Nonlinear Manifold Learning II

Laplacian Eigenmaps Hessian Eigenmaps Charting

Erik Sudderth

6.454 Presentation October 15, 2002

Manifold Learning: Last Week

Goal: Determine the low-dimensional structure underlying a set of high-dimensional data

Linear Structure:

- Principal Components Analysis (PCA)
- Multidimensional Scaling (MDS)

Nonlinear Structure:

- Locally Linear Embedding (LLE)
- Isometric Feature Mapping (IsoMap)

Manifold Learning: This Week

Laplacian Eigenmaps: (Belkin & Niyogi, NIPS 2001)

- Closely related to LLE
- New theoretical framework for understanding LLE

Hessian Eigenmaps: (Donoho & Grimes, 2003)

- Attempts to minimize local curvature of embedding
- Asymptotically accurate (more generally than IsoMap)

Charting: (Brand, NIPS 2002)

- Manifold learning as density estimation
- Greater robustness to noisy or sparsely sampled data

Problem Formulation

 $\begin{array}{l} \mathcal{Y} \subset \mathbb{R}^{q} & \longrightarrow \text{ coordinate space} \\ \rho : \mathcal{Y} \to \mathbb{R}^{p} & \longrightarrow \text{ smooth mapping (p > q)} \\ \mathcal{X} = \rho(\mathcal{Y}) & \longrightarrow \text{ manifold of dimension q} \end{array}$

Embedding: Given data $X = [x_1, x_2, \dots, x_n]$ from the manifold, estimate the corresponding coordinate points $Y = [y_1, y_2, \dots, y_n]$

Mapping: Given data $X = [x_1, x_2, \dots, x_n]$ from the manifold, determine an approximation to the embedding function ρ and its inverse

> Both problems only solvable up to a rigid transform (translation, rotation, scale, reflection)

Canonical Problem: Swiss Roll

Locally Linear Embedding: Step 1

Find Nearest Neighbors

- $\Gamma(i) = \text{set of neighbors of variable } x_i$
 - K nearest neighbors
 - Points within a ball of radius $\boldsymbol{\epsilon}$

Manifold should be approximately linear within this local neighborhood

Locally Linear Embedding: Step 2

Determine Reconstruction Weights

• Determine the weights W which best reconstruct each point in terms of its local neighbors by minimizing

$$\Psi_{\text{IIe}}(W) = \sum_{i=1}^{n} ||x_i - \sum_{j \in \Gamma(i)} W_{ij} x_j||^2$$

subject to
$$\sum_{j \in \Gamma(i)} W_{ij} = 1 \quad \text{for all } i$$

- Optimal weights invariant to local translations, rotations, and scalings
- \bullet Optimize via decoupled least squares in each local neighborhood $_{\rm o}$

Ο

Locally Linear Embedding: Step 3

Find Low-Dimensional Embedding

• Determine the embedding points Y which best respect the local relationships captured by W. Minimize

$$\Phi_{\text{IIe}}(Y) = \sum_{i=1}^{n} ||y_i - \sum_{j \in \Gamma(i)} W_{ij}y_j||^2 = \text{trace}(Y(I - W)^T(I - W)Y)$$

subject to
$$\sum_{i=1}^{n} y_i = 0 \qquad \frac{1}{n} \sum_{i=1}^{n} y_i y_i^T = I$$

• Optimal solution takes rows of Y as the eigenvectors of $(I-W)^T(I-W)$ with minimal eigenvalues, excluding the constant eigenvector

LLE Swiss Roll Embedding

K = 60

K = 20

Laplacian Eigenmaps: Step 1

Find Nearest Neighbors

- $\Gamma(i) = \text{set of neighbors of variable } x_i$
 - K nearest neighbors
 - Points within a ball of radius $\boldsymbol{\epsilon}$

Neighborhoods must be chosen to be symmetric; otherwise like LLE

Laplacian Eigenmaps: Step 2

Construct Weighted Adjacency Matrix

• Construct a symmetric matrix W as follows:

$$W_{ij} = \exp\left\{-\frac{1}{2\sigma^2}||x_i - x_j||^2\right\} \quad \text{if} \quad j \in \Gamma(i)$$

$$W_{ij} = 0 \quad \text{otherwise}$$

- Weights largest for nearby points
- Bandwidth σ should be chosen $_{\odot}$ to match radius within which the manifold is approximately linear

Laplacian Eigenmaps: Step 3

Find Embedding From Normalized Laplacian

- $D \longrightarrow \text{diagonal matrix of row/col sums of W}$ $\tilde{W} = D^{-1/2}WD^{-1/2} \longrightarrow \text{normalized weights}$ $\Phi_{\mathsf{lap}}(Y) = \sum_{i=1}^{n} \sum_{j \neq i} \tilde{W}_{ij} ||y_i - y_j||^2 = \frac{1}{2} \operatorname{trace}(Y^T L Y) \qquad L = I - \tilde{W}$
 - L is the *normalized Laplacian* of the graph with weighted adjacency W
 - Imposing the same constraints as LLE, we again set Y to be the eigenvectors with smallest values
 - Third stage equivalent to LLE, but uses different weights W

Locality-Preserving Functions

 $T_x(\mathcal{X}) \longrightarrow$ tangent space of manifold at $x \in \mathcal{X}$

• Affine subspace spanned by vectors tangent to the manifold, and passing through the point x

 $f:\mathcal{X}\to\mathbb{R} \longrightarrow$ smooth mapping of manifold to real line

• Using the (non-unique) coordinate system that $T_x(\mathcal{X})$ inherits from the manifold, we may compute $\nabla f(x)$

• Although gradient not uniquely defined, norm is, and one can derive the following bound:

 $|f(z) - f(x)| \le ||\nabla f(x)|| ||z - x|| + o(||z - x||)$

Laplace-Beltrami Operator

• Functions f which map neighboring points to nearby locations should have small

$$\widetilde{\Phi}_{\mathsf{lap}}(f) = \int_{\mathcal{X}} ||\nabla f||^2 = \int_{\mathcal{X}} \Delta(f) f$$

 $\Delta(f) \longrightarrow$ Laplacian on manifold (the Laplace-Beltrami operator), defined as

$$\Delta(f) = \sum_{i} \frac{\partial^2 f}{\partial z_i^2}$$

in tangent space coordinates z_i

• Optimal solutions f are eigenfunctions of $\Delta(f)$

• Laplacian Eigenmaps is discrete implementation of this, where the Gaussian weight function may be motivated by an analysis of the operator in infinitesimal neighborhoods

Laplacian Eigenmaps & LLE

- Laplacian Eigenmaps & LLE differ only in choice of W
- From Taylor approximation, LLE weights satisfy

$$(I-W)f(x)\Big|_{x=x_i} \approx -\frac{1}{2} \sum_{j \in \Gamma(i)} W_{ij}(x_i - x_j)^T H_i(x_i - x_j)$$
$$H_i \longrightarrow \text{Hessian of f at } \mathbf{x}_i$$

 \bullet If vectors to neighboring points form an orthonormal basis for the tangent space defined by $H_{\rm i},$ we have

$$\sum_{j \in \Gamma(i)} W_{ij}(x_i - x_j)^T H_i(x_i - x_j) = \operatorname{trace}(H_i) = \Delta(f)$$

- Also, if neighbors uniformly distributed in orientation, expectation of LLE's operator is proportional to $\,\Delta(f)\,$
 - → Equivalent in limit, but for finite data??

Laplacian Swiss Roll Embedding

 $N=5 \qquad t=5.0 \qquad$

N = 10 t = 5.0

N = 15 t = 5.0

N = 5 t = 25.0

N = 5 t = ∞

N = 10 t = 25.0

N = 10 t = ∞

N = 15 t = 25.0

Hessian Eigenmaps

- Asymptotic Convergence Guarantees
- Theory underlying these guarantees
- Discrete implementation (inspired by LLE)

IsoMap Convergence

 $d_{\mathcal{X}}(x, x') \longrightarrow$ geodesic distance between x and x' (shortest path within manifold \mathcal{X})

Given an infinite number of samples from a strictly positive distribution over the manifold, IsoMap will recover the true coordinates (up to a rigid transform) assuming

Isometry: For *all* points x, x' on the manifold,

$$d_{\mathcal{X}}(x, x') = ||y - y'|| \qquad x = \rho(y) \ x' = \rho(y')$$

Convexity: Coordinate space $\mathcal{Y} \subset \mathbb{R}^q$ is convex

→ Poor assumption for image manifolds?

Hessian Eigenmaps Convergence

 $d_{\mathcal{X}}(x, x') \longrightarrow$ geodesic distance between x and x' (shortest path within manifold \mathcal{X})

Given an infinite number of samples from a strictly positive distribution over the manifold, Hessian Eigenmaps will recover the true coordinates (up to a rigid transform) assuming

Local Isometry: For sufficiently close x, x' on the manifold,

$$d_{\mathcal{X}}(x, x') = ||y - y'|| \qquad x = \rho(y) \ x' = \rho(y')$$

Connectedness:

Coordinate space $\,\mathcal{Y} \subset \mathbb{R}^{q}\,$ is open and connected

Hessians in Euclidean Space

$$g: \mathcal{Y} \to \mathbb{R}$$
 $\left(H_g^{\mathsf{euc}}\right)_{i,j}(y) = \frac{\partial^2 g(y)}{\partial y_i \partial y_j}$

Consider the following functional defined for smooth g:

$$\mathcal{H}^{\mathsf{euc}}(g) = \int_{\mathcal{Y}} ||H_g^{\mathsf{euc}}(y)||_F^2 \, dy$$

- Nullspace of this operator consists of all smooth functions with everywhere vanishing Hessian
- This is precisely the space of all affine functions, or the span of the constant function and the q coordinate functions

Basis for

$$\operatorname{null} \mathcal{H}^{\operatorname{euc}}(g) \longrightarrow \operatorname{Basis} for$$

 $\mathcal{Y} \subset \mathbb{R}^{q}$

Tangent Hessians

 $f: \mathcal{X} \to \mathbb{R}$ $H_f^{tan}(x) =$ Hessian in tangent space at $x \in \mathcal{X}$

• Hessian depends on choice of tangent coordinate system, but its Frobenius norm is unique, so the following functional is well defined:

$$\begin{aligned} \mathcal{H}(f) &= \int_{\mathcal{X}} ||H_f^{\mathrm{tan}}(x)||_F^2 \ dx \\ \begin{array}{c} & \text{Basis for} \\ & \text{null } \mathcal{H}^{\mathrm{euc}}(g) \end{array} & \begin{array}{c} & \text{Basis for} \\ & \text{null } \mathcal{H}(f) \\ & \text{under the correspondence} \end{array} & g = f \circ \rho \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \text{Find coordinates from empirical estimate of} \\ & \text{null space of } \mathcal{H}(f) \end{aligned}$$

A

Failures of Laplacian Eigenmaps

Laplacian Eigenmaps (and asymptotically LLE) can be seen as minimizing an empirical version of

$$\mathcal{L}(f) = \int_{\mathcal{X}} (\Delta(f))^2$$

- Norm of Laplacian is *not* independent of choice of coordinate frame is this even well defined?
- There exist functions with zero Laplacian which are not affine (for example $f(x_1,x_2) = x_1x_2$)
 - Searching for a basis for this nullspace may produce axes distorted by these spurious functions

Hessian Eigenmaps: Step 1

Find Nearest Neighbors

- $\Gamma(i) = \text{set of neighbors of variable } x_i$
 - K nearest neighbors
 - Points within a ball of radius $\boldsymbol{\epsilon}$

Hessian Eigenmaps: Step 2

Estimate Tangent Hessians

• For each x_i, perform PCA analysis of neighboring points to find best-fitting q-dimensional linear subspace.

Estimate of tangent space at x_i

 Compute least-squares
 Hessian estimate based on projection of all points to this tangent space

Hessian Eigenmaps: Step 3

Find Low-Dimensional Embedding

- Use discretization implied by data points, and local Hessian estimates ${\rm H_{i}}$, find discrete approximation to $\mathcal{H}(f)$
- Optimal solution takes rows of Y as the eigenvectors of $\mathcal{H}(f)$ with minimal eigenvalues, excluding the constant eigenvector

Hessian Swiss Roll Embedding

Regular LLE

Hessian LLE

Issues with Hessian Eigenmaps

Has strong asymptotic guarantees, but...

- Assumes data points lie precisely on some manifold
- → For real data sets, we can at most hope that the data is "close" (in a probabilistic sense) to a manifold
- Requires local, empirical estimates of differential operators
- What happens to these estimates when the manifold is sparsely and/or irregularly sampled?

Charting a Manifold

Manifold Learning as Density Estimation

- Fit Gaussian mixture model to input data. The fitted Gaussians implicitly define local coordinate systems
- Estimate a consistent mapping of these local coordinate systems to a single low-dimensional space
- The posterior distributions of this density model then define a mapping of all high-dimensional points to the manifold, rather than just an embedding of the given data

Charting: Step 1

Soft Nearest Neighbor Assignment

For each x_i , assign a weight to all other points:

$$W_{ij} = \exp\left\{-\frac{1}{2\sigma^2}||x_i - x_j||^2\right\}$$

By setting very small weights to zero, we implicitly choose

 $\Gamma(i) = \text{set of neighbors of variable } x_i$

- Similar to use of $\boldsymbol{\epsilon}$ ball neighborhoods in other methods
- Relationship to weights in Laplacian eigenmaps?

Automatic Local Scale Selection

 $\begin{array}{c} \text{number of} \\ n(r) \twoheadrightarrow \text{neighbors in} \\ \text{ball of radius r} \end{array}$

 $n(r) \propto r^q$

only at locally linear scale

- Noise at small scales
- Curvature at large scales

Charting: Step 2

Fit Gaussian Mixture Model

$$p(x|\Lambda) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \Lambda_i)$$

- ML covariance estimate is degenerate (zero-variance)
- Regularize using prior which constrains nearby mixture components to model similar subspaces:

$$p(\Lambda) = \alpha \exp\left\{-\sum_{i \neq j} W_{ij} D(\mathcal{N}(x; x_i, \Lambda_i) || \mathcal{N}(x; x_j, \Lambda_j))\right\}$$

 MAP covariance matrix has closed form solution specified by a system of linear equations

Robustness by coupling local coordinate estimates

Charting: Step 3

Connect Local Charts

- $U_k \rightarrow$ projection of all data points onto the local coordinate frame (mixture component) centered on x_k
- $G_k \rightarrow$ affine transform mapping local coordinates around x_k to a common, global set of q-dim. coordinates

$$\Phi_{\text{chart}}(G) = \sum_{k \neq j} \sum_{i=1}^{n} p_k(x_i) p_j(x_i) \left\| G_k \left[\begin{array}{c} u_{ki} \\ 1 \end{array} \right] - G_j \left[\begin{array}{c} u_{ji} \\ 1 \end{array} \right] \right\|_F^2$$

 $p_k(x_i) \rightarrow posterior probability that x_i sampled from Gaussian centered on x_k$

 $\Phi_{\mathsf{chart}}(G) = \mathsf{trace}(GQQ^TG^T)$

Again find mapping via smallest eigenvectors

Charting a Sparse Swiss Roll

Charting Gives a Mapping

charting (projection onto coordinate space)

reconstruction (back-projected coordinate grid)

Open Research Directions

- Do probabilistic methods like charting every asymptotically recover the true manifold geometry?
- How does charting's use of Gaussian weight functions relate to the Laplacian eigenmap weights?
- Can probabilistic methods be used to improve the second derivative estimates used by Hessian LLE?

- Can we develop methods which avoid the need to identify linear patches and compute discrete derivative estimates?
- Can prior knowledge be used to regularize the learning of very sparsely sampled manifolds?