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1 Decoding Binary Linear Codes Defined on Graphs

An (n, k, d) binary linear block code can be defined in terms of the set of elements of F n
2 that

satisfy a set of constraints. One way to express this is to express this in terms of an n− k by n
parity-check matrix H:

C = {c ∈ {0, 1}n s.t. Hx = 0}
Graphical representations denote the dependencies between codewords based upon the con-
straints they must satisfy. Each constraint corresponds to a (smaller) linear code.

When transmitting across a memoryless channel, the receiver observes measurement yi at

each node i. A sufficient statistic for decoding is γi = ln
(

P (yi|ci=0)
P (yi|ci=1)

)
for each i. We may describe

Figure 1: An example of a graph G corresponding to a blbc. Squares denote parity checks, circles
denote code symbols
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ML-decoding as follows:

x∗ = arg max
c∈C

(
n∏

i=1

P (yi|ci)

)

= arg min
c∈C

(
− ln

n∏
i=1

P (yi|ci)

)

= arg min
c∈C

(
−

n∑
i=1

ln P (yi|ci)

)

= arg min
c∈C

(
n∑

i=1

ln P (yi|0)− ln P (yi|ci)

)

= arg min
c∈C

( ∑
i:yi=1

ln

(
P (yi|0)

P (yi|1)

))

= arg min
c∈C

(
n∑

i=1

γici

)

Thus we see that ML decoding can be thought of as a combinatorial optimization problem where
the objective function is linear.

Note that we can cast such an optimization problem as a linear program:

x∗ = arg min
c∈CH(C)

(
n∑

i=1

γici

)

However, the polyhedron corresponding to the feasible set is the convex hull of the elements of
the code, and it has an exponential number of vertices.

2 Feldman LP feasible set formulation [Fel03]:

Feldman’s LP formulation operates on the graph G corresponding to the parity-check represen-
tation of the code. Note that each parity check node j involved in δj = N(j) variable nodes
defines a (δj, δj − 1, 2) code Cj. Each of the 2δj−1 codewords correspond to a different set S
(called a configuration) of bits that has a parity sum to 0. We’ll call the set of all possible
sets E(Cj). Note that it’s always the case that ∅ ∈ E(Cj). So we may define a configuration
variable xj = {xj,S1 , xj,S2 . . . , } that must satisfy 0 ≤ xj,S ≤ 1 and also, because for any codeword
realization, only one realization is on, they must satisfy

∑

S∈E(Cj)

xj,S = 1.

Finally, we must impose the constraint that for each variable i, symbol value ci must be consistent
with the selected configuration for each parity check:

ci =
∑

s∈E(Cj), S3i

xj,S ∀i ∈ N(j).

2



Figure 2: locally operating algorithms

resulting feasible set PFeldman(G) :

∀j ∈ {1, . . . , n− k} : PFeldman
j (G) =

{
c ∈ Rns.t. :

xj ∈ R2δj−1

s.t. :∑

S∈E(Cj)

xj,S = 1,

0 ≤ xj,S ≤ 1 ∀S ∈ E(Cj),

ci =
∑

s∈E(Cj), S3i

xj,S ∀i ∈ N(j)
}

PFeldman(G) =
n−k⋂
j=1

PFeldman
j (G)

This formulation exhibits ML-certificate property: if a solution is integral, guaranteed to be ML.
Otherwise, a fractional solution is spit out, which denotes a failure.

2.1 Iterative decoding

For any graphical realization G = (V,E) of a code C, iterative decoding algorithms (such as sum-
product and min-sum) have been introduced to perform approximate optimal decoding. These
algorithms iteratively perform computations locally at variable and constraint code nodes. When
applied to acyclic graphical realizations, the min-sum algorithm corresponds to ML decoding.
Decoding is not guaranteed to be optimal when graph has cycles. In practice, however, it has
been observed to work extremely well.

For any fixed decoding schedule S, and a graphical realization G, we can define a computation
tree Gk,r,S associated with vertex k after r iterations by constructing a tree with root node ck
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Figure 3: Tail-biting representation (left) and computation tree (right) associated with vertex c1

for 3 cycles of decoding

corresponding to ck in G and then recursively adding edges and leaf nodes in Gk,r,S corresponding
to messages passed in the iterative decoder. We see that Gk,r,S is a graphical realization for some
new code Ck,r,S.

Analyzing the computation tree is beneficial because

a) any local iterative algorithm utilizing schedule S cannot distinguish between operating on
G or Gk,r,S when the observed LLRs are replicated at repeated code symbol nodes.

b) the computation tree is acyclic so we know that local iterative algorithms mentioned earlier
are performing optimal decoding on it.

Thus we see that the suboptimality of iterative algorithms on codes with cycles corresponds to
’pseudo-codewords’ that compete with true codewords in the decoding algorithm.

Every vertex in G corresponds to a set (possibly larger than 1) of vertices in Gk,r,S. For
example, we see that for the tail-biting trellis [FKKR01, BJFV01] representation corresponding
to graph G (see figure 3), a computation tree Gk,r,S can be obtained by unwrapping G into
a conventional trellis on an ordered time axis. In this case, we see that for a graph G with
|V | vertices, after r full cycles, the computation tree Gk,r,S has r|V | vertices, and each vertex is
repeated r times. Every codeword in C has a representation in Ck,r,S (simply repeat the codeword
r times). In figure 3, we see that

(110) ∈ C ⇒ (110 110 110) ∈ C1,3,S.

However, there are codewords in C1,3,S such as (110 111 000) that do not correspond to codewords
in C. The universal cover U (G,S) corresponds to the codewords of the computation tree Gk,r,S

for each k with schedule S for infinitely many iterations:

U (G, S) =
∞⋃

r=1

|V |⋃

k=1

Ck,r,S
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Figure 4: An example of an m-cover

For graphs with more than one cycle, characterizing this exactly can become cumbersome
[BJFV01].

2.2 Finite-degree covers [KV03]:

We may now generalize the idea of pseudocodewords that evolve from computation trees. How-
ever, a subset of the universal cover can be characterized analytically by the use of graph covers.

A graph cover is an m-fold replication of the original graph where edges connecting vertices
preserve the graphical structure in the original graph with respect to each individual node.
Formal definition:

Definition A finite-degree m cover of G = (V, E) is a graph Ĝ with vertex set V̂ = ∪l−1
i=0 where

each set V̂i = {v̂i,0, v̂i,1, . . . , v̂i,m−1} contains exactly m vertices. The edge set Ê of Ĝ is chosen

so that for each vertex v̂i,s ∈ V̂ , |N(v̂i,s)| = |N(vi)| and N(v̂i,s) contains exactly one vertex v̂j,r

for all j such that vj ∈ N(vi).

If G is a parity-check graph representation for the code C, then a degree-m cover Ĝ is a
parity-check graph representation for the code Ĉ of length mn. Vertices in V̂i are denoted as
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x̂i,0, x̂i,1, . . . , x̂i,m−1 for lifted variable nodes xi and likewise f̂i,0, f̂i,1, . . . , f̂i,m−1 denote the same for
parity-check nodes fi. Likelihoods of replicated nodes are replicated. Note that by the definition
of a graph cover, any original codeword, after being repeated m times, is also a codeword in Ĉ.
We see that any codeword ĉ in an m-cover contributes a log-likelihood cost of

m∑
j=1

n∑
i=1

γiĉi,j = m

n∑
i=1

γiĉi,j
|{l : ĉi,l = 1}|

m

This motivates the following definition of pseudocodewords:

Definition A pseudocodeword w(ĉ) ∈ [0, 1]n corresponds to a codeword ĉ ∈ Ĉ for some m that
reflects the effect on the likelihood ratio in the objective function:

ωi(ĉ) , |{l : ĉi,l = 1}|
m

it is the fraction of times a variable node in Ĉ takes on the value 1. We have that ω(ĉ) =
(ω1(ĉ), ωi(ĉ), . . . , ωn(ĉ)).

Note that a pseudocodeword ω(c) can be analagously defined for elements c of Gk,r,S in the
previous section.

2.3 Koetter,Vontobel’s fundamental polytope construction [KV03]

At parity-check j, start with the parity-check code Cj which is connected to δj = |N(j)| variable
nodes. This is a (δj, δj − 1, 2) binary linear code with 2δj−1 codewords. The degree-m cover of
this graph is simply an m-fold copy of the original graph. Any individual copy of the code can
support a codeword in Cj so it follows that the set of pseudocodewords ω(ĉ) is given by

{∑m
i=1 c(i)

m
s.t. c(i) ∈ Cj

}

We can then define a 2δj−1 x δj matrix Pδj
which contains for each row a codeword of Cj. It

follows that after taking the closure of the union of possible pseudocodewords for all m, the
fundamental polytope corresponding to check j PKoetter

j (Cj) is given by

PKoetter
j (Cj) =

{
ω ∈ Rδj s.t. ω = xPδj

, x ∈ R2δj−1

, 0 ≤ xi ≤ 1,
∑

i

xi = 1

}

If we define ω|V to be the restriction of ω to the coordinates in V then it follows that the
fundamental polytope PKoetter(G) is given by

PKoetter(G) =
{
ω ∈ Rn s.t. ω|N(j) ∈ PKoetter

j (Cj) j = 1, . . . , n− k
}

.
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Observing carefully, we see that PKoetter(G) = PFeldman(G):

PKoetter(G) =
{

ω ∈ Rn s.t. ω|N(j) = x(j)Pδj

x(j) ∈ R2δj−1

,

0 ≤ x
(j)
i ≤ 1,∑

i

x
(j)
i = 1,

j = 1, . . . , n− k
}

PFeldman(G) =
{

c ∈ Rn s.t. xj ∈ R2δj−1

∑

S∈E(Cj)

xj,S = 1,

ci =
∑

s∈E(Cj),S3i

xj,S ∀i ∈ N(j)

0 ≤ xj,S ≤ 1 ∀S ∈ E(Cj),

j ∈ {1, . . . , n− k}
}

Furthermore, we note that since each ω ∈ PKoetter(G) satisfies 0 ≤ ωi ≤ 1, and any nonempty
bounded polyhedron is the convex hull of its extreme points, we see that the pseudocodewords
of interest are the extreme points of PKoetter(G).

It follows that a vector of log-likelihoods γ and its lifting γ̂ satisfy, for any two codewords ĉ
and ĉ′:

P (ĉ|γ̂) > P (ĉ′|γ̂) ⇔ 〈ω(ĉ), γ〉 < 〈ω(ĉ′), γ〉.
If we assume the 0 vector was transmitted, then the decision region is separated by the hyperplane

〈ω(ĉ), γ〉 = 0.

Definition For a particular channel, the distance from the transmitted signal point to this
hyperplane is denoted as the pseudo-distance or pseudo-weight. The pseudo-weight along an
AWGN channel is given by [FKKR01]:

wAWGN(ω) =

(‖ω‖1

‖ω‖2

)2

.

Note that if c is a codeword with Hamming weight ωH(c), then ω = c and wAWGN(c) = wH(c).
For an AWGN channel with antipodal signaling, the squared Euclidean distance to the bound-
ary 〈w(ĉ), γ〉 = 0 from the signal point 1n is given by wAWGN(ω). This motivates trying to
characterize the minimum pseudo-weight of all non-zero codewords of finite covers, given by
wAWGN,min(C).

Stepping back for a second, we see from the previous section that for any locally iterative
decoding schedule S, we may draw out the corresponding computation tree. If we let the number
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of iterations go to infinity you wind up with an infinite graph on which you the algorithms attempt
to find the ’best’ codeword. The shape of the leaves in this graph may depend on the update
schedule. For any fixed schedule, any pseudocodeword in a finite m-cover can be located in
the computation tree to give a valid codeword in the tree code (this was pointed out to me
by Ralf Koetter in a personal communication). This codeword starts competing with the true
transmitted codeword and will influence the decoding decision on the infinite graph. However,
the universal cover U (G,S) may admit pseudocodewords that do not appear as pseudocodewords
in the union of all finite covers. We see that the min-sum algorithm when applied to graph G
using schedule S is performing the optimization

min γ′ω

s.t. ω ∈ cl{ω (U (G,S))}
where for a set B we mean ω(B) = {ω(b), b ∈ B} and Koetter’s fundamental polytope
PKoetter

j (G) satisfies, for any schedule S,

PKoetter
j (G) ⊂ cl{ω (U (G,S))}.

It is useful to note that across an AWGN channel, the space of LLRs is proportional to the
pseudo-weight. However, for different channels, the relation is not necessarily linear. Expressions
for the BSC and BEC that have been provided in [FKKR01].

Definition The decision region with respect to 0 is the region D0 in Euclidean space such that
for any γ ∈ D0, the all-0 word is more likely than any other codeword ĉ in any finite cover:

D0 = {γ ∈ Rn : 〈ω, γ〉 > 0 ∀ω ∈ PKoetter
j (G)}.

The set of pseudo-codewords is channel-independent and is characterized by the fundamental
cone. However, the decision boundaries are channel-dependent. The relation between pseudo-
codewords and pseudo-weight is channel-dependent. Since on an AWGN channel, there is a
linear relationship between the Euclidean space representation of the received signal y and γ,
the decision region for this channel is a polytope. However, for different channels, the decision
region is not necessarily a polytope.

Also, it is worthwhile to note that the minimal pseudo-weight can be upper-bounded for any
(j, k) with j ≥ 3 regular LDPCs (by a simple computation-tree construction) by a sublinear term
in n. This is in contrast to Gallager’s PhD results, where he showed that with high probability,
linear minimum distance can be attained.

On the BEC: a failure in iterative decoding occurs iff a stopping set [DPT+02] exists amongst
erased bits.

Definition A stopping set S is a subset of the code bits such that all the checks in the neigh-
borhoods of the each code bit have degree (with respect to S) greater than one.

Stopping sets are special cases of pseudocodewords on the BEC, and Feldman’s LP decoding
algorithm fail iff a stopping set amongst erased bits exists. The two decoding algorithms exhibit
the same convergence results. Thus it appears as if on the binary erasure channel, using the
parity-check representation for G, we have that

PKoetter(G) = PFeldman(G) = cl{w (U (G, S))}.
Other references: [FWK03]
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