middle-third Cantor set in the unit interval, which has zero
Lebesgue measure. Then, and [18,
2.3].

Definition 12 (Rectifiable Sets [42, 3.2.14]): is
called -rectifiable if there exists a Lipschitz mapping from
some bounded set in onto .

Definition 13 (Rectifiable Measures [25, Definition 16.6]):
Let be a measure on . is called -rectifiable if
and there exists a -a.s. set that is -rectifiable.

Several useful facts about rectifiability are presented as
follows.

Lemma 11 [42]:
1) An -rectifiable set is also -rectifiable for .
2) The Cartesian product of an -rectifiable set and an -rec-

tifiable set is -rectifiable.
3) The finite union of -rectifiable sets is -rectifiable.
4) Countable sets are -rectifiable.
Using the notion of rectifiability, we give a sufficient condi-

tion for the -achievability of Lipschitz decompression by the
following lemma.

Lemma 12: if there exists a sequence of -rec-
tifiable sets with

(238)

for all sufficiently large .
Proof: See Appendix V.

Definition 14 ( -Dimensional Density [25, Def. 6.8]): Let
be a measure on . The -dimensional upper and lower den-
sities of at are defined as

(239)

(240)

If , the common value is called the -di-
mensional density of at , denoted by .

The following important result in geometric measure theory
gives a density characterization of rectifiability for Borel
measures.

Theorem 19 (Preiss Theorem [43, Th. 5.6]): A -finite Borel
measure on is -rectifiable if and only if

for -a.e. .

Recalling the expression for information dimension in
(17), we see that for the information dimension of a measure to
be equal to it requires that the exponent of the average mea-
sure of -balls equals , whereas -rectifiability of a measure
requires that the measure of almost every -ball scales as ,

a much stronger condition than the existence of information di-
mension. Obviously, if a probability measure is -rectifiable,
then .

B. Converse

In view of the lossless Minkowski dimension compression
results developed in Section V, the general converse in Theorem
9 is rather straightforward. We need the following lemma to
complete the proof.

Lemma 13: Let be -rectifiable. Then

(241)

Proof: See Appendix IX.

Proof of Theorem 9: Lemma 13 implies the following gen-
eral inequality:

(242)

If the source is memoryless and , then it follows
from Theorem 14 that .

C. Achievability for Finite Mixture

We first prove a general achievability result for finite mix-
tures, a corollary of which applies to discrete-continuous mixed
distributions in Theorem 10.

Theorem 20 (Achievability of Finite Mixtures): Let the dis-
tribution of be a mixture of finitely many Borel probability
measures on , i.e.,

(243)

where is a probability mass function. If is
-achievable with Lipschitz decoders for ,

then is -achievable for with Lipschitz decoders, where

(244)

(245)

Proof: By induction, it is sufficient to show the result for
. Denote . Let be a sequence of

i.i.d. binary random variables with . Let
be a i.i.d. sequence of real-valued random variables, such that
the distribution of each conditioned on the events
and are and respectively. Then,
is a memoryless process with common distribution . Since the
claim of the theorem depends only on the probability law of the
source, we base our calculation of block error probability on this
specific construction.

Fix . Since and are achievable for and
respectively, by Lemma 12, there exists such that for all
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, there exists , with
and is -rectifiable and is

-rectifiable. Let

(246)

By WLLN, . Hence, for any , there
exists , such that for all

(247)

Let

(248)

Define

(249)

Next we show that is -rectifiable. For all
, it follows from (248) that

(250)

(251)

and

(252)

(253)

(254)

where according to (245). Observe that
is a finite union of subsets, each of which is a Cartesian product
of a -rectifiable set in and a -rectifiable
set in . Recalling Lemma 11, is -rectifi-
able, in view of (254).

Now we calculate the measure of under

(255)

(256)

(257)

(258)

(259)

(260)

(261)

where:
• (257): by construction of in (249);
• (259): by (250) and (251);
• (260): according to (244);
• (261): by (247).

In view of Lemma 12, is -achievable for . By the
arbitrariness of and is -achievable for .

Proof of Theorem 10: Let the distribution of be
as defined in (139), where is discrete and

is absolutely continuous. By Lemma 11, countable sets are
-rectifiable. For any , there exists such that

. By definition, is -rectifiable.
Therefore, by Lemma 12 and Theorem 20, is an -achievable
rate for . The converse follows from (242) and Theorem 15.

D. Achievability for Singular Distributions

In this section, we prove Theorem 11 for memoryless sources,
using isomorphism results in ergodic theory. The proof out-
line is as follows: a classical result in ergodic theory states that
Bernoulli shifts are isomorphic if they have the same entropy.
Moreover, the homomorphism can be chosen to be finitary, that
is, each coordinate only depends on finitely many coordinates.
This finitary homomorphism naturally induces a Lipschitz de-
coder in our setup; however, the caveat is that the Lipschitz con-
tinuity is with respect to an ultrametric (Definition 15) that is not
equivalent to the usual Euclidean distance. Nonetheless, by an
arbitrarily small increase in the compression rate, the decoder
can be modified to be Lipschitz with respect to the Euclidean
distance. Before proceeding to the proof, we first present some
necessary results of ultrametric spaces and finitary coding in er-
godic theory.

Definition 15: Let be a metric space. is called an
ultrametric if

(262)
for all .

A canonical class of ultrametric spaces is the ultrametric
Cantor space [44]: let denote the set of all one-sided

-ary sequences . To endow with an ultra-
metric, define

(263)

Then, for every is an ultrametric on . In a sim-
ilar fashion, we define an ultrametric on by considering
the -ary expansion of real vectors. Similar to the binary ex-
pansion defined in (6), for and

, define

(264)

then

(265)

Denoting for brevity

(266)
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(263) induces an ultrametric on

(267)

It is important to note that is not equivalent to the distance
(or any distance), since we only have

(268)

To see the impossibility of the other direction of (268), consider
and . As

but remains . Therefore, a Lipschitz function with
respect to is not necessarily Lipschitz under . However,
the following lemma bridges the gap if the dimension of the
domain and the Lipschitz constant are allowed to increase.

Lemma 14: Let be the ultrametric on defined in
(267). and is Lips-
chitz. Then, there exists and

such that and is Lipschitz.
Proof: See Appendix X.

Next we recall several results on finitary coding of Bernoulli
shifts. Kolmogorov–Ornstein theory studies whether two pro-
cesses with the same entropy rate are isomorphic. Kean and
Smorodinsky [45] showed that two double-sided Bernoulli
shifts of the same entropy are finitarily isomorphic. For the
single-sided case, Del Junco [46] showed that there is a finitary
homomorphism between two single-sided Bernoulli shifts of
the same entropy, which is a finitary improvement of Sinai’s
theorem [47], [55]. We will see how a finitary homomorphism
of the digits is related to a real-valued Lipschitz function,
and how to apply Del Junco’s ergodic-theoretic result to our
problem.

Definition 16 (Finitary Homomorphisms): Let and be
finite sets. Let and denote the left shift operators on the
product spaces and respectively. Let and

be measures on and (with product -algebras). A ho-
momorphism is a measure preserving
mapping that commutes with the shift operator, i.e.,
and -a.e. is said to be finitary if there exist sets
of zero measure and such that
is continuous (with respect to the product topology).

Informally, finitariness means that for almost every
is determined by finitely many coordinates in . The fol-

lowing lemma characterizes this intuition in precise terms.

Lemma 15 [48, Conditions 5.1, p. 281]: Let and
. Let be a homomorphism.

Then, the following statements are equivalent.
1) is finitary.
2) For -a.e. , there exists , such that for

any implies that
.

3) For each , the inverse image
of each time- cylinder set in is, up to a set of measure

, a countable union of cylinder sets in .

Theorem 21 [46, Th. 1]: Let and be probability dis-
tributions on finite sets and . Let

and . If and each have at least three
non-zero components and , then there is a fini-
tary homomorphism .

We now use Lemmas 14–15 and Theorem 21 to prove The-
orem 11.

Proof of Theorem 11: Without loss of generality, assume
that the random variable satisfies . Denote by the
common distribution of the -ary digits of . By Proposition
2

(269)

Fix . Let and . Let be a
probability measure on such that .
Such a always exists because .
Let and denote the product measure
on and , respectively. Since and has the same en-
tropy rate, by Theorem 21, there exists a finitary homomorphism

. By the characterization of fini-
tariness in Lemma 15, for any , there exists
such that is determined only by . Denote the
closed ultrametric ball

(270)

where is defined in (267). Then, for any
. Note that forms a countable cover

of . This is because is just a cylinder set in with
base , and the total number of cylinders is countable.
Furthermore, since intersecting ultrametric balls are contained
in each other [49], there exists a sequence in , such
that partitions . Therefore, for all ,
there exists , such that , where

(271)

For , recall the -ary expansion of defined in
(266), denoted by . Let

(272)

(273)

(274)

Since is measure preserving, , therefore

(275)

Next we use to construct a real-valued Lipschitz mapping
. Define by

(276)

Since commutes with the shift operator, for all
. Also, for

. Therefore

(277)
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Next we proceed to show that
is Lipschitz. In view of (268) and (263), it is sufficient to show
that is Lipschitz. Let

(278)

First observe that is -Lipschitz on each ultrametric ball
in . To see this, consider distinct points . Let

. Then, . Since
and coincide on their first

digits. Therefore

(279)

(280)

(281)

Since every closed ultrametric ball is also open [49, Prop. 18.4],
are disjoint, therefore is -Lipschitz on

for some . Then, for any

(282)

(283)

(284)

(285)

where:
• (282): by (268);
• (283) and (285): by (267);
• (284): by (281).

Hence, is Lipschitz.
By Lemma 14, there exists a subset and a

Lipschitz mapping such that
. By Kirszbraun’s theorem [42, 2.10.43],

we extend to a Lipschitz function .
Then, . Since is continuous and is com-
pact, by Lemma 18, there exists a Borel function

, such that on .
To summarize, we have obtained a Borel function

and a Lipschitz function , where
, such that

. Therefore, we conclude that . The converse
follows from Theorem 9.

Last, we show that

(286)

for the special case when is equiprobable on the support,
where . Recalling the construction of self-sim-
ilar measures in Section III-C, we first note that the distribu-
tion of is a self-similar measure that is generated by the IFS

, where

(287)

This IFS satisfies the open set condition, since
and the union is disjoint. Denote by

the invariant set of the reduced IFS . By
[12, Corollary 4.1], the distribution of , denoted by ,
is in fact the normalized -dimensional Hausdorff mea-
sure on , i.e., . Therefore,

. By [18, Exercise 9.11],
there exists a constant , such that for all

(288)

that is, has positive lower -density everywhere. By [50,
Th. 4.1(1)], for any , there exists such that

and is -rectifiable. Therefore,
. By Lemma 12, the rate is -achievable.

VIII. CONCLUDING REMARKS

Compressed sensing, as an analog compression paradigm,
imposes two basic requirements: the linearity of the encoder
and the robustness of the decoder; the rationale is that low com-
plexity of encoding operations and noise resilience of decoding
operations are indispensable in dealing with analog sources. To
better understand the fundamental limits imposed by the re-
quirements of low complexity and noise resilience, it is peda-
gogically sound to study them separately and in a more general
paradigm than compressed sensing. Motivated by this observa-
tion, in this paper we have proposed an information theoretic
framework for lossless analog compression of analog sources
under regularity conditions of the coding schemes. Abstractly,
the approach boils down to probabilistic dimension reduction
with smooth embedding. In this framework, obtaining funda-
mental limits requires tools quite different from those used in
traditional information theory, calling for machineries from di-
mension theory and geometric measure theory in addition to er-
godic theory.

Within this general framework, we analyzed the fundamental
limits under different regularity constraints imposed on com-
pressor and decompressor. Perhaps the most surprising result
is, as shown in (75)

(289)

which holds for any real-valued source. This conclusion implies
that a Lipschitz constraint at the decompressor results in less ef-
ficient compression than a linearity constraint at the compressor.
For memoryless sources, we have also obtained bounds or exact
expressions for various -achievable rates. As seen in Theorems
5–12, Rényi’s information dimension plays an important role in
the associated coding theorems. These results provide new oper-
ational characterizations for Rényi’s information dimension in
a lossless compression framework.

In the important case of discrete-continuous mixed sources,
which is a probabilistic generalization of the linearly sparse
source model used in compressed sensing (a fixed fraction of ob-
servations are zero), we have shown that the fundamental limit is
Rényi information dimension, which coincides with the weight
on the continuous part in the source distribution. In the memo-
ryless case, this corresponds to the fraction of analog symbols
in the source realization. This might suggest that the mixed dis-
crete-continuous nature of the source is of fundamental impor-
tance in the analog compression framework; sparsity is just one
manifestation of a mixed distribution.

It should be remarked that random linear coding is not only an
important achievability proof technique in Shannon theory, but
also an inspiration to obtain efficient schemes in modern coding
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theory, compressed sensing as well as our analog compression
framework. Moreover, it also provides information about how
close practical encoders are to the fundamental limit. For in-
stance, in lossless linear compression, the achievability bound
on in Theorem 18 can be achieved with Lebesgue-a.e.
linear encoders. This implies that generating random linear en-
coders using any continuous distribution achieves the desired
error probability almost surely.

As far as future research directions, there are regularity
conditions beyond those in Table I that are worth studying. For
example, it is interesting to investigate the fundamental limit of
bilipshitz coding schemes, i.e., the encoder and decoder both
being Lipschitz continuous. This is a probabilistic version of
bilipschitz embedding in Euclidean spaces, e.g., Dvoretzky’s
theorem [51] and Johnson–Lindenstrauss lemma [52]. As a
more restricted case, the fundamental limit of linear compres-
sion with Lipschitz decompression is the most desirable result.

APPENDIX I
PROOF OF EQUIVALENCE OF (17) AND (14)

Proposition 4: The information dimension of a random vari-
able on can be calculated as follows:

(290)

where is the distribution of and is the -ball of
radius centered at . The lower (upper) infor-
mation dimension can be obtained by replacing by

.
Proof: Let be a random vector in and denote its dis-

tribution by . Due to the equivalence of -norms, it is suffi-
cient to show (290) for . Recall the notation in (5) and
note that

(291)

For any , there exists , such that
. Then

(292)

(293)

As a result of (292), we have

(294)

On the other hand, note that is a disjoint
union of mesh cubes. By (293), we have

(295)

(296)

Combining (294) and (296) yields

(297)

By Proposition 2, sending and yields (290).

APPENDIX II
PROOFS OF PROPOSITIONS 1–3

Lemma 16: For all

(298)

Proof:

(299)

(300)

Note that for any

(301)

(302)

(303)

Given , the range of is upper bounded
by . Therefore, for all

(304)

Hence, admits the same upper bound and (298)
holds.

Lemma 17 [53, p. 2102]: Let be an -valued random
variable. Then, if .

Proof of Proposition 1: Using Lemma 16 with
and , we have

(305)

Equation (21) (20): When is finite, dividing both
sides of (305) by and letting results in (20).

Equation (20) (21): Suppose . By (305),
for every and (20) fails. This also proves (22).

(19) (21)

(306)

(307)

(308)

(309)

(310)

where:
• (308): by Lemma 17;
• (310): by

(311)

(312)

Proof of Proposition 2: Fix any and , such
that . By Lemma 16, we have

(313)

(314)
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Therefore

(315)

and hence (23) and (24) follow.

Proof of Proposition 3: Note that

(316)

(317)

(318)

(319)

The same bound works for rounding.

APPENDIX III
INFORMATION DIMENSION AND RATE-DISTORTION THEORY

The asymptotic tightness of the Shannon lower bound in the
high-rate regime is shown by the following result.

Theorem 22 [20]: Let be a random variable on the normed
space with a density such that . Let the
distortion function be with , and the
single-letter rate-distortion function is given by

(320)

Suppose that there exists an such that .
Then, and

(321)

where the Shannon lower bound takes the following
form:

(322)

where denotes the volume of the unit ball
.

Special cases of Theorem 22 include the following.
• MSE distortion and scalar source:

and . Then, the Shannon
lower bound takes the familiar form

(323)

• Absolute distortion and scalar source:
and . Then

(324)

• -norm and vector source:
and . Then

(325)

For general sources, Kawabata and Dembo introduced the
concept of rate-distortion dimension in [12]. The rate-distortion
dimension of a measure (or a random variable with the dis-
tribution ) on the metric space is defined as follows:

(326)

(327)

where is the single-letter rate-distortion function of
with distortion function . Then,
under the equivalence of the metric and the -norm as in (328),
the rate-distortion dimension coincides with the information di-
mension of .

Theorem 23 [12, Prop. 3.3]: Consider the metric space
. If there exists , such that for all

(328)

then

(329)

(330)

Moreover, (329) and (330) hold even if the -entropy
instead of the rate-distortion function is used in the defini-
tion of and .

In particular, consider the special case of scalar source and
MSE distortion . Then, whenever exists
and is finite

(331)

Therefore, is the scaling factor of with respect
to in the high-rate regime, which gives an operational
characterization of information dimension in Shannon theory.
Note that in the most familiar cases we can sharpen (331) to
show the following.

• is discrete and : .
• is continuous and :

.

APPENDIX IV
INJECTIVITY OF THE COSINE MATRIX

We show that the cosine matrix defined in Remark 2 is injec-
tive on . We consider a more general case. Let
and . Let be an matrix where
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. We show that each subma-
trix formed by columns of is non-singular if and only if

are distinct.
Let . Then, where

and denotes the th order Cheby-
shev polynomial of the first kind [54]. Note that
is a polynomial in of degree . Also

if for some . Therefore,
. The constant is given by

the coefficient of the highest order term in the contribution from
the main diagonal . Since the leading coefficient
of is , we have . Therefore

(332)

APPENDIX V
PROOF OF LEMMA 12

Lemma 18: Let be compact, and let
be continuous. Then, there exists a Borel measurable function

such that for all .
Proof: For all is nonempty and com-

pact since is continuous. For each , let the th
component of be

(333)

where is the th coordinate of . This defines
which satisfies for all . Now we claim
that each is lower semicontinuous, which implies that is
Borel measurable. To this end, we show that for any

is open. Assume the opposite, then there exists a
sequence in that converges to , such that

and . Due to the compactness of , there
exists a subsequence that converges to some point in

. Therefore, . But by the continuity of , we have

Hence, by definition of and , we have , which
is a contradiction. Therefore, is lower semicontinuous.

Proof of Lemma 12: Let be -rectifiable and
assume that (238) holds for all . Then, by definition there
exists a bounded subset and a Lipschitz function

, such that . By continuity,
can be extended to the closure , and . Since

is compact, by Lemma 18, there exists a Borel function
, such that for all .

By Kirszbraun’s theorem [42, 2.10.43], can be extended to
a Lipschitz function with the same Lipschitz
constant. Then

(334)

for all , which proves the -achievability of .

APPENDIX VI
PROOF OF LEMMA 3

Proof: Since -norms are equivalent, it is sufficient to
only consider . Observe that is nonin-
creasing. Hence, for any , we have

(335)

Therefore, it is sufficient to restrict to and
in (77) and (78). To see the equivalence of covering by mesh
cubes, first note that . On the other hand,
any -ball of radius is contained in the union of mesh
cubes of size (by choosing a cube containing some point in
the set together with its neighboring cubes). Thus,

. Hence, the limits in (77) and (78) coincide with
those in (84) and (85).

APPENDIX VII
PROOF OF LEMMA 5

Proof: By Pinsker’s inequality

(336)

where is the variational distance between and and
. In this case, where is countable

(337)

By [29, Lemma 2.7, p. 33], when

(338)

(339)

When , by (336), ; when
, by (339)

(340)

Using (336) again

(341)

Since holds in the minimization of (95)
and (97), (99) is proved.

APPENDIX VIII
PROOF OF (169)

Proof: By (100), for all

(342)

where

(343)

which is a nonnegative nondecreasing convex function.
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Since a.s., is in one-to-one correspon-
dence with . Denote the distribution of

and by and , respectively. By
assumption, are independent, hence

(344)

By (95)

(345)

where is a distribution on . Denote the marginals of
by . Combining (344) with properties of entropy
and relative entropy, we have

(346)

and

(347)

(348)

Therefore

(349)

(350)

(351)

(352)

(353)

(354)

(355)

(356)

where:
• (350): by (346);
• (351): by (348), we have

(357)

• (353): by (342);
• (354): let ; then, , by (347);
• (355): due to the convexity of .

APPENDIX IX
PROOF OF LEMMA 13

Proof: By the -rectifiability of , there exists a bounded
subset and an -Lipschitz mapping such
that . Note that

(358)

By definition of , there exists ,
such that is covered by the union of

. Then

(359)

which implies that

(360)

Therefore

(361)

(362)

(363)

which the last inequality follows from (358).

APPENDIX X
PROOF OF LEMMA 14

Proof: Suppose we can construct a mapping
such that

(364)

holds for all . By (364), is injective. Let
and . Then, by (364) and the -Lipschitz

continuity of

(365)

(366)

(367)

holds for all . Hence, is Lipschitz
with respect to the distance, and it satisfies .

To complete the proof of the lemma, we proceed to construct
the required . The essential idea is to puncture the -ary ex-
pansion of such that any component has at most consecu-
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Fig. 1. Schematic illustration of in terms of -ary expansions.

tive nonzero digits. For notational convenience, define
and for as follows:

(368)

(369)

Define

(370)

A schematic illustration of in terms of the -ary expansion
is given in Fig. 1.

Next we show that satisfies the expansiveness condition in
(364). For any , let . Then,
by definition, for some and

. Without loss of generality,
assume that and . Then, by construction of

, there are no more than consecutive nonzero digits in or
. Since the worst case is that and are followed

by ’s and ’s respectively, we have

(371)

(372)

which completes the proof of (364).
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[47] J. G. Sinaĭ, “A weak isomorphism of transformations with an invariant
measure,” Dokl. Akad. Nauk SSSR., vol. 147, pp. 797–800, 1962.

[48] K. E. Petersen, Ergodic Theory. Cambridge, U.K.: Cambridge Univ.
Press, 1990.

[49] W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Anal-
ysis. New York: Cambridge Univ. Press, 2006.

[50] M. A. Martin and P. Mattila, “ -dimensional regularity classifications
for -fractals,” Trans. Amer. Math. Soc., vol. 305, no. 1, pp. 293–315,
1988.

[51] V. Milman, “Dvoretzky’s theorem: Thirty years later,” Geom. Funct.
Anal., vol. 2, no. 4, pp. 455–479, Dec. 1992.

[52] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz maps into
a Hilbert space,” Contemp. Math., vol. 26, pp. 189–206, 1984.

[53] E. C. Posner and E. R. Rodemich, “Epsilon entropy and data compres-
sion,” Ann. Math. Stat., vol. 42, no. 6, pp. 2079–2125, Dec. 1971.

[54] G. Szegö, Orthogonal Polynomials. Providence, RI: AMS, 1975.
[55] Y. Wu and S. Verdú, “Fundamental limits of almost lossless analog

compression,” in Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea, Jun.
2009.

Yihong Wu (S’10) received the B.E. degree in electrical engineering from
Tsinghua University, Beijing, China, in 2006 and the M.A. degree in electrical
engineering from Princeton University, Princeton, NJ in 2008, where he is
currently working towards the Ph.D. degree at the Department of Electrical
Engineering.

He is a recipient of the Princeton University Wallace Memorial honorific fel-
lowship in 2010. His research interests are in information theory, signal pro-
cessing, mathematical statistics, optimization, and distributed algorithms.

Sergio Verdú (S’80–M’84–SM’88–F’93) received the Telecommunications
Engineering degree from the Universitat Politècnica de Barcelona, Barcelona,
Spain, in 1980 and the Ph.D. degree in electrical engineering from the Univer-
sity of Illinois at Urbana-Champaign, Urbana, in 1984.

Since 1984, he has been a member of the faculty of Princeton Univer-
sity, Princeton, NJ, where he is the Eugene Higgins Professor of Electrical
Engineering.

Dr. Verdú is the recipient of the 2007 Claude E. Shannon Award and the 2008
IEEE Richard W. Hamming Medal. He is a member of the National Academy of
Engineering and was awarded a Doctorate Honoris Causa from the Universitat
Politècnica de Catalunya in 2005. He is a recipient of several paper awards from
the IEEE: the 1992 Donald Fink Paper Award, the 1998 Information Theory
Outstanding Paper Award, an Information Theory Golden Jubilee Paper Award,
the 2002 Leonard Abraham Prize Award, the 2006 Joint Communications/In-
formation Theory Paper Award, and the 2009 Stephen O. Rice Prize from the
IEEE Communications Society. He has also received paper awards from the
Japanese Telecommunications Advancement Foundation and from Eurasip. He
received the 2000 Frederick E. Terman Award from the American Society for
Engineering Education for his book Multiuser Detection (Cambridge, U.K.:
Cambridge Univ. Press, 1998). He served as President of the IEEE Informa-
tion Theory Society in 1997. He is currently Editor-in-Chief of Foundations
and Trends in Communications and Information Theory.

Authorized licensed use limited to: Princeton University. Downloaded on July 20,2010 at 19:49:18 UTC from IEEE Xplore.  Restrictions apply. 


