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1 Introduction

Manifold learning addresses the problem of finding low–dimensional structure within col-
lections of high–dimensional data. Recent interest in this problem was motivated by the
development of a pair of algorithms, locally linear embedding (LLE) [6] and isometric fea-

ture mapping (IsoMap) [8]. Both methods use local, linear relationships to derive global,
nonlinear structure, although their specific assumptions and optimization criteria differ. For
an introduction to these algorithms, as well as further motivation of the manifold learning
problem, see [5].

In this survey, we discuss three manifold learning algorithms which adopt the basic
structure of LLE, but attempt to address some of its shortcomings. The first, Laplacian

eigenmaps [1], is primarily interesting because it provides a new theoretical framework for
understanding LLE. This framework points the way to the Hessian eigenmaps [4] algorithm,
which explicitly attempts to estimate, and minimize, the local curvature of the embedding
function. Interestingly, this Hessian extension to LLE is asymptotically correct for a strictly
larger class of embeddings than any previously known algorithm. Finally, the charting algo-
rithm [2] casts manifold learning as a density estimation problem, thereby adding robustness
to noisy or sparsely sampled data.

2 Locally Linear Embedding

We begin by reviewing the locally linear embedding (LLE) algorithm [6, 7]. We are given
a set of n data points x1, x2, . . . , xn in R

p, and hypothesize that, at least approximately,
they lie on some smooth manifold X of intrinsic dimensionality q < p. In other words,
we assume X is the image of some coordinate space Y ⊂ R

q under some smooth mapping
ρ : Y → R

p. We would like to find the coordinates yi ∈ Y of each xi ∈ X , thereby recover-
ing a lower–dimensional representation of the data set. Let X = [x1, x2, . . . , xn] ∈ R

p×n and
Y = [y1, y2, . . . , yn] ∈ R

q×n denote the matrices of all input points and embedding coordi-
nates, respectively.

Although there are many variants of LLE [7], all of them can be broken down into three
stages. In their most basic form, these stages proceed as follows:
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1. Find nearest neighbors: For each xi, find the indices Γ(i) of that point’s nearest neigh-
bors in R

q. Typically, Γ(i) is either the set of all points within some ball of fixed
radius ε, or the K nearest neighbors. Note that the choice of ε or K implicitly encodes
assumptions about the scale at which the manifold is “locally linear”, and can strongly
effect LLE’s performance.

2. Determine reconstruction weights: For each xi, determine the weights Wij, j ∈ Γ(i),
which best reconstruct xi in terms of its neighbors. LLE solves this problem by mini-
mizing the cost function

Ψlle(W ) =
n∑

i=1

||xi −
∑

j∈Γ(i)

Wijxj||
2 subject to

∑

j∈Γ(i)

Wij = 1 for all i (1)

The form of Ψlle(W ), together with the normalization constraint, ensures that the opti-
mal weights are invariant to translations, rotations, and scalings of the local neighbor-
hood. Note that this cost function decomposes to provide an independent least–squares
optimization for each local neighborhood, which can be solved in closed form.

3. Determine low–dimensional embedding: Fixing the weight matrix W from the previous
stage, determine embedding coordinates Y which approximately respect the same local
neighborhood relationships. LLE solves this problem by optimizing

Φlle(Y ) =
n∑

i=1

||yi−
∑

j∈Γ(i)

Wijyj||
2 subject to

n∑

i=1

yi = 0
1

n

n∑

i=1

yiy
T
i = I (2)

The constraints effectively fix the translation, orientation, and scale of the embedding
coordinates, to which Φlle(Y ) is invariant. This cost function can alternatively be
written as

Φlle(Y ) = trace(Y (I − W )T (I − W )Y ) (3)

where W is the sparse matrix of local reconstruction weights. The optimal solution to
this problem chooses the rows of Y as the eigenvectors of (I−W )T (I−W ) with smallest
eigenvalues. The smallest eigenvalue is 0, with a constant eigenvector corresponding
to the translational degree of freedom. The eigenvectors with the next q smallest
eigenvalues then provide the best embedding in R

q.

We shall see that the other manifold learning algorithms discussed in this survey share LLE’s
basic three–stage structure: find neighbors, estimate local properties of the manifold based
on those neighbors, and determine a global embedding which preserves those properties.

3 Laplacian Eigenmaps

In this section, we present an alternative framework for manifold learning known as Laplacian
eigenmaps [1]. We begin by presenting the algorithm, and then discuss its justification and
relationship to LLE.
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1. Find nearest neighbors: This stage is identical to LLE, except the neighborhoods are
required to be symmetric (i ∈ Γ(j) if and only if j ∈ Γ(i)).

2. Construct weighted adjacency matrix: Build a symmetric matrix W , where Wij 6= 0 if
and only if i ∈ Γ(j):

Wij = exp

{
−

1

2σ2
||xi − xj||

2

}
if j ∈ Γ(i) (4)

Here, σ sets the scale of the isotropic Gaussian kernel used to determine the graph
weights. As σ → ∞, W approaches the standard, unweighted adjacency matrix.

3. Compute embedding from normalized Laplacian: Let D be the diagonal matrix con-
taining the sum of each row/column of the weight matrix W (Dii =

∑
j∈Γ(i) Wij). The

symmetric matrix W̃ = D−1/2WD−1/2 is then normalized so that
∑

j∈Γ(i) W̃ij = 1 for
all i. Laplacian eigenmaps chooses its embedded coordinates Y to minimize

Φlap(Y ) =
n∑

i=1

∑

j 6=i

W̃ij||yi − yj||
2 =

1

2
trace(Y T LY ) L = I − W̃ (5)

subject to the same non–degeneracy constraints used by LLE (see equation (2)). The
matrix L is the normalized Laplacian of the graph with weighted adjacency W . As
with LLE, the optimum of equation (5) chooses Y to be the eigenvectors corresponding
to the q smallest eigenvalues, excluding the constant eigenvector.

The objective function Φlap (equation (5)) attempts to maps pairs of points xi, xj which
are nearby, and hence have large weight Wij, to nearby locations yi, yj. Heuristically, the
normalization W̃ = D−1/2WD−1/2 allows variables with different neighborhood densities to
be treated equally.

Note that this formulation is closely related to the normalized cuts framework for spectral
clustering (see [1] and references therein).

3.1 Choice of Weights: The Laplace–Beltrami Operator

In this section, we discuss a potential justification for the weight function (equation (4))
used by Laplacian eigenmaps. Our presentation is based on [1], but modified and adapted
based on additional insights derived from [4].

Suppose we would like to find a smooth, one–dimensional embedding f : X → R of a
manifold X ⊂ R

p. We assume X is smooth, so that at every x ∈ X , the tangent space Tx(X )
(spanned by vectors tangent to X at x) is well–defined. Within some neighborhood of x,
every point z ∈ X has a unique closest point in Tx(X ). The tangent space thus inherits a
(non–unique) orthonormal coordinate system from the corresponding local coordinates on
X .

Given the coordinate system in Tx(X ), we may compute the gradient vector ∇f(x).
Although different coordinate systems give different gradients, the norm ||∇f(x)|| is uniquely
defined. Furthermore, for any point z ∈ X , one can show that

|f(z) − f(x)| ≤ ||∇f(x)|| ||z − x|| + o(||z − x||) (6)
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Thus, to first order, ||∇f || measures how far apart f maps nearby points. If our goal is to
find a map that best preserves locality on average, a reasonable objective is to minimize

Φ̃lap(f) =

∫

X

||∇f ||2 subject to ||f || = 1 (7)

Let ∆(f) =
∑

i
∂2f
∂z2

i

, where zi are the tangent space coordinates, denote the Laplacian oper-

ator (called the “Laplace–Beltrami operator” on a manifold). It can be shown that

Φ̃lap(f) =

∫

X

||∇f ||2 =

∫

X

∆(f)f (8)

Thus, the function f minimizing Φ̃lap(f) must be an eigenfunction of the Laplace–Beltrami
operator ∆(f), or equivalently a member of the null space of the following functional:

L(f) =

∫

X

(∆(f))2 (9)

We will return to this interpretation in the context of the Hessian eigenmaps algorithm.
The objective function (equation (5)) underlying Laplacian eigenmaps may be derived as

a discrete approximation to the integral cost of equation (7). In particular, the normalized
graph Laplacian L approximates the continuous Laplace–Beltrami operator ∆. The form of
the weights Wij may be motivated by viewing ∆ as the limit of a heat distribution evolving
on the manifold, and using a Gaussian approximation to the corresponding Green’s function
(see [1] for details). Note that this approximation is only justified when the manifold is very
densely sampled.

3.2 Relationship to LLE

As discussed earlier, the first and third steps of the Laplacian eigenmaps algorithm are
essentially equivalent to LLE. However, these methods differ in their choice of weight matrix
W (step 2). In [1], these differences are analyzed. Let W be the weight matrix estimated by
LLE. Using a Taylor approximation, one can show that at each point xi,

(I − W )f(x)
∣∣∣
x=xi

≈ −
1

2

∑

j∈Γ(i)

Wij(xi − xj)
T Hi(xi − xj) (10)

where Hi is the Hessian of f at xi. Now suppose that the set of differences to neighboring
points

√
Wij(xi − xj) form an orthonormal basis for the tangent space at xi. It follows

immediately that

∑

j∈Γ(i)

Wij(xi − xj)
T Hi(xi − xj) = trace(Hi) = ∆(f) (11)

More generally, if the neighboring points are uniformly distributed on any sphere centered
at xi, the expectation of equation (10) is proportional trace(Hi) = ∆(f).
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From these observations, we see that when the neighbors of each point xi are placed uni-
formly in orientation, LLE and Laplacian eigenmaps should produce similar results. How-
ever, as data points are sampled more irregularly or asymmetrically, the assumptions under-
lying the Laplacian approximation become less valid. In these cases, one would expect the
local least–squares fits underlying LLE to produce better results. For example, Laplacian
eigenmaps uses positive weights, and thus always approximates points by elements of the
convex hull of their neighbors, even at manifold boundaries where this is inappropriate.

4 Hessian Eigenmaps

The Hessian eigenmaps framework [4] draws on the Laplacian eigenmap theory discussed in
Section 3.1. However, by replacing the Laplacian operator with the Hessian, one can correct a
key deficiency of the Laplacian cost functional (equation (9)), producing an algorithm which
is guaranteed to asymptotically recover the true manifold under fairly broad assumptions.

In this section, we begin by stating the theoretical results which can be proven for Hessian
eigenmaps, relating them to exiting results for other algorithms. We then briefly survey
the theory from which these results are derived. We conclude by presenting a discrete
implementation of this theory inspired by LLE.

4.1 Asymptotic Convergence Guarantees

The first theoretical convergence guarantees for manifold learning algorithms were shown for
the IsoMap algorithm [8]. Recall that a manifold X = ρ(Y) is the image of some coordinate
space Y under a smooth mapping ρ. Let dX (x, x′) denote the distance of the shortest path
between x, x′ ∈ X which lies entirely within the manifold. Then, assuming an infinite number
of data points are drawn from a positive distribution over the manifold, IsoMap will recover
the true coordinates (up to a rigid transformation) under the following assumptions:

ISO1: Isometry For all pairs of points on the manifold, the manifold distance is equal to
the Euclidean distance between their corresponding coordinates:

dX (x, x′) = ||y − y′|| for all x = ρ(y), x′ = ρ(y′) (12)

ISO2: Convexity The coordinate space Y is a convex subset of R
q.

Both of these assumptions are directly tied to IsoMap’s reliance on multidimensional scaling
to embed estimates of geodesic distance in Euclidean space (see [5]).

Donoho and Grimes [3] have investigated the validity of these assumptions in the context
of families of images. They argue that while isometry is often a reasonable assumption, the
convexity requirement is frequently violated. Their Hessian eigenmaps framework leads to
an algorithm which provides the same convergence guarantees under the following weaker
assumptions:

LocISO1: Local Isometry For points x′ ∈ X in a sufficiently small neighborhood around
each point x ∈ X , geodesic distances dX (x, x′) are identical to Euclidean distances
||y − y′|| between the corresponding coordinates.
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LocISO2: Connectedness The coordinate space Y is an open connected subset of R
q.

We outline the proof of this result in the following section.
Currently, no comparable result is known for Laplacian eigenmaps or LLE, i.e. there

are no known families of manifolds for which these methods are guaranteed to recover a
rigid transformation of the true coordinate space. Based on the theory underlying Hessian
eigenmaps, it seems likely that these methods are never guaranteed to be asymptotically
correct.

4.2 Theoretical Framework

Consider first the coordinate space Y ⊂ R
q. For any twice differentiable function g : Y → R,

let Heuc
g (y) denote the Hessian matrix, at the point y ∈ Y , in Euclidean coordinates:

(
Heuc

g

)
i,j

(y) =
∂2g(y)

∂yi∂yj

(13)

We then consider the following functional defined over smooth functions g:

Heuc(g) =

∫

Y

||Heuc
g (y)||2F dy (14)

Here, ||H||2F denotes the squared Frobenius norm (sum of entries squared) of the matrix
H. The nullspace of Heuc is the set of functions g with everywhere vanishing Hessian. It is
straightforward to show that this space equals the span of the constant function and the q
coordinate functions gi(y) = (y)i. Thus, any basis for the nullspace of Heuc will also provide
a basis for the underlying coordinate space.

We now consider functions f : X → R defined on the manifold X = ρ(Y). Analogous
to the definitions of the gradient and Laplacian operators in Section 3.1, we may use the
tangent space coordinates Tx(X ) to compute the Hessian H tan

f (x) at any x ∈ X . Although the
tangent Hessian will be different for different local coordinate systems, all of these Hessians
share the same Frobenius norm ||H tan

f (x)||2F , so that the following functional is well defined:

H(f) =

∫

X

||Htan
f (x)||2F dx (15)

The key result of the Hessian eigenmaps framework is that the functionals H and Heuc share
the same q+1 dimensional nullspace under the correspondence induced by the local isometry
ρ (see [4] for details). In other words, a function f : X → R is in the nullspace of H if and
only if f ◦ ρ : Y → R is in the nullspace of Heuc.

From the previous discussion, we see that the estimation of a basis for X is equivalent
to the estimation of a basis for the nullspace of the Hessian functional H(f). It is natural
to wonder whether a similar correspondence holds for the Laplacian functional L(f) (see
equation (9)) underlying the Laplacian eigenmap algorithm, and also (approximately) LLE.
However, while it is true that all affine functions have zero Laplacian, there exist nonlinear
functions that also have zero Laplacian. Thus, while a basis for the nullspace of L(f) will
contain the desired coordinate functions, it will also contain other functions which may
distort the resulting embedding.
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4.3 Hessian LLE

We now describe a Hessian LLE algorithm [4] which adapts the basic structure of LLE to
estimate the nullspace of the functional H(f) defined in the previous section (equation (15)).
As before, the algorithm has three stages:

1. Find nearest neighbors: This stage is identical to LLE (nonsymmetric neighborhoods
are allowed).

2. Estimate tangent Hessians: For each data point xi, perform a principle components
analysis (PCA) of the neighboring points to find the best fitting q–dimensional linear
subspace. Project the local neighborhood to this subspace, and use the result to
construct a least squares estimate of the local Hessian matrix Hi (see [4]).

3. Compute embedding from estimated H functional: Using the discretization implied by
the data points, and the local Hessian estimates Hi, construct a sparse n × n matrix
H̄ which approximates the continuous operator H (see [4]). As with LLE, we then
choose Y to be the eigenvectors corresponding to the q smallest eigenvalues, excluding
the constant eigenvector.

Note that H̄ has the same sparsity structure as the matrices used by LLE and Laplacian
eigenmaps. However, it differs in that second derivative information is used to estimate the
nonzero entries of H̄.

5 Charting a Manifold

We have now explored a theoretical framework for understanding LLE, culminating in a
Hessian–based extension of LLE with very attractive asymptotic guarantees. However, the
framework we have discussed is purely deterministic, in that it assumes we observe data
points which lie exactly on the manifold of interest. For most real data sets, however, we can
at best hope that the date is “close” (in a probabilistic sense) to some manifold. Furthermore,
although these algorithms rely on empirical estimates of differential operators, they do not
consider the noise introduced into these estimates by sparse, inhomogeneous sampling of the
manifold.

The charting algorithm [2] addresses these problems by casting manifold learning as a
density estimation problem. In particular, charting first fits a mixture of Gaussian densities
to the data, and then coordinates the local coordinates implied by each Gaussian’s covariance
into a single, global system. The density model underlying charting naturally provides a
function mapping all coordinates to the high–dimensional manifold, rather than just an
embedding of the given data.

Interestingly, charting retains LLE’s basic three–step structure, including the attractive
property that the optimal solution to each stage may be computed in closed form:

1. Soft nearest neighbor assignment: For each xi, assign a weight Wij to each xj, j 6= i,
according to a Gaussian kernel centered at xi as in the Laplacian eigenmap framework
(equation (4)). The bandwidth of the kernel should be chosen as σ ≈ r/2, where r
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is the radius over which the manifold is expected to be locally linear. See [2] for an
interesting heuristic for automatically estimating r.

2. Fit Gaussian mixture model: Let N (x; µ, Λ) denote a Gaussian density with mean µ
and covariance Λ, evaluated at the point x. In charting, we model the high–dimensional
data space by an n–component Gaussian mixture, where the component means are set
to the observed data points xi:

p (x | Λ) =
1

n

n∑

i=1

N (x; xi, Λi) (16)

Here, Λ denotes the covariances Λi placed around the n data points. The maximum
likelihood covariance estimate would shrink all of the variances Λi to zero. To avoid
this degenerate solution, charting places the following prior on the local covariances:

p (Λ) = α exp

{
−

∑

i6=j

WijD(N (x; xi, Λi) ||N (x; xj, Λj))

}
(17)

Here, D(p||q) denotes the Kullback-Leibler divergence. This prior encourages neigh-
boring Gaussian densities, as determined by the weights Wij, to span similar subspaces.

The MAP covariance estimate may be determined in closed form by solving a coupled
set of linear equations (see [2]). This estimate brings nonlocal information into the
estimation of the local coordinate frames defined by the Λi matrices, ensuring that
neighboring coordinates (or “charts”) span similar subspaces.

3. Connect local charts: Suppose we would like to find an embedding in R
q. For the kth

mixture component N (x; xk, Λk), let Uk = [uk1, . . . , ukn] denote the projection of the n
data points onto the q–dimensional subspace spanned by the q dominant eigenvectors
of Λk. For each chart, we would like to determine a low–dimensional affine projection
Gk ∈ R

q×q+1 which maps these points into the global coordinate frame. We couple
these projections by requiring them to agree on data points for which they share
responsibility, as encoded by the following objective:

Φchart(G) =
∑

k 6=j

n∑

i=1

pk(xi)pj(xi)

∣∣∣∣
∣∣∣∣Gk

[
uki

1

]
− Gj

[
uji

1

]∣∣∣∣
∣∣∣∣
2

F

(18)

Here, pk(xi) is the posterior probability (as defined by the mixture model selected in
step 2) that xi was sampled from N (x; xk, Λk).

The objective function of equation (18) may be rewritten as

Φchart(G) = trace(GQQT GT ) (19)

for an appropriate matrix Q (see [2]). Thus, as with LLE, the optimal embedding
may be found by finding the bottom eigenvectors of an n× n symmetric matrix. This
matrix may be made sparse by approximating very small posterior probabilities pk(xi)
to be zero.
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As shown by examples in [2], charting may perform well on sparsely sampled manifolds
which cause problems for other methods like LLE. However, while the different cost criteria
underlying charting seem reasonable, there is currently no framework for determining the
situations under which it will recover the true manifold geometry. Furthermore, although
both charting and Laplacian eigenmaps use a Gaussian kernel function to define local neigh-
borhoods, the relationship between their uses of this neighborhood has yet to be explored.
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