ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS
FOR CODES DEFINED ON GRAPHS WITH CYCLES

G. DAVID FORNEY, JR.*, RALF KOETTER', FRANK R. KSCHISCHANGH,
AND ALEX REZNIKS

Abstract. The behavior of an iterative decoding algorithm for a code defined on
a graph with cycles and a given decoding schedule is characterized by a cycle-free com-
putation tree. The pseudocodewords of such a tree are the words that satisfy all tree
constraints; pseudocodewords govern decoding performance. Wiberg [12] determined
the effective weight of pseudocodewords for binary codewords on an AWGN channel.
This paper extends Wiberg’s formula for AWGN channels to nonbinary codes, develops
similar results for BSC and BEC channels, and gives upper and lower bounds on the
effective weight. The 16-state tail-biting trellis of the Golay code [2] is used for exam-
ples. Although in this case no pseudocodeword is found with effective weight less than
the minimum Hamming weight of the Golay code on an AWGN channel, it is shown
by example that the minimum effective pseudocodeword weight can be less than the
minimum codeword weight.
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1. Introduction. The subject of codes defined on graphs was founded
by Tanner [10], inspired by Gallager’s low-density parity-check (LDPC)
codes [4]. The thesis of Wiberg [12, 13], along with the practical successes
of turbo codes and LDPC codes, has stimulated great current interest in
this subject. For recent developments, see [1, 6, 7, §].

By now it is well known that if C' is a block code defined on a cycle-free
graph G (i.e., a tree), then the min-sum decoding algorithm is guaranteed
to converge to the maximum-likelihood (ML) code sequence [12, 13].

The min-sum algorithm may also be applied to a graph with cycles,
but its behavior then depends on the decoding schedule, and convergence
is not guaranteed. Given a decoding schedule, there exists a cycle-free
computation tree G’ such that the behavior of the min-sum algorithm on
G' with the given schedule is identical to that of the iterative algorithm on
G [3, 11, 12, 13]. In general, a node in G has more than one representation

in G'.
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A codeword in C is a sequence ¢ of node values in G that satisfies all
the constraints of G. A pseudocodeword [3] is a sequence of node values in
G' that satisfies all the constraints of G'. There exists a pseudocodeword
corresponding to every codeword ¢ € C, obtained by assigning the values of
the nodes of G to the corresponding nodes of G'. In general there will also
exist pseudocodewords that do not correspond to valid codewords, because
different values are assigned to nodes of G’ that correspond to the same
node of G.

In this note we will focus on pseudocodewords of tail-biting trellises,
whose significance is particularly clear. A tail-biting trellis (TBT) corre-
sponds to a graph G that consists of a single cycle. A computation tree
G' is obtained by “unwrapping” G into a conventional trellis defined on
an ordered time axis. A codeword ¢ of G corresponds to a pseudocode-
word on G’ that repeats periodically with a period equal to one cycle of
G. But there also exist periodic pseudocodewords on G' whose period is a
multiple of the cycle length of G and which do not correspond to any valid
codeword.

In Chapter 6 of [12], Wiberg developed a formula for the effective
Hamming weight (“generalized weight”) weg of a pseudocodeword (“tree
configuration”) for the case of binary codes and binary antipodal signaling
on an additive white Gaussian noise (AWGN) channel, namely

(Zim)

1.1 = _° /7
( ) Wefr Zj n? ’

where n; is the number of nodes in G’ corresponding to the jth node in
G that have value equal to 1. If the pseudocodeword corresponds to a
valid codeword c, then weg = wp(c), the Hamming weight of c. For a
binary linear code, the probability of a decoding error on G’ is governed
by the minimum effective weight wes; therefore it is important that all
pseudocodewords of G' have effective weight weg at least as great as the
minimum Hamming weight duy of C' if performance is not to be degraded.

In this note we develop some extensions of Wiberg’s result, as follows:

1. We extend Wiberg’s formula to the nonbinary case;

2. We give lower and upper bounds on wes;

3. We develop similar results for the binary symmetric channel (BSC)
and binary erasure channel (BEC).

As examples, we compute the effective weights of certain pseudocode-
words in the 16-state TBT of the binary (24, 12, 8) Golay code of [2]. For
the AWGN channel, we have not found any examples of pseudocodewords
with effective weight less than 8; however, neither have we been able to
prove that 8 is the minimum effective weight for this case. For the binary
symmetric channel, on the other hand, we exhibit a pseuodcodeword with
effective weight 6.
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2. Effective weight on AWGN channels. Let C be a block code
of length n defined on a graph G, and let G’ be a computation tree corre-
sponding to some schedule for min-sum decoding of C. Let N;,1 < j <,
be the number of occurrences of the jth node of G in G'.

Let ¢ = {¢j,1 < j < n} be a codeword of G, and let {pj;,1 < j <
n,1 <4 < N;} be a pseudocodeword of G', where p;; represents the value
of the ith occurrence of the jth node, 1 <i < Nj.

For each symbol z,, in the symbol alphabet A, let n;n, be the number
of times that p;; = &, and let fjm = njm/Nj; i.e., fjm is the frequency
with which z,, appears in the IN; occurrences of the jth node. In the fol-
lowing, we think of the fractions f;,, as defining a random pseudocodeword
p = {p;} in which p; takes on value z,, € A with probability f;.,, and we
will take expectations over this distribution.

Note that p is non-random (p = E[p]) if and only if p corresponds to
a valid codeword ¢’, for then and only then f;, = 1 when z,, = c;- and
fjm = 0 otherwise.

Define the variance

(2.1) oy = (EW] - Eml*) =Ellpl") - IE o] I

J

We have the following obvious lemma:

LEMMA 2.1. The variance a;‘; is greater than or equal to 0, with equal-
ity if and only if p is non-random; i.e., iff p corresponds to a valid codeword
c. m|

Let ¢ be the input codeword to an AWGN channel whose output se-
quence is r = ¢ + n, where n is an i.i.d. Gaussian sequence with mean 0
and variance o2 per symbol. A maximum-likelihood (ML) decoder on G’
chooses the pseudocodeword p that minimizes the squared distance

llr = pl* = ZNJ' ijm('rj - )
7 m

For simplicity we will assume that G' is balanced [3, 11]— i.e., that
Nj is constant for all j. Then an ML decoder chooses the pseudocodeword
p that minimizes the expected squared distance

|I‘—p|| ZPI‘ _mm szjm - m

The probability Pr(c — p) that an ML decoder will choose the pseudocode-
word p over c is thus

Pr(c = p) = Pr{E[|lr — p[*] <[jr —¢[I*}.

(If G' is not balanced, then a similar result holds if we replace E[||r — p||?]
by the expectation of the weighted squared distance N;(r; — z.,)?.)
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Defining (r,c) =3, rjc;, we can write

lr = el* = lIell* — 2(r, ) + [lel|*;
E[llr = plI*] = llxll* — 2¢r, E[p]) + E [[lpI*],

where (r,E[p]) = >, riE[p;] = >, 7 >, fim®m. Thus
Pr(c - p) = Pr {2(r,c - Elp]) < |lel[* - E [IplP]}
Define d = ¢ — E[p] and D = ||c||* — E [||p||?]; then
Pr(c —» p) = Pr{2(r,d) < D}.

Given c¢;, the received symbol r; is a Gaussian random variable (r.v.)
with mean ¢; and variance 0. Therefore r;d; is a Gaussian r.v. with mean
c¢jd; and variance 0'2d?. The inner product (r,d) = > ;Tjd; therefore has
mean (c,d) = >, ¢;d; and variance o? > d3 = o®||d||*. The probability
that {(r,d) < D/2 is thus the probability that a Gaussian r.v. with mean
(c,d) — D/2 and variance o?||d||? is less than zero, which is given by

o(“Tmr):

where Q(z) = 5= [ exp(—2?/2) dz is the usual Q function.
Therefore if we define the effective squared Euclidean distance as
2(c,d) — D >
(2:2) dgﬁ'(cap) = %,

then we obtain the familiar expression

(2.3) Pr(c = p) = Q (M) _

20

If p corresponds to a codeword ¢’, then E[p] = ¢’ and E[||p||?] = ||<'||?,
S0

2(c,d) — D = 2{c,c — ') — [le[I” + [I¢'|]* = [le = ¢'||*.
Also [|d]|? = ||e — ¢||?, so we have as usual

degr(c, ') = lle — c'||*.

More generally, if o = E [Ipl1%] — IEP]II?

in (2.1), then we have

2(c,d) — D =2(c,c — E[p]) — [lc||* + E [||p|]?]
= [lc — E[pllI* + E [llplI*] — IE[P]II®
=||d|* + 0.

is the variance of p defined
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This leads to our main theorem:

THEOREM 2.1. Let ¢ be a codeword and p a pseudocodeword in o
balanced computation tree. Then the effective squared Fuclidean distance
between ¢ and p is

dl? + o2 2
(2.4) dgff(cap): (” |:|d||2ap) )

where d = ¢ — E[p] and o = E[||p||*] — [[E[p]||*. If ¢ is transmitted, then
the probability that the received word r is closer to p than c is

(2.5) Pr(c - p) = Q (7‘1‘*‘*(“’ p)> :
20
O
By Lemma 1, 0123 > 0, with equality if and only if p corresponds to a
codeword ¢'. Thus we obtain the following two lower bounds on d2(c, p):
COROLLARY 2.1. The effective squared Euclidean distance d’¢(c,p)

satisfies
(2.6) dag(c,p) > [|dII” + o7 > [|d]|* = [lc — E[p]|*,

with equality in both cases if and only if p corresponds to a codeword c'.
O

This result shows that the variation 012, in non-codeword pseudocode-
words p causes d2g(c,p) to be greater than the squared distance ||d||? =
llc — E[p]||* between ¢ and the average E[p]. Thus the more variation o7
in a pseudocodeword p, the less troublesome it is likely to be, for a given

average E[p].

3. Binary signaling on the AWGN channel. With binary antipo-
dal signaling using the symbol alphabet A = {£1}, we have ||c||?> = E[||p||?],
so D = 0. Define

dj = ].—E[pj] :].—ijmxm :2fj7

where f; is the fraction of p;; equal to —1; i.e., f; = (1 — E[p;])/2. If we
take ¢ = 1 (the all-zero codeword), then

2
(24)

Xidi
If we further define |f| = =, f; and [|f[|> = 3_; f7, then we have

dgff(lap) = dwes(p) = 4

Il = 11 ~ EfpI* = 4l
o2 = E (IplP] — IEp]IP = 4(/f] - I£]°);
2
(1l +03)* _, 12
P P

dZﬁ(]-:p) =
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This yields Wiberg’s formula (1.1) for weg(p) in the balanced case:

COROLLARY 3.1. On an AWGN channel, the effective Hamming
weight of a binary pseudocodeword p with frequency f; of ones in the jth
position is

Ll
lE1>°

where |f| = 3, f; and ||f|* = 3=, f7. O
The quantity |f| = 3_; f; may be interpreted as the average Hamming
weight of p. Corollary 2.1 then has the following corollary:
COROLLARY 3.2. If p is binary, then its effective weight weg(p) sat-
isfies

(3.1) west (P) =

(3-2) weet (P) > If] > [If]%,

with equality if and only if p corresponds to a codeword c'. O
In other words, wes(p) is lowerbounded by the average Hamming
weight |f|, with strict inequality if p does not correspond to a codeword.
For example, three pseudocodewords of low effective weight in the
Golay TBT have the following parameters:

Example 1 Suppose f; equals % in 8 places and 0 elsewhere. Then

I£11* =8 x (1/4) = 2;
If| =8 x (1/2) = 4;
B |f|2 B 42

weﬂ(p) - ||f||2 - 5 =8.

Example 2 Suppose f; equals % in 8 places, 1 in 2 places, and 0 elsewhere.
Then

IF]? =8 x (1/4) +2 x 1 = 4;
Ifl=8x(1/2)+2x 1=6;

|f|2 62
weH(P):szzg

Example 3 Suppose f; equals % in 6 places, % in 2 places, 1 in 2 places,
and 0 elsewhere. Then

[I£]1* =6 x (1/9) + 2 x (4/9) + 2 = 32/9;
If| =6 x (1/3)+2 x (2/3) + 2 = 16/3;

P g
wer(P) = iz =%
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Example 1 illustrates the general proposition that if all nonzero f; are
equal, then wer(p) is equal to their number, wes(p) = |supp(f)]. (We
will see that the support size | supp(f)| is the effective weight on a binary
erasure channel.) More generally, we can show that | supp(f)| is an upper
bound on weg(p):

THEOREM 3.1. If p is binary, then its effective weight wes(p) satisfies

(3.3) wer(P) < |supp(f)|,

with equality if and only if all nonzero f; are equal.

Proof. Define 1 as the vector whose components are equal to one on the
support of f and equal to zero elsewhere. Then |[1]|2 = |supp(f)|, and
(1,f) = |f|. Now by Schwarz’s inequality,

(1,£)? < |[1[PIf]|* = [supp(£)] - [I£]1%,
with equality if and only if f = a1 for some a. The conclusion follows from

If? _ (1,f)?
weff(p) ||f||2 ||f||2 > |Supp( )|7

with equality if and only if f is proportional to 1. O

4. Binary symmetric channels. Now let us consider binary sig-
naling on a binary symmetric channel (BSC) with crossover probability
€ < 1/2. As in the previous section, a pseudocodeword p will be repre-
sented by a vector f, where f; is the fraction of pseudocodeword compo-
nents equal to 1 in the jth position.

Suppose that the all-zero word is sent and that the received word is e,
where e; = 1 if there is an error in the jth position and e; = 0 otherwise.
The Hamming distance between e and the all-zero word is |e| = >, e;.
Given a pseudocodeword p represented by f, the average Hamming distance
in the jth component is equal to f; if e; =0 and 1 — f; if e; = 1, so the
average Hamming distance dp(e, p) is

(4.1) du(e,p) :ij(l—ej)-l'ej(l—fj)-

Thus the error event {dy(e,p) < |e|} is the event

@42 {E1-2) =3 f1-2) = 3 LD <0}

The probability of error is thus the probability that }_; f;(—1)* < 0. This
is a sum of independent random variables v;, where v; = f; with probability
¢ and v; = — f; with probability 1 —e.

We would like again to define the effective Hamming weight wes (p)
of p as a single parameter that has the same significance as the usual
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Hamming weight wr(c) of a codeword c for error probability, and that
reduces to Hamming weight when p is actually a codeword. This cannot
be done quite as neatly in the BSC case as in the Gaussian case, but a
reasonable approach is as follows.

We ask for the minimum number of errors |e| that can cause a decoding
error to p. Clearly, given the total weight |f| =}, f; of f, the worst case
occurs when e errors occur in the e positions for which f; is greatest. A
decoding error may occur if the sum of the weights f; in these e positions
is equal to |f|/2, and must occur if the sum exceeds |f|/2. The effective
weight in the former case will be taken as wpsc(p) = 2e, and in the latter
case as wpsc (p) = 2e — 1.

To a first approximation, the decoding error probability to p will there-
fore be of the order of Ke®®), where e(p) = [wpsc(p)/2] is the minimum
number of channel errors required to make a decoding error to p.

The correspondence between effective weight and Hamming weight is
not precise, because whereas with an ordinary codeword the multiplicity K
is the number of ways that e(c) errors can occur in wy(c) positions, with
pseudocodewords the number of possible combinations of e(p) errors will
in general be less.

The three examples given earlier illustrate these points and show that
the effective weight for Gaussian channels and for BSCs are in general
different.

Example 1 (cont.) If f; equals 1 in 8 places and 0 elsewhere, then |f| = 4.
There exist error patterns of weight e = 4 such that the sum of the e
largest components of f is equal to |[f|/2 = 2, namely any error pattern
with 4 errors in places where f; = % Thus the effective weight of such a
pseudocodeword is wpsc(p) = 8. In this case the number of error patterns
of weight 4 that could cause a decoding error is %i! = 70, as in the usual
case.

Example 2 (cont.) If f; equals % in 8 places, 1 in 2 places, and 0 elsewhere,
then |f| = 6. There exist error patterns of weight e = 4 such that the
sum of the e largest components of f is equal to |f|/2 = 3, namely error
patterns with errors in the two places where f; = 1 and in two other places
where f; = 1. Thus the effective weight of such a pseudocodeword is
wpsc (p) = 8. The number of error patterns of weight 4 that could cause a

decoding error is 6?—; = 28, compared to %“ = 70 in the usual case.

Example 3 (cont.) If f; equals % in 6 places, % in 2 places, 1 in 2 places,
and 0 elsewhere, then |f| = 18, There exist error patterns of weight e = 3
such that the sum of the e largest components of f is equal to |f|/2 = £,
namely error patterns with errors in the two places where f; = 1 and in one
other place where f; = % The effective weight of such a pseudocodeword
is wpsc(p) = 6. The number of error patterns of weight 3 that could cause

a decoding error is 2, compared to 3(,"—:',), = 20 in the usual case.
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From these examples one might conjecture that the effective Hamming
weight of a binary pseudocodeword on a BSC is always less than or equal to
its effective weight on an AWGN channel. We can construct a counterex-
ample to such a conjecture as follows. Let d be an even integer greater
than 4, let § be a very small number such as § = 0.001, and let

1
N=d-2+=
+3

where we assume that 1/4 is an integer. Consider a set of nonzero weights
f; with one weight equal to 1 and N weights equal to §. Then

If| =2+ 6(d—2) ~ 2;
IIf]|? =1+ Né&* ~ 1;

]2
West (P) = T ~ 4
d—2 d
e=lt—=5—=3

wesc(P) = 2e =d > wer (P),

where we note that on a BSC it takes one error in the position where f; =1

and (d — 2)/2 errors in positions where f; = d to accumulate a weight of
If]/2=144d(d—2)/2.

5. Binary erasure channels. Now let us consider binary signaling
on a binary erasure channel (BEC) with erasure probability . Again, a
pseudocodeword p will be represented by a vector f, where f; is the fraction
of pseudocodeword symbols equal to 1 in the jth position.

Suppose that the all-zero word is sent and that |S| erasures occur in
a certain set S of coordinates. The remaining unerased symbols will all
agree with the all-zero word. They will evidently also all agree with a
pseudocodeword p represented by f if and only if f; =0 for all j ¢ S.

Therefore we define the effective Hamming weight wegc(p) of a pseu-
docodeword on a BEC as | supp(f)|, the number of nonzero components of
f. Then:

(a) A decoding error to p may occur if and only if |S| > wsgc(p);

(b) If p is actually a codeword c, then wegc(p) = wu(c).

By Theorem 3.1, the effective weight wprc(p) of a pseudocodeword
p on a BEC is greater than or equal to its effective weight on an AWGN
channel, with equality if and only if p is actually a codeword. Similarly, by
the discussion in Section 4, wprc(p) > wesc(p), with equality if and only
if p is actually a codeword.

For example, for Examples 1, 2 and 3, the effective weights on a BEC
are 8, 10 and 10, respectively, compared to 8, 9 and 8 on an AWGN channel
and 8, 8 and 6 on a BSC.
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6. Examples with low pseudocodeword weights. In this section,
we present a family of examples of binary tail-biting trellises for which the
minimum effective pseudocodeword weight on an AWGN channel is strictly
less than the minimum codeword weight.

For a first example, let C be the binary linear (16, 6,4) code generated
by the following 6 generators:

100 110000 110000 1
010 001100 001100 1
001 000011 000011 1

000 110000 001100 O
000 001100 000011 O
000 000011 110000 O

With a TBT constructed from these generators, the sum of the shifted
generators shown below gives a low-weight three-cycle pseudocodeword:

000 000011 110000 O
110000 1 100 110000
000 110000 001100 O
001100 1 010 001100
000 001100 000011 O
001 000011 000011 1

001 000000 000000 1 100 000000 000000 1 010 000000 000000 1

The resulting pseudocodeword has f; = % in 3 places, f; = 1 in 1 place,

and 0 elsewhere. Thus |f| = 2, ||f||* = %, and the effective Hamming weight
on an AWGN channel is |f|?/||f||> = 3. Notice that since one position has
weight |f|/2 = 1, the effective weight on a BSC is only 2.

A generalization of this construction yields for every integer a > 3 a
binary linear (n, k,d) code C' with d = 2[a/2] and a TBT with an a-cycle
pseudocodeword with effective weight

4a

d.
a+1 <

Wefr =

The generator matrix has the form

I B B 1
O B C 0]’

where [ is an a X a identity matrix, B is the matrix obtained from I by
repeating every column b times where b = [a/2], 1 is a column of a ones, O
is an a X a zero matrix, C' is the cyclic shift of B to the right b times, and
0 is a column of a zeroes. It is straightforward to verify that the minimum
nonzero codeword weight is d = 2b.

By a similar concatenation to that above, we obtain an a-cycle pseu-
docodeword with f; = % in a places, f; = 1 in 1 place, and 0 elsewhere.
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Thus |f| = 2, ||f||*> = (a + 1)/a, and the effective Hamming weight on an
AWGN channel is |f|?/||f||> = 4a/(a + 1) < 4. Notice that in general one
position has weight |f|/2 = 1, so the effective weight on a BSC is only 2.
On the other hand, the effective weight on a BEC is a + 1 > d.

Fora = 3,4,5, ..., the minimum nonzero codeword weight is 4,4, 6, . . .,
while the pseudocodeword weight on an AWGN channel is 3,3.2,3.33,. ..,
approaching a limit of 4.

We note that the TBT that produces this low-weight pseudocodeword
is not in general minimal in the sense of [5]; however, it is linear, biproper
and one-to-one.

7. Conclusions. We have determined the effective weight and dis-
tance of pseudocodewords on the AWGN channel, the BSC, and the BEC.
In general pseudocodewords are least troublesome on a BEC.

For the Golay TBT, we have found pseudocodewords whose effective
weight on the BSC is less than the minimum distance of the code, which
indicates that ML decoding using this TBT will be distinctly suboptimal.
For the AWGN channel, we have found no such pseudocodewords; more-
over, simulations have shown that ML decoding using the Golay TBT is
near-optimal [9]. However, as far as we know, there is no proof yet that
the minimum nonzero pseudocodeword weight is 8.

For more general graphs, the concept of pseudocodeword may need
some refinement. Just as in Viterbi decoding the influence of symbols far
in the past eventually dies out, at least probabilistically, we expect that the
influence of nodes far away from the root node in the computation tree will
eventually die out. The concepts of pseudocodeword weight used in this
paper do not have this property, which suggests that they need refinement.
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