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Introduction

e CE method broadened from a rare-event simulation technique

to generic tool for solving different NP-hard problems.

e CE method a global iterative search algorithm comprising

following two steps:

1. Generate random data samples using set of dynamic

parameters.

2. Update parameters governing random data generation using
data samples themselves with objective of improving future

data samples.




CE Method for

Rare-Event Simulation




Preliminaries
o Let X = (Xq,...,X,) be random vector taking values in some
space X.
e Let S be real-valued function on X.

e Let f(-;u) be probability density function on X parameterized
by u.

Suppose we are interested in probability of occurrence of a rare
event. Specifically, we are interested in very small probability [ that
S(x) is greater than or equal to real number vy under f(-;u):

[ = ]P)u(S(X) Z ’y) — EuI{S(X)ZW}-




Crude Monte Carlo
Simulation

e In CMC approach to estimating [, we simply draw random

sample Xq,..., Xy from f(-;u) and compute:

1 N
~ 2 lsexo =)
1=1

to arrive at unbiased estimate of [.

e For rare events, most terms in above summation will be zero,
thus requiring very large value of NV to obtain meaningful
estimate of [.




Importance Sampling

e Using importance sampling density g, we represent [ as:

f(X;u)

X; U
I = /ﬁ&x)@}wg(x)dx = EQI{S(X)Z’Y}TX)

g(x)

e Hence, unbiased estimator of [ is:

N
-1
I= 5 2_ sz W(X),

1=1

where W (x) = f(x;u)/g(x) is likelihood ratio (LR), and

Xi,..., Xy are i.i.d. vectors drawn from g.




Importance Sampling
(continued)

e Optimal importance sampling density is:

* ISX> f(X;Ll)
g (X) _ {S( )_’Yl}

— estimate has zero variance and only one sample is required.

e Problem with IS approach is obtaining ¢g*, as it depends on [
which we are attempting to estimate. In addition, it is often

convenient to choose importance sampling density of same form

as f(-;u).




Importance Sampling
(continued)

e When choosing importance sampling density of form f(-;u), we
must find density f(-;v) which is “closest” to g*. Convenient

measure of “closeness” is Kullback-Leibler (K-L) distance:

D(g,h) =E;In 9X) = /g(x) In g(x)dx — /g(x) In h(x)dx.

h(X)

Minimizing K-L distance between g* and f(-;Vv) is equivalent
to following maximization problem:
maxXsy, EuI{S(X)Z'y} In f(X, V) = IMaXy, EWI{S(X)ny}

W(X;u,w)ln f(X;v),

where W(x;u,w) = f(x;u)/f(x;w) is the LR between f(-;u)
and f(-;w) at x.




Importance Sampling
(continued)

e Maximizing v* can be estimated by solving stochastic

counterpart:

N
. 1
V' = argmax, — ;I{S(X,&)ZW}W(XZ'; u,w)ln f(X;;v), (1)

where X1,..., Xy are iid vectors drawn from f(-; w).

e When function to be maximized in (1) is differentiable w.r.t. v,
solution may be analytically obtained by solving following

system of equations:

N

1

< 2 lisxoe W Xiiu, w)Vin f(Xi5v) =0, (2)
1=1




Importance Sampling

(continued)

e Approaches implied by (1) and (2) to estimating v* only yield
meaningful estimates when not too many of Iyg(x,)>~1 terms

are zero (i.e. when the event of interest is not rare).
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CE Algorithm for
Rare-Event Simulation

For rare events, we estimate v* using following iterative algorithm
in which v; and ~; associated with each iteration progressively

approach v* and -y, respectively:
1. Define v, = u. Set ¢t = 1.

2. Generate samples Xy, ..., Xy from density f(-;v;—1) and
compute sample (1 — p)-quantile of 74; of performances (i.e.

AN

Y¢ = S([(1-p)7)) Provided 7; is less than . Otherwise, set
Vi =

. Use same sample X1,..., Xy to solve stochastic program:

N
AN ]‘ AN
vV = argmax,, N ._E 1 Iisx)>W(Xisu, vi1) In f(Xy;v).




CE Algorithm for
Rare-Event Simulation

(continued)

. If 4, <, set t =t + 1 and reiterate from Step 2. Otherwise,
proceed with Step 5.
. Estimate rare-event probability [ using LR estimate:

Ny

~ 1 ~
[ = E Z[{S(Xz)Z’Y}W(XZ’ u, VT)7
1=1

where T" denotes final number of iterations.




Shortest Path
Example

Suppose the edge weights X = (X3,..., X5) are independent and
exponentially distributed with means u = (uy, ..., us).

Let S(X) be the shortest path length from A to B. We wish to

estimate:

l = ]Pu(S(X) Z ’y) = EuI{S(X)zfy}-




Example
(continued)

Step 1: Set t = 1, and the initial density to:

Step 2: Generate samples X1,..., Xy from the density:

Step 3: Solve the stochastic program:

N
AN 1 AN
Vi = argmax, 'E_l Iisx)>an W(Xi;u, Vi) In f(X5;v).




Example
(continued)

where:

AN

5
W(XiQU,{’\t 1 = exp Zx] <__/\ ) H?Jt 1,5

Ut — 1,7

by solving the following set of equations (obtained from (2)):

N
ZI{S(Xz)Zﬁ\t}W(sz u, Vt—l) ( . ) — 07 ]:17 . 75'

Vs
1=1 J

Thus,
Zé\il I{S(XZ)Z’%}W(X% u, Gt—l)Xij
Zi]il Iisx)>53 W (Xisu, V1)

Ut,5 =




Example
(continued)

Performance comparison:

e CMC: Using 10® samples, we obtain I =1.30 x 10~5 with
relative error (Var(lA)l/ 2 /Z\) of 0.03 in 6350 seconds.

e CE: Using N = 1000, N; = 10° and p = 0.1, we obtain
I =1.34 x 1075 with relative error of 0.03 in 3 seconds (5

iterations).




CE Method for

Combinatorial Optimization




Preliminaries

Let X be a finite set of states.

Let S be a real-valued performance function we wish to

maximize over X.
Let v* be maximum value of S.

Let x* be state at which this maximum occurs .

Let f(-;v) be probability mass function on X, parameterized

by vector v.




Recasting the COP

Main idea: Recast deterministic COP into probabilistic framework,
where RES technique can be used.

e For certain parameter vector u and threshold ~, define I(v) as

probability that performance function .S exceeds ~:

Pu(S(X) 2 7) = Y Liseozyf (1) = Bulisx)>q-

e In typical COPs, |X| is very large and I(v*) = f(x*;u) =~ 1/|X|

is consequently very small — [(v*) a rare event.




CE Algorithm for
Combinatorial Optimization

. Define v, = u. Set t = 1.

. Generate samples Xy, ..., Xy from density f(-;v;_1) and
compute sample (1 — p)-quantile of 74; of performances (i.e.
Yt = S([(1-p)7)) Provided 7; is less than . Otherwise, set
Ve = -

. Use same sample X1,..., Xy to solve stochastic program:

N
N 1
Vi = argmax,, N z_; I{S(Xi)Z’Vt} In f(XZ, V). (3)

. If for some t > d:

Yt = Vi—1 = = Vt—-d>

then stop; otherwise, set ¢t =t 4+ 1 and reiterate from Step 2.




Remarks

e No Importance Sampling step in algorithm.

e Significant difference between RES and COP Algorithms is role
of initial parameter vector u. In RES, u uniquely characterizes
system under consideration, whereas in COP, u is arbitrarily
chosen to initialize algorithm. LR term W is thus implicitly set
to unity in COP because it is meaningless.

Rather than updating v; through (3), it is often beneficial to
use following smoothing function to prevent harmful

recurrences of zeros and ones in parameter vectors:

Qt = Oé\/i/'t + (1 — Oé)(/'\t_l,

where w; is the vector derived via (3).




Max-Cut Example

We wish to partition nodes in weighted graph into two subsets such
that sum of weights from one subset to other is maximized.

® 3) (5)

@ @ (®

Let X = (X4,...,Xg) be cut vector, where X; = 1 if node ¢ belongs
to same partition as node 1, and 0 otherwise. Let S(X) be the cost
of cut X. We wish to maximize S.




Example
(continued)

Step 1: Arbitrarily set initial distribution of cut vectors to product
of independent Bernoulli random variables q = (1, g2, ..., qg):

XpO Hq 1_%1%

Step 2: Generate samples X, ..., Xy from the density:

1—z;
(X; Pe-1) Hpt i (L=pi1s) "

Step 3: Solve the stochastic program:

~ 1
Pt = argmaxp N Z I{S(Xi)Zﬂ} In f(Xz, p).
1=1




Example
(continued)

by solving the following set of equations (obtained from (2)):

>5,1(Xij —

N
. Zi:l I{S(Xi)Z?t}Xij
_ X .
> i1 Lis(xo>71)
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Enhancements



Alternative
Performance Functions

e The CE method can be sped up by using I(v) = Eup(s;7)

instead of I(v) = Eul{s(x)>~} for updating v, for some ¢(s;~)

which, for a maximization problem, is increasing in s.

e Empirical evidence shows that ¢ = slygx)>~} speeds up
algorithm, while high-power polynomials should be avoided as

they lead more easily to local minima.




Fully Adaptive
CE Method

e In FACE, parameters are updated using best performing

constant N¢ samples.

e Number of samples at each iteration /V; is obtained by
attempting to satisty:

St.(vy) = Sto1(N,_y)

o> Vi1

i.e. Improvement in both the best and worst of the N¢ samples

in each iteration.

e Empirically, it was found that FACE converges up to two times
faster than original CE algorithm.




Convergence

e Convergence of CE method to an estimate of (a possibly local)
optimal CE parameter in a finite number of iterations with a
finite sample size was shown in [Homem de Mello, 2002] under

following assumptions:

— Probability being estimated in CE method does not vanish

in a neighborhood of optimal parameter v*.
— p is adaptively decreased, and the sample size N is

adaptively increased.

e In same work, authors showed that convergence to optimal CE

parameter is exponential in sample size N.




Conclusions

e Summarized basic theory of CE method, and specialized
method to RES and COPs.

e More work needs to be done. For example,:

— Relationship of CE parameters to instance of problem.

— Relationship of CE parameters to convergence (rates).




