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Introduction

• CE method broadened from a rare-event simulation technique
to generic tool for solving different NP-hard problems.

• CE method a global iterative search algorithm comprising
following two steps:

1. Generate random data samples using set of dynamic
parameters.

2. Update parameters governing random data generation using
data samples themselves with objective of improving future
data samples.

3



CE Method for

Rare-Event Simulation

4



Preliminaries

• Let X = (X1, . . . , Xn) be random vector taking values in some
space X .

• Let S be real-valued function on X .

• Let f(·;u) be probability density function on X parameterized
by u.

Suppose we are interested in probability of occurrence of a rare
event. Specifically, we are interested in very small probability l that
S(x) is greater than or equal to real number γ under f(·;u):

l = Pu(S(X) ≥ γ) = EuI{S(X)≥γ}.
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Crude Monte Carlo

Simulation

• In CMC approach to estimating l, we simply draw random
sample X1, . . . ,XN from f(·;u) and compute:

1
N

N∑
i=1

I{S(Xi)≥γ}

to arrive at unbiased estimate of l.

• For rare events, most terms in above summation will be zero,
thus requiring very large value of N to obtain meaningful
estimate of l.
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Importance Sampling

• Using importance sampling density g, we represent l as:

l =
∫

I{S(x)≥γ}
f(x;u)
g(x)

g(x)dx = EgI{S(X)≥γ}
f(X;u)
g(X)

.

• Hence, unbiased estimator of l is:

l̂ =
1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi),

where W (x) = f(x;u)/g(x) is likelihood ratio (LR), and
X1, . . . ,XN are i.i.d. vectors drawn from g.
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Importance Sampling

(continued)

• Optimal importance sampling density is:

g∗(x) =
I{S(x)≥γ}f(x;u)

l

→ estimate has zero variance and only one sample is required.

• Problem with IS approach is obtaining g∗, as it depends on l

which we are attempting to estimate. In addition, it is often
convenient to choose importance sampling density of same form
as f(·;u).
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Importance Sampling

(continued)

• When choosing importance sampling density of form f(·;u), we
must find density f(·;v) which is “closest” to g∗. Convenient
measure of “closeness” is Kullback-Leibler (K-L) distance:

D(g, h) = Eg ln
g(X)
h(X)

=
∫

g(x) ln g(x)dx −
∫

g(x) lnh(x)dx.

• Minimizing K-L distance between g∗ and f(·;v) is equivalent
to following maximization problem:

maxv EuI{S(X)≥γ} ln f(X;v) = maxv EwI{S(X)≥γ}

W (X;u,w) ln f(X;v),

where W (x;u,w) = f(x;u)/f(x;w) is the LR between f(·;u)
and f(·;w) at x.
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Importance Sampling

(continued)

• Maximizing v∗ can be estimated by solving stochastic
counterpart:

v∗ = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi;u,w) ln f(Xi;v), (1)

where X1, . . . ,XN are iid vectors drawn from f(·;w).

• When function to be maximized in (1) is differentiable w.r.t. v,
solution may be analytically obtained by solving following
system of equations:

1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi;u,w)∇ ln f(Xi;v) = 0. (2)
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Importance Sampling

(continued)

• Approaches implied by (1) and (2) to estimating v∗ only yield
meaningful estimates when not too many of I{S(Xi)≥γ} terms
are zero (i.e. when the event of interest is not rare).
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CE Algorithm for

Rare-Event Simulation

For rare events, we estimate v∗ using following iterative algorithm
in which vt and γt associated with each iteration progressively
approach v∗ and γ, respectively:

1. Define v̂o = u. Set t = 1.

2. Generate samples X1, . . . ,XN from density f(·;vt−1) and
compute sample (1− ρ)-quantile of γ̂t of performances (i.e.
γ̂t = S(�(1−ρ)�)) provided γ̂t is less than γ. Otherwise, set
γ̂t = γ.

3. Use same sample X1, . . . ,XN to solve stochastic program:

v̂t = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1) ln f(Xi;v).
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CE Algorithm for

Rare-Event Simulation

(continued)

4. If γ̂t < γ, set t = t + 1 and reiterate from Step 2. Otherwise,
proceed with Step 5.

5. Estimate rare-event probability l using LR estimate:

l̂ =
1

N1

N1∑
i=1

I{S(Xi)≥γ}W (Xi;u, v̂T ),

where T denotes final number of iterations.
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Shortest Path

Example

Suppose the edge weights X = (X1, . . . , X5) are independent and
exponentially distributed with means u = (u1, . . . , u5).

A B 

X1 

X2 

X3 

X4 

X5 

Let S(X) be the shortest path length from A to B. We wish to
estimate:

l = Pu(S(X) ≥ γ) = EuI{S(X)≥γ}.
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Example

(continued)

Step 1: Set t = 1, and the initial density to:

f(x;v0) = exp

−
5∑

j=1

xj

uj

 5∏
j=1

1
uj

Step 2: Generate samples X1, . . . ,XN from the density:

f(x;vt−1) = exp

−
5∑

j=1

xj

vt−1,j

 5∏
j=1

1
vt−1,j

Step 3: Solve the stochastic program:

v̂t = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1) ln f(Xi;v).
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Example

(continued)

where:

W (Xi;u, v̂t−1) = exp

−
5∑

j=1

xj

(
1
uj

− 1
v̂t−1,j

) 5∏
j=1

v̂t−1,j

uj

by solving the following set of equations (obtained from (2)):

N∑
i=1

I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1)

(
Xij

v2
j

− 1
vj

)
= 0, j=1,. . . ,5.

Thus,

v̂t,j =
∑N

i=1 I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1)Xij∑N
i=1 I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1)

.
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Example

(continued)

Performance comparison:

• CMC: Using 108 samples, we obtain l̂ = 1.30× 10−5 with
relative error (Var(l̂)1/2/l̂) of 0.03 in 6350 seconds.

• CE: Using N = 1000, N1 = 105 and ρ = 0.1, we obtain
l̂ = 1.34× 10−5 with relative error of 0.03 in 3 seconds (5
iterations).
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CE Method for

Combinatorial Optimization
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Preliminaries

• Let X be a finite set of states.

• Let S be a real-valued performance function we wish to
maximize over X .

• Let γ∗ be maximum value of S.

• Let x∗ be state at which this maximum occurs .

• Let f(·;v) be probability mass function on X , parameterized
by vector v.
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Recasting the COP

Main idea: Recast deterministic COP into probabilistic framework,
where RES technique can be used.

• For certain parameter vector u and threshold γ, define l(γ) as
probability that performance function S exceeds γ:

l(γ) = Pu(S(X) ≥ γ) =
∑
x

I{S(x)≥γ}f(x;u) = EuI{S(X)≥γ}.

• In typical COPs, |X | is very large and l(γ∗) = f(x∗;u) ≈ 1/|X |
is consequently very small → l(γ∗) a rare event.
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CE Algorithm for

Combinatorial Optimization

1. Define v̂o = u. Set t = 1.

2. Generate samples X1, . . . ,XN from density f(·;vt−1) and
compute sample (1− ρ)-quantile of γ̂t of performances (i.e.
γ̂t = S(�(1−ρ)�)) provided γ̂t is less than γ. Otherwise, set
γ̂t = γ.

3. Use same sample X1, . . . ,XN to solve stochastic program:

v̂t = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi;v). (3)

4. If for some t ≥ d:

γ̂t = γ̂t−1 = · · · = γ̂t−d,

then stop; otherwise, set t = t + 1 and reiterate from Step 2.
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Remarks

• No Importance Sampling step in algorithm.

• Significant difference between RES and COP Algorithms is role
of initial parameter vector u. In RES, u uniquely characterizes
system under consideration, whereas in COP, u is arbitrarily
chosen to initialize algorithm. LR term W is thus implicitly set
to unity in COP because it is meaningless.

• Rather than updating v̂t through (3), it is often beneficial to
use following smoothing function to prevent harmful
recurrences of zeros and ones in parameter vectors:

v̂t = αŵt + (1− α)v̂t−1,

where ŵt is the vector derived via (3).
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Max-Cut Example

We wish to partition nodes in weighted graph into two subsets such
that sum of weights from one subset to other is maximized.

1 3 5 

2 4 6 

Let X = (X1, . . . , X6) be cut vector, where Xi = 1 if node i belongs
to same partition as node 1, and 0 otherwise. Let S(X) be the cost
of cut X. We wish to maximize S.
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Example

(continued)

Step 1: Arbitrarily set initial distribution of cut vectors to product
of independent Bernoulli random variables q = (1, q2, . . . , q6):

f(x;p0) =
6∏

i=2

qxi
i (1− qi)

1−xi

Step 2: Generate samples X1, . . . ,XN from the density:

f(x;pt−1) =
6∏

i=2

pxi
t−1,i (1− pt−1,i)

1−xi

Step 3: Solve the stochastic program:

p̂t = argmaxp

1
N

N∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi;p).
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Example

(continued)

by solving the following set of equations (obtained from (2)):

1
(1− pj)pj

N∑
i=1

I{S(Xi)≥γ̂t}(Xij − pj) = 0, j=2,. . . ,6.

Thus,

p̂t,j =
∑N

i=1 I{S(Xi)≥γ̂t}Xij∑N
i=1 I{S(Xi)≥γ̂t}

.
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Enhancements
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Alternative

Performance Functions

• The CE method can be sped up by using l(γ) = Euϕ(s; γ)
instead of l(γ) = EuI{S(X)≥γ} for updating vt, for some ϕ(s; γ)
which, for a maximization problem, is increasing in s.

• Empirical evidence shows that ϕ = sI{S(X)≥γ} speeds up
algorithm, while high-power polynomials should be avoided as
they lead more easily to local minima.
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Fully Adaptive

CE Method

• In FACE, parameters are updated using best performing
constant Ne samples.

• Number of samples at each iteration Nt is obtained by
attempting to satisfy:

St,(Nt) ≥ St−1,(Nt−1)

γ̂t > γ̂t−1.

i.e. Improvement in both the best and worst of the Ne samples
in each iteration.

• Empirically, it was found that FACE converges up to two times
faster than original CE algorithm.
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Convergence

• Convergence of CE method to an estimate of (a possibly local)
optimal CE parameter in a finite number of iterations with a
finite sample size was shown in [Homem de Mello, 2002] under
following assumptions:

– Probability being estimated in CE method does not vanish
in a neighborhood of optimal parameter v∗.

– ρ is adaptively decreased, and the sample size N is
adaptively increased.

• In same work, authors showed that convergence to optimal CE
parameter is exponential in sample size N .
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Conclusions

• Summarized basic theory of CE method, and specialized
method to RES and COPs.

• More work needs to be done. For example,:

– Relationship of CE parameters to instance of problem.

– Relationship of CE parameters to convergence (rates).
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