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Manifold Learning: Last Week
Goal: Determine the low-dimensional structure 

underlying a set of high-dimensional data

Linear Structure:

• Principal Components Analysis (PCA)

• Multidimensional Scaling (MDS)

Nonlinear Structure:

• Locally Linear Embedding (LLE)

• Isometric Feature Mapping (IsoMap)



Manifold Learning: This Week
Laplacian Eigenmaps: (Belkin & Niyogi, NIPS 2001)

• Closely related to LLE

• New theoretical framework for understanding LLE

Hessian Eigenmaps: (Donoho & Grimes, 2003)

• Attempts to minimize local curvature of embedding

• Asymptotically accurate (more generally than IsoMap)

Charting: (Brand, NIPS 2002)

• Manifold learning as density estimation

• Greater robustness to noisy or sparsely sampled data



Problem Formulation
coordinate space
smooth mapping (p > q)
manifold of dimension q

Embedding: Given data 
from the manifold, estimate the corresponding  
coordinate points 

Mapping: Given data 
from the manifold, determine an approximation
to the embedding function ρ and its inverse

Both problems only solvable up to a rigid 
transform (translation, rotation, scale, reflection)



Canonical Problem: Swiss Roll



Locally Linear Embedding: Step 1
Find Nearest Neighbors

set of neighbors of variable xi

• K nearest neighbors

• Points within a ball of radius ε

Manifold should be 
approximately linear within 
this local neighborhood



Locally Linear Embedding: Step 2
Determine Reconstruction Weights

• Determine the weights W which best reconstruct each 
point in terms of its local neighbors by minimizing

subject to

• Optimal weights invariant to local 
translations, rotations, and scalings

• Optimize via decoupled least 
squares in each local neighborhood



Locally Linear Embedding: Step 3
Find Low-Dimensional Embedding

• Determine the embedding points Y which best respect 
the local relationships captured by W.  Minimize

subject to

• Optimal solution takes rows of Y 
as the eigenvectors of (I-W)T(I-W) 
with minimal eigenvalues, excluding 
the constant eigenvector



LLE Swiss Roll Embedding



Laplacian Eigenmaps: Step 1
Find Nearest Neighbors

set of neighbors of variable xi

• K nearest neighbors

• Points within a ball of radius ε

Neighborhoods must be 
chosen to be symmetric; 
otherwise like LLE



Laplacian Eigenmaps: Step 2
Construct Weighted Adjacency Matrix

• Construct a symmetric matrix W as follows:

if

otherwise

• Weights largest for nearby points

• Bandwidth σ should be chosen 
to match radius within which the 
manifold is approximately linear



Laplacian Eigenmaps: Step 3
Find Embedding From Normalized Laplacian

diagonal matrix of row/col sums of W
normalized weights

• L is the normalized Laplacian of the 
graph with weighted adjacency W

• Imposing the same constraints as 
LLE, we again set Y to be the 
eigenvectors with smallest values

Third stage equivalent to LLE, 
but uses different weights W



Locality-Preserving Functions
tangent space of manifold at

• Affine subspace spanned by vectors tangent to the 
manifold, and passing through the point x

smooth mapping of manifold to real line

• Using the (non-unique) coordinate system that
inherits from the manifold, we may compute

• Although gradient not uniquely defined, norm is, 
and one can derive the following bound:



Laplace-Beltrami Operator
• Functions f which map neighboring points to nearby 
locations should have small

Laplacian on manifold (the Laplace-
Beltrami operator), defined as

in tangent space coordinates zi

• Optimal solutions f are eigenfunctions of

• Laplacian Eigenmaps is discrete implementation of this, 
where the Gaussian weight function may be motivated by 
an analysis of the operator in infinitesimal neighborhoods



Laplacian Eigenmaps & LLE
• Laplacian Eigenmaps & LLE differ only in choice of W

• From Taylor approximation, LLE weights satisfy

Hessian of f at xi
• If vectors to neighboring points form an orthonormal basis 
for the tangent space defined by Hi, we have

• Also, if neighbors uniformly distributed in orientation, 
expectation of LLE’s operator is proportional to 

Equivalent in limit, but for finite data??



Laplacian Swiss Roll Embedding



Hessian Eigenmaps 

• Asymptotic Convergence Guarantees

• Theory underlying these guarantees

• Discrete implementation (inspired by LLE)



IsoMap Convergence
geodesic distance between x and x’ 
(shortest path within manifold     )

Given an infinite number of samples from a strictly positive 
distribution over the manifold, IsoMap will recover the true 
coordinates (up to a rigid transform) assuming

all points x, x’ on the manifold,Isometry: For 

Convexity: Coordinate space                     is convex

Poor assumption for image manifolds?



Hessian Eigenmaps Convergence
geodesic distance between x and x’ 
(shortest path within manifold     )

Given an infinite number of samples from a strictly positive 
distribution over the manifold, Hessian Eigenmaps will recover 
the true coordinates (up to a rigid transform) assuming

Local Isometry: For sufficiently close x, x’ on the manifold,

Connectedness:

Coordinate space                      is open and connected



Hessians in Euclidean Space

Consider the following functional defined for smooth g:

• Nullspace of this operator consists of all smooth functions 
with everywhere vanishing Hessian

• This is precisely the space of all affine functions, or the 
span of the constant function and the q coordinate functions

Basis for  Basis for  



Tangent Hessians
Hessian in tangent 
space at 

• Hessian depends on choice of tangent coordinate system, 
but its Frobenius norm is unique, so the following functional 
is well defined:

Basis for  Basis for  Key 
Result

under the correspondence 

Find coordinates from empirical estimate of 
null space of 



Failures of Laplacian Eigenmaps
Laplacian Eigenmaps (and 
asymptotically LLE) can 
be seen as minimizing an 
empirical version of

• Norm of Laplacian is not independent of choice of 
coordinate frame – is this even well defined?

• There exist functions with zero Laplacian which are not 
affine (for example f(x1,x2) = x1x2)

Searching for a basis for this nullspace may produce 
axes distorted by these spurious functions



Hessian Eigenmaps: Step 1
Find Nearest Neighbors

set of neighbors of variable xi

• K nearest neighbors

• Points within a ball of radius ε

Identical to LLE



Hessian Eigenmaps: Step 2
Estimate Tangent Hessians

• For each xi, perform PCA analysis of neighboring 
points to find best-fitting q-dimensional linear subspace. 

Estimate of tangent space at xi

• Compute least-squares 
Hessian estimate based on 
projection of all points to this 
tangent space

Hi



Hessian Eigenmaps: Step 3
Find Low-Dimensional Embedding

• Use discretization implied by data points, and local 
Hessian estimates Hi, find discrete approximation to

• Optimal solution takes rows of Y as the eigenvectors 
of with minimal eigenvalues, excluding the 
constant eigenvector

Hi



Hessian Swiss Roll Embedding



Issues with Hessian Eigenmaps
Has strong asymptotic guarantees, but…

• Assumes data points lie precisely on some manifold

For real data sets, we can at most hope that the data 
is “close” (in a probabilistic sense) to a manifold

• Requires local, empirical estimates of differential operators

What happens to these estimates when the manifold 
is sparsely and/or irregularly sampled?



Charting a Manifold
Manifold Learning as Density Estimation

• Fit Gaussian mixture model to input data.  The fitted 
Gaussians implicitly define local coordinate systems

• Estimate a consistent mapping of these local coordinate 
systems to a single low-dimensional space

The posterior distributions of this density model 
then define a mapping of all high-dimensional 
points to the manifold, rather than just an 
embedding of the given data



Charting: Step 1
Soft Nearest Neighbor Assignment

For each xi, assign a weight to all other points:

By setting very small weights to zero, we implicitly choose

set of neighbors of variable xi

• Similar to use of ε ball 
neighborhoods in other methods

• Relationship to weights in 
Laplacian eigenmaps?



Automatic Local Scale Selection
number of 
neighbors in 
ball of radius r

only at locally linear scale

• Noise at small scales

• Curvature at large scales



Charting: Step 2
Fit Gaussian Mixture Model

• ML covariance estimate is degenerate (zero-variance)

• Regularize using prior which constrains nearby 
mixture components to model similar subspaces:

• MAP covariance matrix has closed form solution 
specified by a system of linear equations

Robustness by coupling local coordinate estimates



Charting: Step 3
Connect Local Charts

projection of all data points onto the local coordinate 
frame (mixture component) centered on xk

affine transform mapping local coordinates around 
x_k to a common, global set of q-dim. coordinates

posterior probability that xi sampled from 
Gaussian centered on xk

Again find mapping via 
smallest eigenvectors



Charting a Sparse Swiss Roll



Charting Gives a Mapping



Open Research Directions
• Do probabilistic methods like 

charting every asymptotically 
recover the true manifold geometry?

• How does charting’s use of 
Gaussian weight functions relate to 
the Laplacian eigenmap weights?

• Can probabilistic methods be used 
to improve the second derivative 
estimates used by Hessian LLE?

• Can we develop methods which avoid the need to identify 
linear patches and compute discrete derivative estimates?

• Can prior knowledge be used to regularize the learning of 
very sparsely sampled manifolds?
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